Skip to main content
Log in

Impaired GABAergic Neurotransmission in Schizophrenia Underlies Impairments in Cortical Gamma Band Oscillations

  • Schizophrenia and Other Psychotic Disorders (SJ Siegel, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Impairment of cortical circuit function is increasingly believed to be central to the pathophysiology of schizophrenia (Sz). Such impairments are suggested to result in abnormal gamma band oscillatory activity observed in Sz patients, and likely underlie the psychosis and cognitive deficits linked to this disease. Development of improved therapeutic strategies to enhance functional outcome of Sz patients is contingent upon a detailed understanding of the mechanisms behind cortical circuit development and maintenance. Convergent evidence from both Sz clinical and preclinical studies suggests impaired activity of a particular subclass of interneuron which expresses the calcium binding protein parvalbumin is central to the cortical circuit impairment observed. Here we review our current understanding of the Sz related cortical circuit dysfunction with a particular focus on the role of fast spiking parvalbumin interneurons in both normal cortical circuit activity and in NMDA receptor hypofunction models of the Sz disease state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Lesh TA, Niendam TA, Minzenberg MJ, et al. Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology. 2011;36:316–38.

    Article  PubMed  Google Scholar 

  2. Green MF. What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry. 1996;153:321–30.

    PubMed  CAS  Google Scholar 

  3. Pratt J, Winchester C, Dawson N, et al. Advancing schizophrenia drug discovery: optimizing rodent models to bridge the translational gap. Nat Rev Drug Discov. 2012;11:560–79.

    Article  PubMed  CAS  Google Scholar 

  4. Lewis DA. Cortical circuit dysfunction and cognitive deficits in schizophrenia–implications for preemptive interventions. Eur J Neurosci. 2012;35:1871–8.

    Article  PubMed  Google Scholar 

  5. Insel TR. Rethinking schizophrenia. Nature. 2010;468:187–93.

    Article  PubMed  CAS  Google Scholar 

  6. Andreasen NC. Schizophrenia: the fundamental questions. Brain Res Brain Res Rev. 2000;31:106–12.

    Article  PubMed  CAS  Google Scholar 

  7. Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron. 2006;52:155–68.

    Article  PubMed  CAS  Google Scholar 

  8. Tallon-Baudry C. Attention and awareness in synchrony. Trends Cogn Sci. 2004;8:523–5.

    Article  PubMed  CAS  Google Scholar 

  9. Uhlhaas PJ, Haenschel C, Nikolic D, et al. The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull. 2008;34:927–43.

    Article  PubMed  Google Scholar 

  10. Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11:100–13.

    Article  PubMed  CAS  Google Scholar 

  11. Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–9.

    Article  PubMed  CAS  Google Scholar 

  12. Kwon JS, O'Donnell BF, Wallenstein GV, et al. Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiatry. 1999;56:1001–5.

    Article  PubMed  CAS  Google Scholar 

  13. Spencer KM, Nestor PG, Niznikiewicz MA, et al. Abnormal neural synchrony in schizophrenia. J Neurosci. 2003;23:7407–11.

    PubMed  CAS  Google Scholar 

  14. Spencer KM, Nestor PG, Perlmutter R, et al. Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc Natl Acad Sci USA. 2004;101:17288–93.

    Article  PubMed  CAS  Google Scholar 

  15. Cho RY, Konecky RO, Carter CS. Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. Proc Natl Acad Sci USA. 2006;103:19878–83.

    Article  PubMed  CAS  Google Scholar 

  16. Basar-Eroglu C, Brand A, Hildebrandt H, et al. Working memory related gamma oscillations in schizophrenia patients. Int J Psychophysiol. 2007;64:39–45.

    Article  PubMed  Google Scholar 

  17. Woo TU, Spencer K, McCarley RW. Gamma oscillation deficits and the onset and early progression of schizophrenia. Harv Rev Psychiatry. 2010;18:173–89.

    Article  PubMed  Google Scholar 

  18. Fries P, Nikolic D, Singer W. The gamma cycle. Trends Neurosci. 2007;30:309–16.

    Article  PubMed  CAS  Google Scholar 

  19. Traub RD, Bibbig A, LeBeau FE, et al. Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. Annu Rev Neurosci. 2004;27:247–78.

    Article  PubMed  CAS  Google Scholar 

  20. Whittington MA, Faulkner HJ, Doheny HC, et al. Neuronal fast oscillations as a target site for psychoactive drugs. Pharmacol Ther. 2000;86:171–90.

    Article  PubMed  CAS  Google Scholar 

  21. Hajos N, Paulsen O. Network mechanisms of gamma oscillations in the CA3 region of the hippocampus. Neural Netw. 2009;22:1113–9.

    Article  PubMed  Google Scholar 

  22. Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci. 2007;8:45–56.

    Article  PubMed  CAS  Google Scholar 

  23. Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6:312–24.

    Article  PubMed  CAS  Google Scholar 

  24. Ascoli GA, Alonso-Nanclares L, Anderson SA, et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci. 2008;9:557–68.

    Article  PubMed  CAS  Google Scholar 

  25. Somogyi P, Tamas G, Lujan R, et al. Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev. 1998;26:113–35.

    Article  PubMed  CAS  Google Scholar 

  26. • Belforte JE, Zsiros V, Sklar ER, et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci. 2010;13:76–83. In order to recapitulate Sz-like NMDAR hypofunction, this study used a transgenic line of mice where NMDAR were selectively eliminated in 40-50% of cortical and hippocampal interneurons, including FS/PV INT. When INT NMDAR expression was impaired early in development, but not post-adolescence, mice displayed a number of Sz-like physiological and behavioral symptoms. These findings suggest that impaired INT NMDAR activity early in development can result in pathophysiological circuit abnormalities which result in Sz-related symptoms.

    Article  PubMed  CAS  Google Scholar 

  27. • Cardin JA, Carlen M, Meletis K, et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 2009;459:663–7. This optogenetic study provides direct evidence of the central role FS/PV INT play in the generation of cortical GBO activity. Here the authors show that in vivo optical stimulation of cortical FS/PV INT at varying frequencies, selectively amplified the local LFP response in the gamma frequency range. In contrast, identical stimulation of PYR only amplified activity at lower frequencies.

    Article  PubMed  CAS  Google Scholar 

  28. • Carlen M, Meletis K, Siegle JH, et al. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol Psychiatry. 2012;17:537–48. This study combined the use of transgenic mice and optogenetics to directly examine the role of NMDAR signaling specifically in cortical FS/PV INT on neural network activity and behavior. Here they show that mice lacking NMDAR specifically on FS/PV cells exhibit enhanced baseline GBO activity, impaired evoked GBO, and cognitive impairment.

    Article  PubMed  CAS  Google Scholar 

  29. Gloveli T, Dugladze T, Saha S, et al. Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro. J Physiol. 2005;562:131–47.

    Article  PubMed  CAS  Google Scholar 

  30. Korotkova T, Fuchs EC, Ponomarenko A, et al. NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron. 2010;68:557–69.

    Article  PubMed  CAS  Google Scholar 

  31. • Sohal VS, Zhang F, Yizhar O, et al. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459:698–702. This study provides direct evidence for the central role of neocortical FS/PV INT in the generation of GBO. Using targeted optogenetic modulation of neuronal activity, they show that inhibition of FS/PV INT impairs GBO, while enhancement of their activity potentiates GBO. Further, gamma-frequency modulation of excitatory input reduced circuit noise and amplified circuit signals leading to an enhancement of cortical signal transmission.

    Article  PubMed  CAS  Google Scholar 

  32. Hu H, Martina M, Jonas P. Dendritic mechanisms underlying rapid synaptic activation of fast-spiking hippocampal interneurons. Science. 2010;327:52–8.

    Article  PubMed  CAS  Google Scholar 

  33. Gonzalez-Burgos G, Lewis DA. GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull. 2008;34:944–61.

    Article  PubMed  Google Scholar 

  34. Galarreta M, Hestrin S. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature. 1999;402:72–5.

    Article  PubMed  CAS  Google Scholar 

  35. Gibson JR, Beierlein M, Connors BW. Two networks of electrically coupled inhibitory neurons in neocortex. Nature. 1999;402:75–9.

    Article  PubMed  CAS  Google Scholar 

  36. Freund TF. Interneuron Diversity series: Rhythm and mood in perisomatic inhibition. Trends Neurosci. 2003;26:489–95.

    Article  PubMed  CAS  Google Scholar 

  37. Woodruff AR, Anderson SA, Yuste R. The enigmatic function of chandelier cells. Front Neurosci. 2010;4:201.

    Article  PubMed  Google Scholar 

  38. Szabadics J, Varga C, Molnar G, et al. Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science. 2006;311:233–5.

    Article  PubMed  CAS  Google Scholar 

  39. Akbarian S, Kim JJ, Potkin SG, et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry. 1995;52:258–66.

    Article  PubMed  CAS  Google Scholar 

  40. Volk DW, Austin MC, Pierri JN, et al. Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry. 2000;57:237–45.

    Article  PubMed  CAS  Google Scholar 

  41. Hashimoto T, Volk DW, Eggan SM, et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci. 2003;23:6315–26.

    PubMed  CAS  Google Scholar 

  42. Lau CG, Murthy VN. Activity-dependent regulation of inhibition via GAD67. J Neurosci. 2012;32:8521–31.

    Article  PubMed  CAS  Google Scholar 

  43. Vreugdenhil M, Jefferys JG, Celio MR, et al. Parvalbumin-deficiency facilitates repetitive IPSCs and gamma oscillations in the hippocampus. J Neurophysiol. 2003;89:1414–22.

    Article  PubMed  Google Scholar 

  44. Volman V, Behrens MM, Sejnowski TJ. Downregulation of parvalbumin at cortical GABA synapses reduces network gamma oscillatory activity. J Neurosci. 2011;31:18137–48.

    Article  PubMed  CAS  Google Scholar 

  45. Charych EI, Liu F, Moss SJ, et al. GABA(A) receptors and their associated proteins: implications in the etiology and treatment of schizophrenia and related disorders. Neuropharmacology. 2009;57:481–95.

    Article  PubMed  CAS  Google Scholar 

  46. Kim JY, Liu CY, Zhang F, et al. Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell. 2012;148:1051–64.

    Article  PubMed  CAS  Google Scholar 

  47. Glausier JR, Lewis DA. Selective pyramidal cell reduction of GABA(A) receptor alpha1 subunit messenger RNA expression in schizophrenia. Neuropsychopharmacology. 2011;36:2103–10.

    Article  PubMed  CAS  Google Scholar 

  48. Ohnuma T, Augood SJ, Arai H, et al. Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABA(A) receptor alpha-1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messenger RNA expression. Neuroscience. 1999;93:441–8.

    Article  PubMed  CAS  Google Scholar 

  49. Mirnics K, Middleton FA, Lewis DA, et al. Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci. 2001;24:479–86.

    Article  PubMed  CAS  Google Scholar 

  50. Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry. 1995;52:998–1007.

    Article  PubMed  CAS  Google Scholar 

  51. Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry. 1991;148:1301–8.

    PubMed  CAS  Google Scholar 

  52. Krystal JH, Karper LP, Seibyl JP, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994;51:199–214.

    Article  PubMed  CAS  Google Scholar 

  53. Bubenikova-Valesova V, Horacek J, Vrajova M, et al. Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev. 2008;32:1014–23.

    Article  PubMed  CAS  Google Scholar 

  54. Pilowsky LS, Bressan RA, Stone JM, et al. First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol Psychiatry. 2006;11:118–9.

    Article  PubMed  CAS  Google Scholar 

  55. Behrens MM, Ali SS, Dao DN, et al. Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science. 2007;318:1645–7.

    Article  PubMed  CAS  Google Scholar 

  56. Keilhoff G, Becker A, Grecksch G, et al. Repeated application of ketamine to rats induces changes in the hippocampal expression of parvalbumin, neuronal nitric oxide synthase and cFOS similar to those found in human schizophrenia. Neuroscience. 2004;126:591–8.

    Article  PubMed  CAS  Google Scholar 

  57. Benneyworth MA, Roseman AS, Basu AC, et al. Failure of NMDA receptor hypofunction to induce a pathological reduction in PV-positive GABAergic cell markers. Neurosci Lett. 2011;488:267–71.

    Article  PubMed  CAS  Google Scholar 

  58. Kristiansen LV, Huerta I, Beneyto M, et al. NMDA receptors and schizophrenia. Curr Opin Pharmacol. 2007;7:48–55.

    Article  PubMed  CAS  Google Scholar 

  59. • Bitanihirwe BK, Lim MP, Kelley JF, et al. Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia. BMC Psychiatry. 2009;9:71. This postmortem Sz study examined expression of the NMDAR subunit NR2A (mRNA), in PFC FS/PV INT. The authors observed a ~50% reduction in the density of FS/PV INT with detectable levels of NR2A expression. This finding provides evidence for deficient NMDAR mediated neurotransmission in FS/PV INT in Sz.

    Article  PubMed  CAS  Google Scholar 

  60. Homayoun H, Moghaddam B. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci. 2007;27:11496–500.

    Article  PubMed  CAS  Google Scholar 

  61. Greene R, Bergeron R, McCarley R, et al. Short-term and long-term effects of N-methyl-D-aspartate receptor hypofunction. Arch Gen Psychiatry. 2000;57:1180–1. author reply 1182–1183.

    Article  PubMed  CAS  Google Scholar 

  62. Grunze HC, Rainnie DG, Hasselmo ME, et al. NMDA-dependent modulation of CA1 local circuit inhibition. J Neurosci. 1996;16:2034–43.

    PubMed  CAS  Google Scholar 

  63. Di Lazzaro V, Oliviero A, Profice P, et al. Ketamine increases human motor cortex excitability to transcranial magnetic stimulation. J Physiol. 2003;547:485–96.

    Article  PubMed  Google Scholar 

  64. Coyle JT. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol. 2006;26:365–84.

    Article  PubMed  CAS  Google Scholar 

  65. Lisman JE, Coyle JT, Green RW, et al. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 2008;31:234–42.

    Article  PubMed  CAS  Google Scholar 

  66. Holcomb HH, Lahti AC, Medoff DR, et al. Sequential regional cerebral blood flow brain scans using PET with H2(15)O demonstrate ketamine actions in CNS dynamically. Neuropsychopharmacology. 2001;25:165–72.

    Article  PubMed  CAS  Google Scholar 

  67. Breier A, Malhotra AK, Pinals DA, et al. Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatry. 1997;154:805–11.

    PubMed  CAS  Google Scholar 

  68. Deakin JF, Lees J, McKie S, et al. Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study. Arch Gen Psychiatry. 2008;65:154–64.

    Article  PubMed  Google Scholar 

  69. Honey RA, Honey GD, O'Loughlin C, et al. Acute ketamine administration alters the brain responses to executive demands in a verbal working memory task: an FMRI study. Neuropsychopharmacology. 2004;29:1203–14.

    Article  PubMed  CAS  Google Scholar 

  70. Corlett PR, Honey GD, Aitken MR, et al. Frontal responses during learning predict vulnerability to the psychotogenic effects of ketamine: linking cognition, brain activity, and psychosis. Arch Gen Psychiatry. 2006;63:611–21.

    Article  PubMed  Google Scholar 

  71. Hakami T, Jones NC, Tolmacheva EA, et al. NMDA receptor hypofunction leads to generalized and persistent aberrant gamma oscillations independent of hyperlocomotion and the state of consciousness. PLoS One. 2009;4:e6755.

    Article  PubMed  Google Scholar 

  72. Pinault D. N-methyl d-aspartate receptor antagonists ketamine and MK-801 induce wake-related aberrant gamma oscillations in the rat neocortex. Biol Psychiatry. 2008;63:730–5.

    Article  PubMed  CAS  Google Scholar 

  73. Lazarewicz MT, Ehrlichman RS, Maxwell CR, et al. Ketamine modulates theta and gamma oscillations. J Cogn Neurosci. 2010;22:1452–64.

    Article  PubMed  Google Scholar 

  74. • Kittelberger K, Hur EE, Sazegar S, et al. Comparison of the effects of acute and chronic administration of ketamine on hippocampal oscillations: relevance for the NMDA receptor hypofunction model of schizophrenia. Brain Struct Funct. 2012;217:395–409. The authors of this study examined the ability of both acute and chronic administration of NMDAR antagonists to recapitulate the oscillatory dysfunctions observed clinically in Sz. They show that in EEG recordings from freely moving rats, acute injection with NMDAR antagonists led to increased hippocampal GBO activity, while chronic NMDAR antagonist treatment (2–4 weeks) resulted in decreased GBO. These findings indicate that NMDAR antagonists can be employed to model both Sz-related pathological increases in GBO as well as GBO impairment.

    Article  PubMed  CAS  Google Scholar 

  75. • McNally JM, McCarley RW, McKenna JT, et al.: Complex receptor mediation of acute ketamine application on in vitro gamma oscillations in mouse prefrontal cortex: modeling gamma band oscillation abnormalities in schizophrenia. Neuroscience. 2011;199:51–63. This study investigated the effects of several NMDAR antagonists on kainate evoked GBO activity, in vitro. Here the authors showed that acute application of such antagonists (ketamine, MK-801, and AP5) lead to a significant potentiation of evoked GBO power, providing further support for NMDAR hypofunction mediated GBO enhancement. Interestingly, ketamine also caused a significant decrease in the frequency of evoked oscillations, similar to that observed in clinical Sz studies (14).

  76. Anver H, Ward PD, Magony A, et al. NMDA receptor hypofunction phase couples independent gamma-oscillations in the rat visual cortex. Neuropsychopharmacology. 2011;36(2):519–28.

    Article  PubMed  CAS  Google Scholar 

  77. Roopun AK, Cunningham MO, Racca C, et al. Region-specific changes in gamma and beta2 rhythms in NMDA receptor dysfunction models of schizophrenia. Schizophr Bull. 2008;34:962–73.

    Article  PubMed  Google Scholar 

  78. Jentsch JD, Roth RH. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology. 1999;20:201–25.

    Article  PubMed  CAS  Google Scholar 

  79. Paradiso S, Chemerinski E, Yazici KM, et al. Frontal lobe syndrome reassessed: comparison of patients with lateral or medial frontal brain damage. J Neurol Neurosurg Psychiatry. 1999;67:664–7.

    Article  PubMed  CAS  Google Scholar 

  80. Corlett PR, Murray GK, Honey GD, et al. Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions. Brain. 2007;130:2387–400.

    Article  PubMed  CAS  Google Scholar 

  81. McNally JM, Kim T, Yanagawa Y, et al.: Acute and Chronic Effects of Ketamine on Gamma Oscillations in Mouse Prefrontal Cortex Soc Neurosci Abs. 2011;661.07.

  82. Seillier A, Giuffrida A. Evaluation of NMDA receptor models of schizophrenia: divergences in the behavioral effects of sub-chronic PCP and MK-801. Behav Brain Res. 2009;204:410–5.

    Article  PubMed  CAS  Google Scholar 

  83. Kinney JW, Davis CN, Tabarean I, et al. A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons. J Neurosci. 2006;26:1604–15.

    Article  PubMed  CAS  Google Scholar 

  84. • Rotaru DC, Yoshino H, Lewis DA, et al. Glutamate receptor subtypes mediating synaptic activation of prefrontal cortex neurons: relevance for schizophrenia. J Neurosci. 2011;31:142–56. This study directly analyzed the contribution of NMDAR to excitatory synaptic activation of FS/PV INT in mouse PFC. The results of this work showed little to no NMDAR contribution, and that excitatory input in these INT is mainly mediated by AMPAR. These findings suggest that Sz-related NMDAR hypofunction is important at glutamatergic inputs separate from those present on FS/PV INT.

    Article  PubMed  CAS  Google Scholar 

  85. Wang HX, Gao WJ. Cell type-specific development of NMDA receptors in the interneurons of rat prefrontal cortex. Neuropsychopharmacology. 2009;34:2028–40.

    Article  PubMed  CAS  Google Scholar 

  86. Rotaru DC, Lewis DA, Gonzalez-Burgos G. The role of glutamatergic inputs onto parvalbumin-positive interneurons: relevance for schizophrenia. Rev Neurosci. 2012;23:97–109.

    PubMed  Google Scholar 

  87. Fuchs EC, Zivkovic AR, Cunningham MO, et al. Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron. 2007;53:591–604.

    Article  PubMed  CAS  Google Scholar 

  88. Nyiri G, Stephenson FA, Freund TF, et al. Large variability in synaptic N-methyl-D-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus. Neuroscience. 2003;119:347–63.

    Article  PubMed  CAS  Google Scholar 

  89. Sarihi A, Jiang B, Komaki A, et al. Metabotropic glutamate receptor type 5-dependent long-term potentiation of excitatory synapses on fast-spiking GABAergic neurons in mouse visual cortex. J Neurosci. 2008;28:1224–35.

    Article  PubMed  CAS  Google Scholar 

  90. Hensch TK. Critical period plasticity in local cortical circuits. Nat Rev Neurosci. 2005;6:877–88.

    Article  PubMed  CAS  Google Scholar 

  91. Rojas DC, Maharajh K, Teale PD, et al. Development of the 40Hz steady state auditory evoked magnetic field from ages 5 to 52. Clin Neurophysiol. 2006;117:110–7.

    Article  PubMed  Google Scholar 

  92. Uhlhaas PJ, Singer W. The development of neural synchrony and large-scale cortical networks during adolescence: relevance for the pathophysiology of schizophrenia and neurodevelopmental hypothesis. Schizophr Bull. 2011;37:514–23.

    Article  PubMed  Google Scholar 

  93. Baldeweg T, Spence S, Hirsch SR, et al. Gamma-band electroencephalographic oscillations in a patient with somatic hallucinations. Lancet. 1998;352:620–1.

    Article  PubMed  CAS  Google Scholar 

  94. Lee SH, Wynn JK, Green MF, et al. Quantitative EEG and low resolution electromagnetic tomography (LORETA) imaging of patients with persistent auditory hallucinations. Schizophr Res. 2006;83:111–9.

    Article  PubMed  Google Scholar 

  95. Spencer KM, Niznikiewicz MA, Nestor PG, et al. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia. BMC Neurosci. 2009;10:85.

    Article  PubMed  Google Scholar 

  96. Mulert C, Kirsch V, Pascual-Marqui R, et al. Long-range synchrony of gamma oscillations and auditory hallucination symptoms in schizophrenia. Int J Psychophysiol. 2011;79:55–63.

    Article  PubMed  CAS  Google Scholar 

  97. Spencer KM, Salisbury DF, Shenton ME, et al. Gamma-band auditory steady-state responses are impaired in first episode psychosis. Biol Psychiatry. 2008;64:369–75.

    Article  PubMed  Google Scholar 

  98. • Spencer KM. Baseline gamma power during auditory steady-state stimulation in schizophrenia. Front Hum Neurosci. 2011;5:190. The aim of this study was to examine the conflicting findings of clinical Sz studies, which generally show impaired GBO activity, to preclinical findings, which suggest that Sz related NMDAR hypofunction results in cortical hyperexcitabililty predicted to lead to increased GBO. Here the authors reexamined data from an earlier study showing an impairment in auditory evoke GBO in Sz patients, and observed that baseline GBO power (40 Hz) was higher in Sz patients than healthy controls in the left auditory cortex. These findings suggest that Sz-related GBO abnormalities can include pathological increases in GBO as well as impairment, and provides an important link between clinical and preclinical findings.

    PubMed  Google Scholar 

  99. • Yizhar O, Fenno LE, Prigge M, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011;477:171–8. This study used a targeted optogenetic approach to examine how alteration of the balance of excitation and inhibition (E/I balance) within neural circuitry effects circuit physiology and behavior. Here they find that increased excitation, but not inhibition, results in GBO abnormalities and cognitive impairment. These results support the hypothesis that elevated E/I balance is central to a number of symptoms related to neuropsychiatric disorders such as Sz and autism.

    Article  PubMed  CAS  Google Scholar 

  100. Herrmann CS, Demiralp T. Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol. 2005;116:2719–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Department of Veterans Affairs Medical Research Service Awards (R.W. McCarley), and grants from the National Institutes of Health: MH040799 (R.W. McCarley), MH039683 (R.W. McCarley), and MH094803 (R.E. Brown).

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. McNally.

Additional information

This article is part of the Topical Collection on Schizophrenia and Other Psychotic Disorders

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNally, J.M., McCarley, R.W. & Brown, R.E. Impaired GABAergic Neurotransmission in Schizophrenia Underlies Impairments in Cortical Gamma Band Oscillations. Curr Psychiatry Rep 15, 346 (2013). https://doi.org/10.1007/s11920-012-0346-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-012-0346-z

Keywords

Navigation