Skip to main content

Advertisement

Log in

Emerging Support for a Role of Exercise in Attention-Deficit/Hyperactivity Disorder Intervention Planning

  • Attention-Deficit Disorder (R Bussing, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Recent years have seen an expansion of interest in non-pharmacological interventions for attention-deficit/hyperactivity disorder (ADHD). Although considerable treatment development has focused on cognitive training programs, compelling evidence indicates that intense aerobic exercise enhances brain structure and function, and as such, might be beneficial to children with ADHD. This paper reviews evidence for a direct impact of exercise on neural functioning and preliminary evidence that exercise may have positive effects on children with ADHD. At present, data are promising and support the need for further study, but are insufficient to recommend widespread use of such interventions for children with ADHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance•• Of major importance

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Washington DC: American Psychiatric Press 1994.

  2. Mannuzza S, Klein RG. Long-term prognosis in attention-deficit/hyperactivity disorder. Child Adolesc Psychiatr Clin N Am. 2000;9:711–26.

    PubMed  CAS  Google Scholar 

  3. Barkley RA. Global issues related to the impact of untreated attention-deficit/hyperactivity disorder from childhood to young adulthood. Postgrad Med. 2008;120:48–59.

    Article  PubMed  Google Scholar 

  4. Conners CK. Forty years of methylphenidate treatment in attention-deficit/ hyperactivity disorder. J Atten Disord. 2002;6:S17–30.

    PubMed  Google Scholar 

  5. Greenhill LL, Halperin JM, Abikoff H. Stimulant medications. J Am Acad Child Adolesc Psychiatry. 1999;38:503–12.

    Article  PubMed  CAS  Google Scholar 

  6. Spencer T, Biederman J, Wilens T, et al. Pharmacotherapy of attention-deficit hyperactivity disorder across the life cycle. J Am Acad Child Adolesc Psychiatry. 1996;35:409–32.

    Article  PubMed  CAS  Google Scholar 

  7. Pelham Jr WE, Fabiano GA. Behavior modification. Child Adolesc Psychiatr Clin N Am. 2000;9:671–88. ix.

    PubMed  Google Scholar 

  8. Pelham Jr WE, Fabiano GA. Evidence-based psychosocial treatments for attention-deficit/hyperactivity disorder. J Clin Child Adolesc Psychol. 2008;37:184–214.

    PubMed  Google Scholar 

  9. Sanchez RJ, Crismon ML, Barner JC, et al. Assessment of adherence measures with different stimulants among children and adolescents. Pharmacotherapy. 2005;25:909–17.

    Article  PubMed  Google Scholar 

  10. Perwien A, Hall J, Swensen A, et al. Stimulant treatment patterns and compliance in children and adults with newly treated attention-deficit/hyperactivity disorder. J Manag Care Pharm. 2004;10:122–9.

    PubMed  Google Scholar 

  11. Molina BS, Hinshaw SP, Swanson JM, et al. The MTA at 8years: prospective follow-up of children treated for combined-type ADHD in a multisite study. J Am Acad Child Adolesc Psychiatry. 2009;48:484–500.

    Article  PubMed  Google Scholar 

  12. Shaw P, Eckstrand K, Sharp W, et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci U S A. 2007;104:19649–54.

    Article  PubMed  CAS  Google Scholar 

  13. Giedd JN, Rapoport JL. Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron. 2010;67:728–34.

    Article  PubMed  CAS  Google Scholar 

  14. Halperin JM, Schulz KP. Revisiting the role of the prefrontal cortex in the pathophysiology of attention-deficit/hyperactivity disorder. Psychol Bull. 2006;132:560–81.

    Article  PubMed  Google Scholar 

  15. Bedard AC, Trampush JW, Newcorn JH, et al. Perceptual and motor inhibition in adolescents/young adults with childhood-diagnosed ADHD. Neuropsychology. 2010;24:424–34.

    Article  PubMed  Google Scholar 

  16. Halperin JM, Trampush JW, Miller CJ, et al. Neuropsychological outcome in adolescents/young adults with childhood ADHD: profiles of persisters, remitters and controls. J Child Psychol Psychiatry. 2008;49:958–66.

    Article  PubMed  Google Scholar 

  17. Shaw P, Lerch J, Greenstein D, et al. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2006;63:540–9.

    Article  PubMed  Google Scholar 

  18. Schulz KP, Newcorn JH, Fan J, et al. Brain activation gradients in ventrolateral prefrontal cortex related to persistence of ADHD in adolescence. J Am Acad Child Adolesc Psychiatry. 2005;44:47–54.

    Article  PubMed  Google Scholar 

  19. •• Halperin JM, Healey DM. The influences of environmental enrichment, cognitive enhancement, and physical exercise on brain development: can we alter the developmental trajectory of ADHD? Neurosci Biobehav Rev. 2011;35:621–34. This review examines the emerging literature on the underlying neural determinants of ADHD, along with research demonstrating powerful influences of environmental factors on brain development and functioning. Based on these largely distinct scientific literatures, the authors propose an approach that employs directed play and physical exercise to promote brain growth, which, in turn, could lead to the development of potentially more enduring treatments for the disorder.

    Article  PubMed  Google Scholar 

  20. Sonuga-Barke EJ, Halperin JM. Developmental phenotypes and causal pathways in attention deficit/hyperactivity disorder: potential targets for early intervention? J Child Psychol Psychiatry. 2010;51:368–89.

    Article  PubMed  Google Scholar 

  21. Halperin JM, Bedard AC, Curchack-Lichtin JT. Preventive interventions for ADHD: a neurodevelopmental perspective. Neurotherapeutics. 2012. doi:10.1007/s13311-012-0123-z.

  22. Klingberg T, Forssberg H, Westerberg H. Training of working memory in children with adhd. J Clin Exp Neuropsychol. 2002;24:781–91.

    Article  PubMed  Google Scholar 

  23. Klingberg T, Fernell E, Olesen PJ, et al. Computerized training of working memory in children with adhd–a randomized, controlled trial. J Am Acad Child Adolesc Psychiatry. 2005;44:177–86.

    Article  PubMed  Google Scholar 

  24. Halperin JM, Marks DJ, Bedard AC, et al. Training executive, attention, and motor skills: a proof-of-concept study in preschool children with ADHD. J Atten Disord. 2012. doi:10.1177/1087054711435681.

  25. Tamm L, McCandless BD, Liang A, et al. Can attention itself be trained? attention training for children at-risk for adhd. In: McBurnett K, Pfiffner L, editors. Attention deficit hyperactivity disorder: concepts, controversies and new directions. New York: Informa Healthcare; 2008. p. 397–407.

    Google Scholar 

  26. Toplak ME, Connors L, Shuster J, et al. Review of cognitive, cognitive-behavioral, and neural-based interventions for attention-deficit/hyperactivity disorder (ADHD). Clin Psychol Rev. 2008;28:801–23.

    Article  PubMed  Google Scholar 

  27. Dishman RK, Berthoud HR, Booth FW, et al. Neurobiology of exercise. Obesity. 2006;14:345–56.

    Article  PubMed  CAS  Google Scholar 

  28. Audiffren M. Acute exercise and psychological functions: a cognitive-energetic approach. In: McMorris T, Tomporowski PD, Audiffren M, editors. Exercise and cognitive function. Chichester: John Wiley & Sons; 2009. p. 3–39.

    Google Scholar 

  29. Vaynman S, Gomez-Pinilla F. Revenge of the "sit": how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. J Neurosci Res. 2006;84:699–715.

    Article  PubMed  CAS  Google Scholar 

  30. van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999;2:266–70.

    Article  PubMed  Google Scholar 

  31. Bobinski F, Martins DF, Bratti T, et al. Neuroprotective and neuroregenerative effects of low-intensity aerobic exercise on sciatic nerve crush injury in mice. Neuroscience. 2011;194:337–48.

    Article  PubMed  CAS  Google Scholar 

  32. Ding YH, Li J, Zhou Y, et al. Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr Neurovasc Res. 2006;3:15–23.

    Article  PubMed  CAS  Google Scholar 

  33. Swain RA, Harris AB, Wiener EC, et al. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience. 2003;117:1037–46.

    Article  PubMed  CAS  Google Scholar 

  34. Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30:464–72.

    Article  PubMed  CAS  Google Scholar 

  35. van Praag H. Exercise and the brain: something to chew on. Trends Neurosci. 2009;32:283–90.

    Article  PubMed  Google Scholar 

  36. Ding Q, Vaynman S, Souda P, et al. Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis. Eur J Neurosci. 2006;24:1265–76.

    Article  PubMed  Google Scholar 

  37. Tong L, Shen H, Perreau VM, et al. Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol Dis. 2001;8:1046–56.

    Article  PubMed  CAS  Google Scholar 

  38. Vaynman SS, Ying Z, Yin D, et al. Exercise differentially regulates synaptic proteins associated to the function of BDNF. Brain Res. 2006;1070:124–30.

    Article  PubMed  CAS  Google Scholar 

  39. Farmer J, Zhao X, van Praag H, et al. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience. 2004;124:71–9.

    Article  PubMed  CAS  Google Scholar 

  40. Berchtold NC, Chinn G, Chou M, et al. Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience. 2005;133:853–61.

    Article  PubMed  CAS  Google Scholar 

  41. Trejo JL, Carro E, Torres-Aleman I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci. 2001;21:1628–34.

    PubMed  CAS  Google Scholar 

  42. Bailey SP, Davis JM, Ahlborn EN. Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigue. J Appl Physiol. 1993;74:3006–12.

    PubMed  CAS  Google Scholar 

  43. Elam M, Svensson TH, Thoren P. Brain monoamine metabolism is altered in rats following spontaneous, long-distance running. Acta Physiol Scand. 1987;130:313–6.

    Article  PubMed  CAS  Google Scholar 

  44. Fordyce DE, Farrar RP. Physical activity effects on hippocampal and parietal cortical cholinergic function and spatial learning in F344 rats. Behav Brain Res. 1991;43:115–23.

    Article  PubMed  CAS  Google Scholar 

  45. Fordyce DE, Wehner JM. Effects of aging on spatial learning and hippocampal protein kinase C in mice. Neurobiol Aging. 1993;14:309–17.

    Article  PubMed  CAS  Google Scholar 

  46. Samorajski T, Delaney C, Durham L, et al. Effect of exercise on longevity, body weight, locomotor performance, and passive-avoidance memory of C57BL/6J mice. Neurobiol Aging. 1985;6:17–24.

    Article  PubMed  CAS  Google Scholar 

  47. Colcombe SJ, Kramer AF, Erickson KI, et al. Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci U S A. 2004;101:3316–21.

    Article  PubMed  CAS  Google Scholar 

  48. Kramer AF, Erickson KI, Colcombe SJ. Exercise, cognition, and the aging brain. J Appl Physiol. 2006;101:1237–42.

    Article  PubMed  Google Scholar 

  49. Colcombe SJ, Erickson KI, Scalf PE, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol (A Biol Sci Med Sci). 2006;61:1166–70.

    Article  Google Scholar 

  50. Peyrin L, Pequignot JM, Lacour JR, et al. Relationships between catecholamine or 3-methoxy 4-hydroxy phenylglycol changes and the mental performance under submaximal exercise in man. Psychopharmacology. 1987;93:188–92.

    Article  PubMed  CAS  Google Scholar 

  51. Querido JS, Sheel AW. Regulation of cerebral blood flow during exercise. Sports Med. 2007;37:765–82.

    Article  PubMed  Google Scholar 

  52. Ferris LT, Williams JS, Shen CL. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc. 2007;39:728–34.

    Article  PubMed  CAS  Google Scholar 

  53. Gold SM, Schulz KH, Hartmann S, et al. Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. J Neuroimmunol. 2003;138:99–105.

    Article  PubMed  CAS  Google Scholar 

  54. Rasmussen P, Brassard P, Adser H, et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol. 2009;94:1062–9.

    Article  PubMed  CAS  Google Scholar 

  55. Seifert T, Brassard P, Wissenberg M, et al. Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol. 2010;298:R372–7.

    Article  PubMed  CAS  Google Scholar 

  56. Strohle A, Stoy M, Graetz B, et al. Acute exercise ameliorates reduced brain-derived neurotrophic factor in patients with panic disorder. Psychoneuroendocrinology. 2010;35:364–8.

    Article  PubMed  Google Scholar 

  57. Tang SW, Chu E, Hui T, et al. Influence of exercise on serum brain-derived neurotrophic factor concentrations in healthy human subjects. Neurosci Lett. 2008;431:62–5.

    Article  PubMed  CAS  Google Scholar 

  58. Zoladz JA, Pilc A, Majerczak J, et al. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol. 2008;59:119–32.

    PubMed  Google Scholar 

  59. Baker LD, Frank LL, Foster-Schubert K, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67:71–9.

    Article  PubMed  Google Scholar 

  60. Laurin D, Verreault R, Lindsay J, et al. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol. 2001;58:498–504.

    Article  PubMed  CAS  Google Scholar 

  61. Colcombe SJ, Erickson KI, Raz N, et al. Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol (A Biol Sci Med Sci). 2003;58:176–80.

    Article  Google Scholar 

  62. Hyman C, Hofer M, Barde YA, et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature. 1991;350:230–2.

    Article  PubMed  CAS  Google Scholar 

  63. Knusel B, Winslow JW, Rosenthal A, et al. Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin 3. Proc Natl Acad Sci U S A. 1991;88:961–5.

    Article  PubMed  CAS  Google Scholar 

  64. del Campo N, Chamberlain SR, Sahakian BJ, et al. The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011;69:e145–57.

    Article  PubMed  CAS  Google Scholar 

  65. Volkow ND, Wang GJ, Newcorn JH, et al. Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway. Mol Psychiatry. 2011;16:1147–54.

    Article  PubMed  CAS  Google Scholar 

  66. Arnsten AF. Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways. J Clin Psychiatry. 2006;67 Suppl 8:7–12.

    PubMed  CAS  Google Scholar 

  67. Shim SH, Hwangbo Y, Kwon YJ, et al. Increased levels of plasma brain-derived neurotrophic factor (BDNF) in children with attention deficit-hyperactivity disorder (ADHD). Prog Neuropsychopharmacol Biol Psych. 2008;32:1824–8.

    Article  CAS  Google Scholar 

  68. Meredith G, Callen S, Scheuer DA. Brain-derived neurotrophic factor expression is increased in the rat amygdala, piriform cortex and hypothalamus following repeated amphetamine administration. Brain Res. 2002;949:218–27.

    Article  PubMed  CAS  Google Scholar 

  69. Fumagalli F, Cattaneo A, Caffino L, et al. Sub-chronic exposure to atomoxetine up-regulates BDNF expression and signalling in the brain of adolescent spontaneously hypertensive rats: comparison with methylphenidate. Pharmacol Res. 2010;62:523–9.

    Article  PubMed  CAS  Google Scholar 

  70. Tsai SJ. Attention-deficit hyperactivity disorder may be associated with decreased central brain-derived neurotrophic factor activity: clinical and therapeutic implications. Med Hypotheses. 2007;68:896–9.

    Article  PubMed  CAS  Google Scholar 

  71. Chaddock L, Erickson KI, Prakash RS, et al. A functional MRI investigation of the association between childhood aerobic fitness and neurocognitive control. Biol Psychol. 2012;89:260–8.

    Article  PubMed  Google Scholar 

  72. Voss MW, Chaddock L, Kim JS, et al. Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children. Neuroscience. 2011;199:166–76.

    Article  PubMed  CAS  Google Scholar 

  73. Wu CT, Pontifex MB, Raine LB, et al. Aerobic fitness and response variability in preadolescent children performing a cognitive control task. Neuropsychology. 2011;25:333–41.

    Article  PubMed  Google Scholar 

  74. Hillman CH, Kamijo K, Scudder M. A review of chronic and acute physical activity participation on neuroelectric measures of brain health and cognition during childhood. Prev Med. 2011;52 Suppl 1:S21–8.

    Article  PubMed  Google Scholar 

  75. Kamijo K, Pontifex MB, O'Leary KC, et al. The effects of an afterschool physical activity program on working memory in preadolescent children. Dev Sci. 2011;14:1046–58.

    Article  PubMed  Google Scholar 

  76. Hillman CH, Buck SM, Themanson JR, et al. Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Dev Psychol. 2009;45:114–29.

    Article  PubMed  Google Scholar 

  77. Centers for Disease Control and Prevention. The association between school-based physical activity, including physical education, and academic performance, (Atlanta, GA). 2010.

  78. Best JR. Effects of physical activity on children's executive function: contributions of experimental research on aerobic exercise. Dev Rev. 2010;30:331–551.

    Article  PubMed  Google Scholar 

  79. Barenberg J, Berse T, Dutke S. Executive functions in learning processes: do they benefit from physical activity? Educ Res Rev. 2011;6:208–22.

    Article  Google Scholar 

  80. Tomporowski PD, Davis CL, Miller PH, et al. Exercise and children's intelligence, cognition, and academic achievement. Educ Psychol Rev. 2008;20:111–31.

    Article  PubMed  Google Scholar 

  81. • Best JR. Exergaming immediately enhances children's executive function. Dev Psychol. 2011. This study is notable for its well-contrived experimental design to determine whether cognitive engagement during exercise (using video-games as a medium) interacts or adds to the cognitive benefits of acute exercise in typically developing school-age children.

  82. • Davis CL, Tomporowski PD, McDowell JE, et al. Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized, controlled trial. Health Psychol. 2011;30:91–8. This is the first study to examine the impact of physical exercise on the brain activation of children using fMRI

    Article  PubMed  Google Scholar 

  83. Ellemberg D, St-Louis-Deschenes M. The effect of acute physical exercise on cognitive function during development. Psychol Sport Exerc. 2010;11:122–6.

    Article  Google Scholar 

  84. Fisher A, Boyle JM, Paton JY, et al. Effects of a physical education intervention on cognitive function in young children: randomized controlled pilot study. BMC Pediatr. 2011;11:97.

    Article  PubMed  Google Scholar 

  85. Hill LJ, Williams JH, Aucott L, et al. How does exercise benefit performance on cognitive tests in primary-school pupils? Dev Med Child Neurol. 2011;53:630–5.

    Article  PubMed  Google Scholar 

  86. Sternberg S. High-speed scanning in human memory. Science. 1966;153:652–4.

    Article  PubMed  CAS  Google Scholar 

  87. Castelli DM, Hillman CH, Hirsch J, et al. FIT Kids: time in target heart zone and cognitive performance. Prev Med. 2011;52 Suppl 1:S55–9.

    Article  PubMed  Google Scholar 

  88. Trudeau F, Shephard RJ. Relationships of physical activity to brain health and the academic performance of schoolchildren. Am J Lifestyle Med. 2010;4:138–50.

    Article  Google Scholar 

  89. Kibbe DL, Hackett J, Hurley M, et al. Ten years of TAKE 10!((R)): integrating physical activity with academic concepts in elementary school classrooms. Prev Med. 2011;52 Suppl 1:S43–50.

    Article  PubMed  Google Scholar 

  90. Mahar MT. Impact of short bouts of physical activity on attention-to-task in elementary school children. Prev Med. 2011;52 Suppl 1:S60–4.

    Article  PubMed  Google Scholar 

  91. Mahar MT, Murphy SK, Rowe DA, et al. Effects of a classroom-based program on physical activity and on-task behavior. Med Sci Sports Exerc. 2006;38:2086–94.

    Article  PubMed  Google Scholar 

  92. Allison DB, Faith MS, Franklin RD. Antecedent exercise in the treatment of disruptive behavior: a meta-analytic review. Clin Psychol Sci Pract. 1995;2:279–304.

    Article  Google Scholar 

  93. Wilens TE, Biederman J, Spencer TJ. Attention deficit/hyperactivity disorder across the lifespan. Annu Rev Med. 2002;53:113–31.

    Article  PubMed  CAS  Google Scholar 

  94. Tomporowski PD. Effects of acute bouts of exercise on cognition. Acta Psychol, (Amst). 2003;112:297–324.

    Article  Google Scholar 

  95. Gapin JI, Labban JD, Etnier JL. The effects of physical activity on attention deficit hyperactivity disorder symptoms: the evidence. Prev Med. 2011;52 Suppl 1:S70–4.

    Article  PubMed  Google Scholar 

  96. Verret C, Guay MC, Berthiaume C, et al. A physical activity program improves behavior and cognitive functions in children with ADHD: an exploratory study. J Atten Disord. 2012;16:71–80.

    Article  PubMed  Google Scholar 

  97. Smith AL, Hoza B, Linnea K, et al. Pilot physical activity intervention reduces severity of ADHD symptoms in young children. J Atten Disord. 2011. doi:10.1177/1087054711417395.

  98. Medina JA, Netto TL, Muszkat M, et al. Exercise impact on sustained attention of ADHD children, methylphenidate effects. Atten Defic Hyperact Disord. 2010;2:49–58.

    Article  PubMed  Google Scholar 

  99. Gapin J, Etnier JL. The relationship between physical activity and executive function performance in children with attention-deficit hyperactivity disorder. J Sport Exerc Psychol. 2010;32:753–63.

    PubMed  Google Scholar 

  100. Chang YK, Liu S, Yu HH, et al. Effect of acute exercise on executive function in children with attention deficit hyperactivity disorder. Arch Clin Neuropsychol. 2012;27:225–37.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grant numbers R21/R33 MH085898 and R01 MH68286 from the National Institute of Mental Health (NIMH) to Jeffrey M. Halperin. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIMH.

Disclosure

O. G. Berwid: none; J. M. Halperin: grant from NIMH, payment for lectures from Cereb, and travel/accommodations/meeting expenses reimbursed by Eunethydis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Halperin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berwid, O.G., Halperin, J.M. Emerging Support for a Role of Exercise in Attention-Deficit/Hyperactivity Disorder Intervention Planning. Curr Psychiatry Rep 14, 543–551 (2012). https://doi.org/10.1007/s11920-012-0297-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-012-0297-4

Keywords

Navigation