Skip to main content
Log in

New Developments in the Genetics of Bipolar Disorder

  • Bipolar Disorders (W Coryell, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

The last several years have been breakthrough ones in bipolar disorder (BPD) genetics, as the field has identified robust risk variants for the first time. Leading the way have been genome-wide association studies (GWAS) that have assessed common genetic markers across very large groups of patients and controls. These have resulted in findings in genes including ANK3, CACNA1C, SYNE1, ODZ4, and TRANK1. Additional studies have begun to examine the biology of these genes and how risk variants influence aspects of brain and behavior that underlie BPD. For example, carriers of the CACNA1C risk variant have been found to exhibit hippocampal and anterior cingulate dysfunction during episodic memory recall. This work has shed additional light on the relationship of bipolar susceptibility variants to other disorders, particularly schizophrenia. Even larger BPD GWAS are expected with samples now amassed of 21,035 cases and 28,758 controls. Studies have examined the pharmacogenomics of BPD with studies of lithium response, yielding high profile results that remain to be confirmed. The next frontier in the field is the identification of rare bipolar susceptibility variants through large-scale DNA sequencing. While only a couple of papers have been published to date, many studies are underway. The Bipolar Sequencing Consortium has been formed to bring together all of the groups working in this area, and to perform meta-analyses of the data generated. The consortium, with 13 member groups, now has exome data on ~3,500 cases and ~5,000 controls, and on ~162 families. The focus will likely shift within several years from exome data to whole genome data as costs of obtaining such data continue to drop. Gene-mapping studies are now providing clear results that provide insights into the pathophysiology of the disorder. Sequencing studies should extend this process further. Findings could eventually set the stage for rational therapeutic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently have been highlighted as: • Of importance

  1. Potash JB, DePaulo Jr JR. Searching high and low: a review of the genetics of bipolar disorder. Bipolar Disord. 2000;2(1):8–26.

    Article  PubMed  CAS  Google Scholar 

  2. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.

    Article  Google Scholar 

  3. Baum AE et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry. 2008;13(2):197–207.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Ferreira MA et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet. 2008;40(9):1056–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Sklar P et al. Whole-genome association study of bipolar disorder. Mol Psychiatry. 2008;13(6):558–69.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Lee MT et al. Genome-wide association study of bipolar I disorder in the Han Chinese population. Mol Psychiatry. 2011;16(5):548–56.

    Article  PubMed  CAS  Google Scholar 

  7. Hattori E et al. Preliminary genome-wide association study of bipolar disorder in the Japanese population. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(8):1110–7.

    Article  PubMed  CAS  Google Scholar 

  8. Djurovic S et al. A genome-wide association study of bipolar disorder in Norwegian individuals, followed by replication in Icelandic sample. J Affect Disord. 2010;126(1–2):312–6.

    Article  PubMed  Google Scholar 

  9. Cichon S et al. Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am J Hum Genet. 2011;88(3):372–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Yosifova A et al. Genome-wide association study on bipolar disorder in the Bulgarian population. Genes Brain Behav. 2011;10(7):789–97.

    Article  PubMed  CAS  Google Scholar 

  11. Xu W et al. Genome-wide association study of bipolar disorder in Canadian and UK populations corroborates disease loci including SYNE1 and CSMD1. BMC Med Genet. 2014;15:2.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Smith EN et al. Genome-wide association of bipolar disorder suggests an enrichment of replicable associations in regions near genes. PLoS Genet. 2011;7(6):e1002134.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Smith EN et al. Genome-wide association study of bipolar disorder in European American and African American individuals. Mol Psychiatry. 2009;14(8):755–63.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Psychiatric Genomics Consortium-Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet. 2011;43(10):977–83.

    Article  Google Scholar 

  15. Muhleisen TW et al. Genome-wide association study reveals two new risk loci for bipolar disorder. Nat Commun. 2014;5:3339. The largest BPD GWAS to date with >24,000 patients and controls.

    Article  PubMed  Google Scholar 

  16. Chen DT et al. Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Mol Psychiatry. 2013;18(2):195–205. This study of >17,000 subjects implicated TRANK1 in BPD.

    Article  PubMed  CAS  Google Scholar 

  17. Nurnberger Jr JI et al. Identification of pathways for bipolar disorder: a meta-analysis. JAMA Psychiatry. 2014;71(6):657–64.

    Article  PubMed  CAS  Google Scholar 

  18. Heinrich A et al. The risk variant in ODZ4 for bipolar disorder impacts on amygdala activation during reward processing. Bipolar Disord. 2013;15(4):440–5.

    Article  PubMed  CAS  Google Scholar 

  19. Soeiro-de-Souza MG et al. The impact of the CACNA1C risk allele on limbic structures and facial emotions recognition in bipolar disorder subjects and healthy controls. J Affect Disord. 2012;141(1):94–101.

    Article  PubMed  CAS  Google Scholar 

  20. Soeiro-de-Souza MG et al. The CACNA1C risk allele selectively impacts on executive function in bipolar type I disorder. Acta Psychiatr Scand. 2013;128(5):362–9.

    Article  PubMed  CAS  Google Scholar 

  21. Tesli M et al. CACNA1C risk variant and amygdala activity in bipolar disorder, schizophrenia and healthy controls. PLoS ONE. 2013;8(2):e56970.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Roussos P et al. The CACNA1C and ANK3 risk alleles impact on affective personality traits and startle reactivity but not on cognition or gating in healthy males. Bipolar Disord. 2011;13(3):250–9.

    Article  PubMed  Google Scholar 

  23. Ruberto G et al. The cognitive impact of the ANK3 risk variant for bipolar disorder: initial evidence of selectivity to signal detection during sustained attention. PLoS ONE. 2011;6(1):e16671.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Wessa M et al. The CACNA1C risk variant for bipolar disorder influences limbic activity. Mol Psychiatry. 2010;15(12):1126–7.

    Article  PubMed  CAS  Google Scholar 

  25. Radua J et al. The impact of CACNA1C allelic variation on effective connectivity during emotional processing in bipolar disorder. Mol Psychiatry. 2013;18(5):526–7.

    Article  PubMed  CAS  Google Scholar 

  26. Dima D et al. Independent modulation of engagement and connectivity of the facial network during affect processing by CACNA1C and ANK3 risk genes for bipolar disorder. JAMA Psychiatry. 2013;70(12):1303–11.

    Article  PubMed  CAS  Google Scholar 

  27. Dietsche B et al. The impact of a CACNA1C gene polymorphism on learning and hippocampal formation in healthy individuals: a diffusion tensor imaging study. Neuroimage. 2014;89:256–61.

    Article  PubMed  CAS  Google Scholar 

  28. Bigos KL et al. Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch Gen Psychiatry. 2010;67(9):939–45.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Erk S et al. Brain function in carriers of a genome-wide supported bipolar disorder variant. Arch Gen Psychiatry. 2010;67(8):803–11.

    Article  PubMed  Google Scholar 

  30. Erk, S., et al., Hippocampal and frontolimbic function as intermediate phenotype for psychosis: evidence from healthy relatives and a common risk variant in CACNA1C. Biol Psychiatry, 2013.

  31. Erk S et al. Replication of brain function effects of a genome-wide supported psychiatric risk variant in the CACNA1C gene and new multi-locus effects. Neuroimage. 2014;94:147–54.

    Article  PubMed  CAS  Google Scholar 

  32. Schulze TG et al. What is familial about familial bipolar disorder? Resemblance among relatives across a broad spectrum of phenotypic characteristics. Arch Gen Psychiatry. 2006;63(12):1368–76.

    Article  PubMed  Google Scholar 

  33. Potash JB et al. The bipolar disorder phenome database: a resource for genetic studies. Am J Psychiatry. 2007;164(8):1229–37.

    Article  PubMed  Google Scholar 

  34. Willour VL et al. A genome-wide association study of attempted suicide. Mol Psychiatry. 2012;17(4):433–44.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Goes FS et al. Mood-incongruent psychotic features in bipolar disorder: familial aggregation and suggestive linkage to 2p11-q14 and 13q21-33. Am J Psychiatry. 2007;164(2):236–47.

    Article  PubMed  Google Scholar 

  36. O'Mahony E et al. Sibling pairs with affective disorders: resemblance of demographic and clinical features. Psychol Med. 2002;32(1):55–61.

    Article  PubMed  Google Scholar 

  37. Potash JB et al. The familial aggregation of psychotic symptoms in bipolar disorder pedigrees. Am J Psychiatry. 2001;158(8):1258–64.

    Article  PubMed  CAS  Google Scholar 

  38. Belmonte Mahon P et al. Genome-wide association analysis of age at onset and psychotic symptoms in bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2011;156B(3):370–8.

    Article  PubMed  Google Scholar 

  39. Hamshere ML et al. Polygenic dissection of the bipolar phenotype. Br J Psychiatry. 2011;198(4):284–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Goes FS et al. Genome-wide association of mood-incongruent psychotic bipolar disorder. Transl Psychiatry. 2012;2:e180.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013;45(9):984–94.

    Article  PubMed Central  Google Scholar 

  42. Cross-Disorder Group of the Psychiatric Genomics Consortium and Consortium for Genetic Risk Outcome of Psychosis. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381(9875):1371–9.

    Article  Google Scholar 

  43. Leussis MP et al. The ANK3 bipolar disorder gene regulates psychiatric-related behaviors that are modulated by lithium and stress. Biol Psychiatry. 2013;73(7):683–90. Interesting example of examination of the function of a GWAS-implicated BPD gene in an animal model.

    Article  PubMed  CAS  Google Scholar 

  44. Durak O et al. Ankyrin-G regulates neurogenesis and Wnt signaling by altering the subcellular localization of beta-catenin. Mol Psychiatry. 2014. doi:10.1038/mp.2014.42.

    PubMed  Google Scholar 

  45. Zhang D et al. Singleton deletions throughout the genome increase risk of bipolar disorder. Mol Psychiatry. 2009;14(4):376–80.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Grozeva D et al. Rare copy number variants: a point of rarity in genetic risk for bipolar disorder and schizophrenia. Arch Gen Psychiatry. 2010;67(4):318–27.

    Article  PubMed  Google Scholar 

  47. Malhotra D et al. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron. 2011;72(6):951–63.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Bergen SE et al. Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. Mol Psychiatry. 2012;17(9):880–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Georgieva, L., et al., De novo CNVs in bipolar affective disorder and schizophrenia. Hum Mol Genet. 2014.

  50. Chen YC et al. A hybrid likelihood model for sequence-based disease association studies. PLoS Genet. 2013;9(1):e1003224.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Cruceanu C et al. Family-based exome-sequencing approach identifies rare susceptibility variants for lithium-responsive bipolar disorder. Genome. 2013;56(10):634–40.

    Article  PubMed  CAS  Google Scholar 

  52. Georgi B et al. Genomic view of bipolar disorder revealed by whole genome sequencing in a genetic isolate. PLoS Genet. 2014;10(3):e1004229.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fiorentino A et al. Analysis of ANK3 and CACNA1C variants identified in bipolar disorder whole genome sequence data. Bipolar Disord. 2014. doi:10.1111/bdi.12203.

    PubMed  Google Scholar 

  54. Akula N et al. RNA-sequencing of the brain transcriptome implicates dysregulation of neuroplasticity, circadian rhythms and GTPase binding in bipolar disorder. Mol Psychiatry. 2014. doi:10.1038/mp.2013.170.

    PubMed  Google Scholar 

  55. Xiao Y et al. The DNA methylome and transcriptome of different brain regions in schizophrenia and bipolar disorder. PLoS ONE. 2014;9(4):e95875.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lin PI et al. Clinical correlates and familial aggregation of age at onset in bipolar disorder. Am J Psychiatry. 2006;163(2):240–6.

    Article  PubMed  Google Scholar 

  57. Sugawara H et al. Comprehensive DNA methylation analysis of human peripheral blood leukocytes and lymphoblastoid cell lines. Epigenetics. 2011;6(4):508–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Kaminsky Z et al. A multi-tissue analysis identifies HLA complex group 9 gene methylation differences in bipolar disorder. Mol Psychiatry. 2012;17(7):728–40.

    Article  PubMed  CAS  Google Scholar 

  59. Carrard A et al. Increased DNA methylation status of the serotonin receptor 5HTR1A gene promoter in schizophrenia and bipolar disorder. J Affect Disord. 2011;132(3):450–3.

    Article  PubMed  CAS  Google Scholar 

  60. Nohesara S et al. DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder. J Psychiatr Res. 2011;45(11):1432–8.

    Article  PubMed  Google Scholar 

  61. Ghadirivasfi M et al. Hypomethylation of the serotonin receptor type-2A Gene (HTR2A) at T102C polymorphic site in DNA derived from the saliva of patients with schizophrenia and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2011;156B(5):536–45.

    Article  PubMed  Google Scholar 

  62. Abdolmaleky HM et al. Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder. Schizophr Res. 2011;129(2–3):183–90.

    Article  PubMed  Google Scholar 

  63. Abdolmaleky HM et al. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet. 2006;15(21):3132–45.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Dempster EL et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum Mol Genet. 2011;20(24):4786–96.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Mill J et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet. 2008;82(3):696–711.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Nishioka M et al. Neuronal cell-type specific DNA methylation patterns of the Cacna1c gene. Int J Dev Neurosci. 2013;31(2):89–95.

    Article  PubMed  CAS  Google Scholar 

  67. Grof P et al. Is response to prophylactic lithium a familial trait? J Clin Psychiatry. 2002;63(10):942–7.

    Article  PubMed  CAS  Google Scholar 

  68. Perlis RH et al. A genomewide association study of response to lithium for prevention of recurrence in bipolar disorder. Am J Psychiatry. 2009;166(6):718–25.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chen CH et al. Variant GADL1 and response to lithium therapy in bipolar I disorder. N Engl J Med. 2014;370(2):119–28. High profile paper suggests that a single SNP determines lithium response in East Asians.

    Article  PubMed  CAS  Google Scholar 

  70. Ikeda M, Kondo K, Iwata N. Variant GADL1 and response to lithium in bipolar I disorder. N Engl J Med. 2014;370(19):1856–7. A failure to replicate the high profile Chen et al. result.

    PubMed  Google Scholar 

  71. Consortium on Lithium Genetics., et al., Variant GADL1 and response to lithium in bipolar I disorder. N Engl J Med, 2014. 370(19):1857–9. A failure to replicate the high profile Chen et al. result.

  72. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the NIMH to Dr. Potash (R01MH087979). The authors report no competing interests.

Compliance with Ethics Guidelines

Conflict of Interest

Gen Shinozaki and James B. Potash declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Potash.

Additional information

This article is part of the Topical Collection on Bipolar Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinozaki, G., Potash, J.B. New Developments in the Genetics of Bipolar Disorder. Curr Psychiatry Rep 16, 493 (2014). https://doi.org/10.1007/s11920-014-0493-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-014-0493-5

Keywords

Navigation