Skip to main content

Advertisement

Log in

The Hypocretin System and Psychiatric Disorders

  • Hot Topic
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

The hypocretin system is constituted by a small group of hypothalamic neurons with widespread connections within the entire central nervous system producing two neuropeptides involved in several key physiological functions such as the regulation of sleep and wakefulness, motor control, autonomic functions, metabolism, feeding behavior, and reward. Narcolepsy with cataplexy is a neurological disorder regarded as a disease model for the selective hypocretin system damage, and also shares several psychopatological traits and comorbidities with psychiatric disorders. We reviewed the available literature on the involvement of the hypocretin system in psychiatric nosography. Different evidences such as cerebrospinal hypocretin-1 levels, genetic polymorphisms of the neuropeptides or their receptors, response to treatments, clinical, experimental and functional data directly or indirectly linked the hypocretin system to schizophrenia, mood, anxiety and eating disorders, as well as to addiction. Future genetic and pharmacological studies will disentangle the hypocretin system role in the field of psychiatry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92:573–85.

    CAS  PubMed  Google Scholar 

  2. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A. 1998;95:322–7.

    PubMed Central  PubMed  Google Scholar 

  3. Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98:365–76.

    CAS  PubMed  Google Scholar 

  4. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98:437–51.

    CAS  PubMed  Google Scholar 

  5. Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000;6:991–7.

    CAS  PubMed  Google Scholar 

  6. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27:469–74.

    CAS  PubMed  Google Scholar 

  7. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet. 2000;355:39–40.

    CAS  PubMed  Google Scholar 

  8. Nishino S, Ripley B, Overeem S, Nevsimalova S, Lammers GJ, Vankova J, et al. Low cerebrospinal fluid hypocretin (Orexin) and altered energy homeostasis in human narcolepsy. Ann Neurol. 2001;50:381–8.

    CAS  PubMed  Google Scholar 

  9. American Academy of Sleep Medicine. ICSD-2- International classification of sleep disorders: Diagnostic and coding manual. 2nd ed. Westchester-Illinois; 2005.

  10. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437:1257–63.

    CAS  PubMed  Google Scholar 

  11. Sakurai T, Nagata R, Yamanaka A, Kawamura H, Tsujino N, Muraki Y, et al. Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron. 2005;46:297–308.

    CAS  PubMed  Google Scholar 

  12. Yoshida K, McCormack S, España RA, Crocker A, Scammell TE. Afferents to the orexin neurons of the rat brain. J Comp Neurol. 2006;494:845–61.

    PubMed Central  PubMed  Google Scholar 

  13. Yamuy J, Fung SJ, Xi M, Chase MH. Hypocretinergic control of spinal cord motoneurons. J Neurosci. 2004;24:5336–45.

    CAS  PubMed  Google Scholar 

  14. Plazzi G, Moghadam KK, Maggi LS, Donadio V, Vetrugno R, Liguori R, et al. Autonomic disturbances in narcolepsy. Sleep Med Rev. 2011;15:187–96.

    PubMed  Google Scholar 

  15. Tsujino N, Sakurai T. Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci. 2013;7:28.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Gelineau JBE. De la Narcolepsy (I). Gaz des Hôp. 1880;54:626–8.

    Google Scholar 

  17. Gelineau JBE. De la Narcolepsy (II). Gaz des Hôp. 1880;54:635–7.

    Google Scholar 

  18. Westphal C. Eigentümliche mit Einschlafen verbundene Anfälle. Arch f Psych 1877:631–5.

  19. Löwenfeld L. Über Narkolepsie Münch Med Wochenschr. 1902;49:1041–5.

    Google Scholar 

  20. Lhermitte J. Les narcolepsies. Rev de Psychiat et de Psychol expér. 1910;14:265.

    Google Scholar 

  21. Wilson KS. The Narcolepsies. Brain. 1928;51:63–109.

    Google Scholar 

  22. Adie W. Idiopathic narcolepsy: a disease sui generis; with remarks on the mechanism of sleep. Brain. 1926;49:257–306.

    Google Scholar 

  23. Von Economo C. Sleep as a problem of localization. J Nerv Ment Disease. 1930;71:249–59.

    Google Scholar 

  24. Vogel G. Studies in psychophysiology of dreams. III The dream of narcolepsy Arch Gen Psychiatry. 1960;3:421–8.

    CAS  Google Scholar 

  25. Yoss RE, Daly DD. Criteria for the diagnosis of the narcoleptic syndrome. Proc Staff Meet Mayo. 1957;32:320–8.

    CAS  Google Scholar 

  26. Matsuki K, Grumet FC, Lin X, Gelb M, Guilleminault C, Dement WC, et al. DQ (rather than DR) gene marks susceptibility to narcolepsy. Lancet. 1992;339:1052.

    CAS  PubMed  Google Scholar 

  27. Mignot E, Lin X, Arrigoni J, Macaubas C, Olive F, Hallmayer J, et al. DQB1*0602 and DQA1*0102 (DQ1) are better markers than DR2 for narcolepsy in Caucasian and black Americans. Sleep. 1994;17(8 Suppl):S60–7.

    CAS  PubMed  Google Scholar 

  28. Kornum BR, Faraco J, Mignot E. Narcolepsy with hypocretin/orexin deficiency, infections and autoimmunity of the brain. Curr Opin Neurobiol. 2011;21:897–903.

    CAS  PubMed  Google Scholar 

  29. Fortuyn HA, Lappenschaar MA, Furer JW, Hodiamont PP, Rijnders CA, Renier WO, et al. Anxiety and mood disorders in narcolepsy: a case–control study. Gen Hosp Psychiatry. 2010;32:49–56.

    PubMed  Google Scholar 

  30. Ohayon MM. Narcolepsy is complicated by high medical and psychiatric comorbidities: a comparison with the general population. Sleep Med. 2013;14:488–92.

    PubMed  Google Scholar 

  31. Vignatelli L, Plazzi G, Peschechera F, Delaj L, D'Alessandro R. A 5-year prospective cohort study on health-related quality of life in patients with narcolepsy. Sleep Med. 2011;12:19–23.

    PubMed  Google Scholar 

  32. Kishi Y, Konishi S, Koizumi S, Kudo Y, Kurosawa H, Kathol RG. Schizophrenia and narcolepsy: a review with a case report. Psychiatry Clin Neurosci. 2004;58:117–24.

    PubMed  Google Scholar 

  33. Talih FR. Narcolepsy presenting as schizophrenia: a literature review and two case reports. Innov Clin Neurosi. 2011;8:30–4.

    Google Scholar 

  34. Vourdas A, Shneerson JM, Gregory CA, Smith IE, King MA, Morrish E, et al. Narcolepsy and psychopathology: is there an association? Sleep Med. 2002;3:353–60.

    CAS  PubMed  Google Scholar 

  35. Walterfang M, Upjohn E, Velakoulis D. Is schizophrenia associated with narcolepsy? Cogn Behav Neurol. 2005;18:113–8.

    PubMed  Google Scholar 

  36. Chien WT, Yip AL. Current approaches to treatments for schizophrenia spectrum disorders, part I: an overview and medical treatments. Neuropsychiatr Dis Treat. 2013;9:1311–32.

    PubMed Central  PubMed  Google Scholar 

  37. Howes OD, Fusar-Poli P, Bloomfield M, Selvaraj S, McGuire P. From the prodrome to chronic schizophrenia: the neurobiology underlying psychotic symptoms and cognitive impairments. Curr Pharm Des. 2012;18:459–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. van Os J. Kapur S Schizophrenia Lancet. 2009;374:635–45.

    Google Scholar 

  39. Catts VS, Fung SJ, Long LE, Joshi D, Vercammen A, Allen KM, et al. Shannon Weickert C. Rethinking schizophrenia in the context of normal neurodevelopment Front Cell Neurosci. 2013;7:60.

    Google Scholar 

  40. Yoon JH, Minzenberg MJ, Raouf S, D'Esposito M, Carter CS. Impaired prefrontal-basal ganglia functional connectivity and substantia nigra hyperactivity in schizophrenia. Biol Psychiatry. 2013;74:122–9.

    PubMed  Google Scholar 

  41. Lindenmayer JP, Nasrallah H, Pucci M, James S, Citrome L. A systematic review of psychostimulant treatment of negative symptoms of schizophrenia: challenges and therapeutic opportunities. Schizophr Res. 2013;147:241–52.

    PubMed  Google Scholar 

  42. Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry. 1991;148:1474–86.

    CAS  PubMed  Google Scholar 

  43. Fortuyn HA, Lappenschaar GA, Nienhuis FJ, Furer JW, Hodiamont PP, Rijnders CA, et al. Psychotic symptoms in narcolepsy: phenomenology and a comparison with schizophrenia. Gen Hosp Psychiatry. 2009;31:146–54.

    PubMed  Google Scholar 

  44. Douglass AB, Shipley JE, Haines RF, Scholten RC, Dudley E, Tapp A. Schizophrenia, narcolepsy, and HLA-DR15, DQ6. Biol Psychiatry. 1993;34:773–80.

    CAS  PubMed  Google Scholar 

  45. Szucs A, Janszky J, Holló A, Migléczi G, Halász P. Misleading hallucinations in unrecognized narcolepsy. Acta Psychiatr Scand 2003;108:314–6; dicussion 316–7.

    Google Scholar 

  46. Kondziella D, Arlien-Soborg P. Diagnostic and therapeutic challenges in narcolepsy-related psychosis. J Clin Psychiatry. 2006;67:1817–9.

    PubMed  Google Scholar 

  47. Melamed Y, Daliahu Y, Paleacu D. Narcolepsy and psychotic states–a case report. Isr J Psychiatry Relat Sci. 2009;46:70–3.

    PubMed  Google Scholar 

  48. Dahmen N, Kasten M, Mittag K, Müller MJ. Narcoleptic and schizophrenic hallucinations. Implications for differential diagnosis and pathophysiology Eur J Health Econ. 2002;3 Suppl 2:S94–8.

    Google Scholar 

  49. Nishino S, Ripley B, Mignot E, Benson KL, Zarcone VP. CSF hypocretin-1 levels in schizophrenics and controls: relationship to sleep architecture. Psychiatry Res. 2002;110:1–7.

    CAS  PubMed  Google Scholar 

  50. Dalal MA, Schuld A, Pollmächer T. Lower CSF hypocretin A (hypocretin-1) levels in patients with schizophrenia treated with haloperidol compared to unmedicated subjects. Mol Psychiatry. 2003;8:836–7.

    CAS  PubMed  Google Scholar 

  51. Fadel J, Bubser M, Deutch AY. Differential activation of hypocretin neurons by antipsychotic drugs associated with weight gain. J Neurosci. 2002;22:6742–6.

    CAS  PubMed  Google Scholar 

  52. Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet. 2013;382:951–62.

    CAS  PubMed  Google Scholar 

  53. Deutch AY, Bubser M. The hypocretins/hypocretins and schizophrenia. Schizophr Bull. 2007;33:1277–83.

    PubMed  Google Scholar 

  54. Scoriels L, Jones PB, Sahakian BJ. Modafinil effects on cognition and emotion in schizophrenia and its neurochemical modulation in the brain. Neuropharmacology. 2013;64:168–84.

    CAS  PubMed  Google Scholar 

  55. Morein-Zamir S, Turner DC, Sahakian BJ. A review of the effects of modafinil on cognition in schizophrenia. Schizophr Bull. 2007;33:1298–306.

    PubMed  Google Scholar 

  56. • Borgland SL, Labouèbe G. Hypocretin/hypocretin in psychiatric disorders: present state of knowledge and future potential. Neuropsychopharmacology. 2010;35:353–4. This article provides an overview of the major evidence suggesting the involvement of hypocretin in different psychiatric disorders.

    PubMed  Google Scholar 

  57. • Calipari ES, España RA. Hypocretin/hypocretin regulation of dopamine signaling: implications for reward and reinforcement mechanisms. Front Behav Neurosci. 2012;6:54. This review of electrophysiological, neurochemical, molecular, and behavioral studies focuses on the involvement of the hypocretin system in regulating natural and drug reward.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Murray GK. The emerging biology of delusions. Psychol Med. 2011;41:7–13.

    CAS  PubMed  Google Scholar 

  59. LaCrosse AL, Olive MF. Neuropeptide systems and schizophrenia. CNS Neurol Disord Drug Targets. 2013;12:619–32.

    CAS  PubMed  Google Scholar 

  60. Lambe EK, Aghajanian GK. Hypocretin (hypocretin) induces calcium transients in single spines postsynaptic to identified thalamocortical boutons in prefrontal slice. Neuron. 2003;40:139–50.

    CAS  PubMed  Google Scholar 

  61. Lambe EK, Liu RJ, Aghajanian GK. Schizophrenia, hypocretin (hypocretin), and the thalamocortical activating system. Schizophr Bull. 2007;33:1284–90.

    PubMed  Google Scholar 

  62. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. TR. Washington DC; 1994.

  63. Brundin L, Petersén A, Björkqvist M, Träskman-Bendz L. Orexin and psychiatric symptoms in suicide attempters. J Affect Disord. 2007;100:259–63.

    CAS  PubMed  Google Scholar 

  64. Brundin L, Björkqvist M, Petersén A, Träskman-Bendz L. Reduced orexin levels in the cerebrospinal fluid of suicidal patients with major depressive disorder. Eur Neuropsychopharmacol. 2007;17:573–9.

    CAS  PubMed  Google Scholar 

  65. Schmidt FM, Brügel M, Kratzsch J, Strauss M, Sander C, Baum P, et al. Cerebrospinal fluid hypocretin-1 (orexin A) levels in mania compared to unipolar depression and healthy controls. Neurosci Lett. 2010;483:20–2.

    CAS  PubMed  Google Scholar 

  66. • Schmidt FM, Arendt E, Steinmetzer A, Bruegel M, Kratzsch J, Strauss M, et al. CSF-hypocretin-1 levels in patients with major depressive disorder compared to healthy controls. Psychiatry Res. 2011;190:240–3. This study examined cerebrospinal hypocretin-1 levels in patients with Major Depressive Disorder without comorbidities compared to a group of healthy controls, and found a correlation between specific depressive symptoms and hypocretin levels.

    CAS  PubMed  Google Scholar 

  67. Salomon RM, Ripley B, Kennedy JS, Johnson B, Schmidt D, Zeitzer JM, et al. Diurnal variation of cerebrospinal fluid hypocretin-1 (Orexin-A) levels in control and depressed subjects. Biol Psychiatry. 2003;54:96–104.

    CAS  PubMed  Google Scholar 

  68. Rainero I, Ostacoli L, Rubino E, Gallone S, Picci LR, Fenoglio P, et al. Association between major mood disorders and the hypocretin receptor 1 gene. J Affect Disord. 2011;130:487–91.

    CAS  PubMed  Google Scholar 

  69. Rotter A, Asemann R, Decker A, Kornhuber J, Biermann T. Orexin expression and promoter-methylation in peripheral blood of patients suffering from major depressive disorder. J Affect Disord. 2011;131:186–92.

    CAS  PubMed  Google Scholar 

  70. Schoenknecht P, Olbrich S, Sander C, Spindler P, Hegerl U. Treatment of acute mania with modafinil monotherapy. Biol Psychiatry. 2010;67:55–7.

    Google Scholar 

  71. Abolfazli R, Hosseini M, Ghanizadeh A, Ghaleiha A, Tabrizi M, Raznahan M, et al. Double-blind randomized parallel-group clinical trial of efficacy of the combination fluoxetine plus modafinil versus fluoxetine plus placebo in the treatment of major depression. Depress Anxiety. 2011;28:297–302.

    CAS  PubMed  Google Scholar 

  72. Wichniak A, Wierzbicka A, Jernajczyk W. Sleep as a biomarker for depression. Int Rev Psychiatry. 2013;25:632–45.

    PubMed  Google Scholar 

  73. Allard JS, Tizabi Y, Shaffery JP, Trouth CO, Manaye K. Stereological analysis of the hypothalamic hypocretin/orexin neurons in an animal model of depression. Neuropeptides. 2004;38:311–5.

    CAS  PubMed  Google Scholar 

  74. Allard JS, Tizabi Y, Shaffery JP, Manaye K. Effects of rapid eye movement sleep deprivation on hypocretin neurons in the hypothalamus of a rat model of depression. Neuropeptides. 2007;41:329–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Ito N, Yabe T, Gamo Y, Nagai T, Oikawa T, Yamada H, et al. I.c.v. administration of orexin-A induces an antidepressive-like effect through hippocampal cell proliferation. Neuroscience. 2008;157:720–32.

    CAS  PubMed  Google Scholar 

  76. Gérard A, Liard F, Crochard A, Goni S, Millet B. Disability in patients consulting for anxiety or mood disorders in primary care: response to antidepressant treatment. Neuropsychiatr Dis Treat. 2012;8:605–14.

    PubMed Central  PubMed  Google Scholar 

  77. Craske MG, Rauch SL, Ursano R, Prenoveau J, Pine DS, Zinbarg RE. What is an anxiety disorder? Depress Anxiety. 2009;26:1066–85.

    PubMed  Google Scholar 

  78. Mathew SJ, Price RB, Charney DS. Recent advances in the neurobiology of anxiety disorders: implications for novel therapeutics. Am J Med Genet C: Semin Med Genet. 2008;148:89–98.

    Google Scholar 

  79. Hoehn-Saric R, McLeod DR. Anxiety and arousal: physiological changes and their perception. J Affect Disord. 2000;6:217–24.

    Google Scholar 

  80. Johnson PL, Truitt WA, Fitz SD, Lowry CA, Shekhar A. Neural pathways underlying lactate-induced panic. Neuropsychopharmacology. 2008;33:2093–107.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. • Johnson PL, Molosh A, Fitz SD, Truitt WA, Shekhar A. Orexin, stress, and anxiety/panic states. Prog Brain Res. 2012;198:133–61. This review focuses on recent data showing the role of hypocretinergin transmission in mobilizing coordinated adaptive panic/defence responses (anxiety, cardiorespiratory and endocrine components). It also summarizes the evidence supporting the link between hypocretinergic hyperactivity and pathological panic and anxiety states.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Kayaba Y, Nakamura A, Kasuya Y, Ohuchi T, Yanagisawa M, Komuro I, et al. Attenuated defense response and low basal blood pressure in orexin knockout mice. Am J Physiol Regul Integr Comp Physiol. 2003;285:581–93.

    Google Scholar 

  83. Suzuki M, Beuckmann CT, Shikata K, Ogura H, Sawai T. Orexin-A (hypocretin-1) is possibly involved in generation of anxiety-like behavior. Brain Res. 2005;1044:116–21.

    CAS  PubMed  Google Scholar 

  84. Rodgers RJ, Wright FL, Snow NF, Taylor LJ. Orexin-1 receptor antagonism fails to reduce anxiety-like behaviour in either plus-maze-naïve or plus-maze-experienced mice. Behav Brain Res. 2013;243:213–9.

    CAS  PubMed  Google Scholar 

  85. Johnson PL, Truitt W, Fitz SD, Minick PE, Dietrich A, Sanghani S, et al. A key role for orexin in panic anxiety. Nat Med. 2010;16:111–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Johnson PL, Samuels BC, Fitz SD, Federici LM, Hammes N, Early MC, et al. Orexin 1 receptors are a novel target to modulate panic responses and the panic brain network. Physiol Behav. 2012;107:733–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Strawn JR, Pyne-Geithman GJ, Ekhator NN, Horn PS, Uhde TW, Shutter LA, et al. Low cerebrospinal fluid and plasma orexin-A (hypocretin-1) concentrations in combat-related posttraumatic stress disorder. Psychoneuroendocrinology. 2010;35:1001–7.

    CAS  PubMed  Google Scholar 

  88. Annerbrink K, Westberg L, Olsson M, Andersch S, Sjödin I, Holm G, et al. Panic disorder is associated with the Val308Iso polymorphism in the hypocretin receptor gene. Psychiatr Genet. 2011;21:85–9.

    PubMed  Google Scholar 

  89. Girault EM, Yi CX, Fliers E, Kalsbeek A. Orexins, feeding, and energy balance. Prog Brain Res. 2012;198:47–64.

    CAS  PubMed  Google Scholar 

  90. Cason AM, Smith RJ, Tahsili-Fahadan P, Moorman DE, Sartor GC, Aston-Jones G. Role of orexin/hypocretin in reward-seeking and addiction: implications for obesity. Physiol Behav. 2010;100:419–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Bronsky J, Nedvidkova J, Krasnicanova H, Vesela M, Schmidtova J, Koutek J, et al. Changes of orexin A plasma levels in girls with anorexia nervosa during eight weeks of realimentation. Int J Eat Disord. 2011;44:547–52.

    PubMed  Google Scholar 

  92. Janas-Kozik M, Stachowicz M, Krupka-Matuszczyk I, Szymszal J, Krysta K, Janas A, et al. Plasma levels of leptin and orexin A in the restrictive type of anorexia nervosa. Regul Pept. 2011;168:5–9.

    CAS  PubMed  Google Scholar 

  93. Caraci F, Drago F. New definition of addiction proposed by the American Society of Addiction Medicine: Which implications for the treatment of tobacco dependence? Eur Neuropsychopharmacol 2013. doi:pii:S0924-977X(13)00147-8.

  94. •• Mahler SV, Smith RJ, Moorman DE, Sartor GC, Aston-Jones G. Multiple roles for orexin/hypocretin in addiction. Prog Brain Res. 2012;198:79–121. This systematic review analyzes hypocretin pathways and their role in reward processing, motivated behavior, and drug abuse. It also reviews the roles played by hypocretin in several animal models of the major class of drug and food addiction.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Martin-Fardon R, Boutrel B. Orexin/hypocretin (Orx/Hcrt) transmission and drug-seeking behavior: is the paraventricular nucleus of the thalamus (PVT) part of the drug seeking circuitry? Front Behav Neurosci. 2012;6:75.

    PubMed Central  PubMed  Google Scholar 

  96. Di Chiara G, Bassareo V. Reward system and addiction: what dopamine does and doesn't do. Curr Opin Pharmacol. 2007;7:69–76.

    PubMed  Google Scholar 

  97. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35:217–38.

    PubMed  Google Scholar 

  98. Feltenstein MW, See RE. The neurocircuitry of addiction: an overview. Br J Pharmacol. 2008;154:261–74.

    CAS  PubMed  Google Scholar 

  99. Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron. 2006;49:589–601.

    CAS  PubMed  Google Scholar 

  100. España RA, Oleson EB, Locke JL, Brookshire BR, Roberts DC, Jones SR. The hypocretin-orexin system regulates cocaine self-administration via actions on the mesolimbic dopamine system. Eur J Neurosci. 2010;31:336–48.

    PubMed Central  PubMed  Google Scholar 

  101. España RA, Melchior JR, Roberts DC, Jones SR. Hypocretin 1/orexin A in the ventral tegmental area enhances dopamine responses to cocaine and promotes cocaine self-administration. Psychopharmacology. 2011;214:415–26.

    PubMed Central  PubMed  Google Scholar 

  102. Quarta D, Valerio E, Hutcheson DM, Hedou G, Heidbreder C. The orexin-1 receptor antagonist SB-334867 reduces amphetamine-evoked dopamine outflow in the shell of the nucleus accumbens and decreases the expression of amphetamine sensitization. Neurochem Int. 2010;56:11–5.

    CAS  PubMed  Google Scholar 

  103. Aston-Jones G, Smith RJ, Sartor GC, Moorman DE, Massi L, Tahsili-Fahadan P, et al. Lateral hypothalamic orexin/hypocretin neurons: A role in reward-seeking and addiction. Brain Res. 2010;1314:74–90.

    CAS  PubMed  Google Scholar 

  104. Georgescu D, Zachariou V, Barrot M, Mieda M, Willie JT, Eisch AJ, et al. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J Neurosci. 2003;23:3106–11.

    CAS  PubMed  Google Scholar 

  105. Narita M, Nagumo Y, Hashimoto S, Narita M, Khotib J, Miyatake M, et al. Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J Neurosci. 2006;26:398–405.

    CAS  PubMed  Google Scholar 

  106. Schneider ER, Rada P, Darby RD, Leibowitz SF, Hoebel BG. Orexigenic peptides and alcohol intake: differential effects of orexin, galanin, and ghrelin. Alcohol Clin Exp Res. 2007;31:1858–65.

    CAS  PubMed  Google Scholar 

  107. Jupp B, Krivdic B, Krstew E, Lawrence AJ. The orexin-1 receptor antagonist SB-334867 dissociates the motivational properties of alcohol and sucrose in rats. Brain Res. 2011;1391:54–9.

    CAS  PubMed  Google Scholar 

  108. Jupp B, Krstew E, Dezsi G, Lawrence AJ. Discrete cue-conditioned alcohol-seeking after protracted abstinence: pattern of neural activation and involvement of orexin-1 receptors. Br J Pharmacol. 2011;162:880–9.

    CAS  PubMed  Google Scholar 

  109. Bayerlein K, Kraus T, Leinonen I, Pilniok D, Rotter A, Hofner B, et al. Orexin A expression and promoter methylation in patients with alcohol dependence comparing acute and protracted withdrawal. Alcohol. 2011;45:541–7.

    CAS  PubMed  Google Scholar 

  110. von der Goltz C, Koopmann A, Dinter C, Richter A, Grosshans M, Fink T, et al. Involvement of orexin in the regulation of stress, depression and reward in alcohol dependence. Horm Behav. 2011;60:644–50.

    PubMed  Google Scholar 

  111. Zhou Y, Cui CL, Schlussman SD, Choi JC, Ho A, Han JS, et al. Effects of cocaine place conditioning, chronic escalating-dose "binge" pattern cocaine administration and acute withdrawal on orexin/hypocretin and preprodynorphin gene expressions in lateral hypothalamus of Fischer and Sprague–Dawley rats. Neuroscience. 2008;153:1225–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Boutrel B, Steiner N, Halfon O. The hypocretins and the reward function: what have we learned so far? Front Behav Neurosci. 2013;7:59.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Fabio Pizza, Michele Magnani, and Camilla Indrio declare that they have no conflict of interest.

Giuseppe Plazzi has served as a consultant to UCB Pharma and Jazz Pharmaceuticals, and as vice president to the European Narcolepsy Network.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Plazzi.

Additional information

This article is part of the Topical Collection on Sleep Disorders

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pizza, F., Magnani, M., Indrio, C. et al. The Hypocretin System and Psychiatric Disorders. Curr Psychiatry Rep 16, 433 (2014). https://doi.org/10.1007/s11920-013-0433-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-013-0433-9

Keywords

Navigation