Skip to main content

Advertisement

Log in

Inflammatory Biomarkers in Depression: An Opportunity for Novel Therapeutic Interventions

  • Invited Commentary
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Currently available antidepressants are effective in less than two thirds of depressed patients, with even lower remission rates in the context of co-morbid medical illness. A rapidly expanding evidence base suggests that maladaptive inflammatory immune responses may be a common pathophysiology underlying depression, particularly in the presence of a general medical condition. The inflammatory hypothesis of depression marks a significant shift away from monoamine-based approaches and is a major step towards developing novel treatments that directly target causal factors of depression. Many antidepressants exert anti-inflammatory effects and there is an emerging literature documenting the efficacy of anti-inflammatory agents as adjunctive treatments for depression. Identification of inflammatory biomarkers in depression will require a re-conceptualization of both the diagnostic phenomenology and the experimental approaches to studying multi-determined psychiatric disorders. In addition to their application in diagnosis, predicting prognosis, and monitoring severity and response to treatment, inflammatory biomarkers may serve as novel therapeutic targets in the treatment of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hasin DS, Goodwin RD, Stinson FS, et al. Epidemiology of major depressive disorder: results from the National Epidemiologic Survey on Alcoholism and Related Conditions. Arch Gen Psychiatry. 2005;62(10):1097–106.

    Article  PubMed  Google Scholar 

  2. Lopez AD, Mathers CD. Measuring the global burden of disease and epidemiological transitions: 2002–2030. Ann Trop Med Parasitol. 2006;100(5–6):481–99.

    Article  PubMed  CAS  Google Scholar 

  3. Benton T, Staab J, Evans DL. Medical co-morbidity in depressive disorders. Ann Clin Psychiatry. 2007;19(4):289–303.

    Article  PubMed  Google Scholar 

  4. Warden D, Rush AJ, Trivedi MH, et al. The STAR*D project results: a comprehensive review of findings. Curr Psychiatry Rep. 2007;9(6):449–59.

    Article  PubMed  Google Scholar 

  5. Iosifescu DV. Treating depression in the medically ill. Psychiatr Clin North Am. 2007;30(1):77–90.

    Article  PubMed  Google Scholar 

  6. Kennedy SH, Rizvi SJ. Emerging drugs for major depressive disorder. Expert Opin Emerg Drugs. 2009;14(3):439–53.

    Article  PubMed  CAS  Google Scholar 

  7. Smith RS. The macrophage theory of depression. Med Hypotheses. 1991;35(4):298–306.

    Article  PubMed  CAS  Google Scholar 

  8. Maes M, Yirmyia R, Noraberg J, et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis. 2009;24(1):27–53.

    Article  PubMed  CAS  Google Scholar 

  9. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65(9):732–41.

    Article  PubMed  CAS  Google Scholar 

  10. Blume J, Douglas SD, Evans DL. Immune suppression and immune activation in depression. Brain Behav Immun. 2011;25(2):221–9.

    Article  PubMed  CAS  Google Scholar 

  11. Dantzer R. Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur J Pharmacol. 2004;500(1–3):399–411.

    Article  PubMed  CAS  Google Scholar 

  12. Capuron L, Miller AH. Immune system to brain signaling: Neuropsychopharmacological implications. Pharmacol Ther. 2011;130(2):226–38.

    Article  PubMed  CAS  Google Scholar 

  13. McDade TW, Hawkley LC, Cacioppo JT. Psychosocial and behavioral predictors of inflammation in middle-aged and older adults: the Chicago health, aging, and social relations study. Psychosom Med. 2006;68(3):376–81.

    Article  PubMed  Google Scholar 

  14. Danese A, Pariante CM, Caspi A, et al. Childhood maltreatment predicts adult inflammation in a life-course study. Proc Natl Acad Sci USA. 2007;104(4):1319–24.

    Article  PubMed  CAS  Google Scholar 

  15. Johnson JD, Campisi J, Sharkey CM, et al. Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines. Neuroscience. 2005;135(4):1295–307.

    Article  PubMed  CAS  Google Scholar 

  16. Dunn AJ, Wang J, Ando T. Effects of cytokines on cerebral neurotransmission. Comparison with the effects of stress. Adv Exp Med Biol. 1999;46:1117–127.

    Google Scholar 

  17. Cai W, Khaoustov VI, Xie Q, et al. Interferon-alpha-induced modulation of glucocorticoid and serotonin receptors as a mechanism of depression. J Hepatol. 2005;42(6):880–7.

    Article  PubMed  CAS  Google Scholar 

  18. Schwarcz R, Pellicciari R. Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther. 2002;303(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  19. Borland LM, Michael AC. Voltammetric study of the control of striatal dopamine release by glutamate. J Neurochem. 2004;91(1):220–9.

    Article  PubMed  CAS  Google Scholar 

  20. Moron JA, Zakharova I, Ferrer JV, et al. Mitogen-activated protein kinase regulates dopamine transporter surface expression and dopamine transport capacity. J Neurosci. 2003;23(24):8480–8.

    PubMed  CAS  Google Scholar 

  21. Kitagami T, Yamada K, Miura H, et al. Mechanism of systemically injected interferon-alpha impeding monoamine biosynthesis in rats: role of nitric oxide as a signal crossing the blood-brain barrier. Brain Res. 2003;978(1–2):104–14.

    Article  PubMed  CAS  Google Scholar 

  22. Ida T, Hara M, Nakamura Y, et al. Cytokine-induced enhancement of calcium-dependent glutamate release from astrocytes mediated by nitric oxide. Neurosci Lett. 2008;432(3):232–6.

    Article  PubMed  CAS  Google Scholar 

  23. Thornton P, Pinteaux E, Gibson RM, et al. Interleukin-1-induced neurotoxicity is mediated by glia and requires caspase activation and free radical release. J Neurochem. 2006;98(1):258–66.

    Article  PubMed  CAS  Google Scholar 

  24. Rajkowska G, Miguel-Hidalgo JJ. Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets. 2007;6(3):219–33.

    Article  PubMed  CAS  Google Scholar 

  25. Loftis JM, Huckans M, Morasco BJ. Neuroimmune mechanisms of cytokine-induced depression: current theories and novel treatment strategies. Neurobiol Dis. 2010;37(3):519–33.

    Article  PubMed  CAS  Google Scholar 

  26. Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med. 2009;71(2):171–86.

    Article  PubMed  CAS  Google Scholar 

  27. Dowlati Y, Herrmann N, Swardfager W, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57.

    Article  PubMed  CAS  Google Scholar 

  28. Zorrilla EP, Luborsky L, McKay JR, et al. The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain Behav Immun. 2001;15(3):199–226.

    Article  PubMed  CAS  Google Scholar 

  29. Levine J, Barak Y, Chengappa KN, et al. Cerebrospinal cytokine levels in patients with acute depression. Neuropsychobiology. 1999;40(4):171–6.

    Article  PubMed  CAS  Google Scholar 

  30. Kaestner F, Hettich M, Peters M, et al. Different activation patterns of proinflammatory cytokines in melancholic and non-melancholic major depression are associated with HPA axis activity. J Affect Disord. 2005;87(2–3):305–11.

    Article  PubMed  CAS  Google Scholar 

  31. Lanquillon S, Krieg JC, Bening-Abu-Shach U, et al. Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology. 2000;22(4):370–9.

    Article  PubMed  CAS  Google Scholar 

  32. Schwarz MJ, Chiang S, Muller N, et al. T-helper-1 and T-helper-2 responses in psychiatric disorders. Brain Behav Immun. 2001;15(4):340–70.

    Article  PubMed  CAS  Google Scholar 

  33. Li Y, Xiao B, Qiu W, et al. Altered expression of CD4(+)CD25(+) regulatory T cells and its 5-HT(1a) receptor in patients with major depression disorder. J Affect Disord. 2010;124(1–2):68–75.

    Article  PubMed  CAS  Google Scholar 

  34. Himmerich H, Milenovic S, Fulda S, et al. Regulatory T cells increased while IL-1beta decreased during antidepressant therapy. J Psychiatr Res. 2010;44(15):1052–7.

    Article  PubMed  Google Scholar 

  35. Harrison NA, Brydon L, Walker C, et al. Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry. 2009;66(5):407–14.

    Article  PubMed  Google Scholar 

  36. Wong ML, Dong C, Maestre-Mesa J, et al. Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol Psychiatry. 2008;13(8):800–12.

    Article  PubMed  CAS  Google Scholar 

  37. Clerici M, Arosio B, Mundo E, et al. Cytokine polymorphisms in the pathophysiology of mood disorders. CNS Spectr. 2009;14(8):419–25.

    PubMed  Google Scholar 

  38. Bull SJ, Huezo-Diaz P, Binder EB, et al. Functional polymorphisms in the interleukin-6 and serotonin transporter genes, and depression and fatigue induced by interferon-alpha and ribavirin treatment. Mol Psychiatry. 2009;14(12):1095–104.

    Article  PubMed  CAS  Google Scholar 

  39. Lotrich FE, Ferrell RE, Rabinovitz M, et al. Risk for depression during interferon-alpha treatment is affected by the serotonin transporter polymorphism. Biol Psychiatry. 2009;65(4):344–8.

    Article  PubMed  CAS  Google Scholar 

  40. Pierucci-Lagha A, Covault J, Bonkovsky HL, et al. A functional serotonin transporter gene polymorphism and depressive effects associated with interferon-alpha treatment. Psychosomatics. 2010;51(2):137–48.

    Article  PubMed  CAS  Google Scholar 

  41. Akhondzadeh S, Jafari S, Raisi F, et al. Clinical trial of adjunctive celecoxib treatment in patients with major depression: a double blind and placebo controlled trial. Depress Anxiety. 2009;26(7):607–11.

    Article  PubMed  CAS  Google Scholar 

  42. Muller N, Schwarz MJ, Dehning S, et al. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry. 2006;11(7):680–4.

    Article  PubMed  CAS  Google Scholar 

  43. Tyring S, Gottlieb A, Papp K, et al. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet. 2006;367(9504):29–35.

    Article  PubMed  CAS  Google Scholar 

  44. Tobinick E, Gross H, Weinberger A, et al. TNF-alpha modulation for treatment of Alzheimer’s disease: a 6-month pilot study. MedGenMed. 2006;8(2):25.

    PubMed  Google Scholar 

  45. Krishnan R, Cella D, Leonardi C, et al. Effects of etanercept therapy on fatigue and symptoms of depression in subjects treated for moderate to severe plaque psoriasis for up to 96 weeks. Br J Dermatol. 2007;157(6):1275–7.

    Article  PubMed  CAS  Google Scholar 

  46. Persoons P, Vermeire S, Demyttenaere K, et al. The impact of major depressive disorder on the short- and long-term outcome of Crohn’s disease treatment with infliximab. Aliment Pharmacol Ther. 2005;22(2):101–10.

    Article  PubMed  CAS  Google Scholar 

  47. Kopf M, Bachmann MF, Marsland BJ. Averting inflammation by targeting the cytokine environment. Nat Rev Drug Discov. 2010;9(9):703–18.

    Article  PubMed  CAS  Google Scholar 

  48. aan het Rot M, Collins KA, Murrough JW, et al. Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry. 2010;67(2):139–45.

    Article  PubMed  CAS  Google Scholar 

  49. Magalhaes PV, Dean OM, Bush AI, et al. N-acetyl cysteine add-on treatment for bipolar II disorder: a subgroup analysis of a randomized placebo-controlled trial. J Affect Disord. 2011;129(1–3):317–20.

    Article  PubMed  CAS  Google Scholar 

  50. Roybal KT, Wulfing C. Inhibiting the inhibitor of the inhibitor: blocking PKC-theta to enhance regulatory T cell function. Sci Signal. 2010;3(132):e24.

    Article  Google Scholar 

  51. Dantzer R, O’Connor JC, Freund GG, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.

    Article  PubMed  CAS  Google Scholar 

  52. O’Connor MF, Bower JE, Cho HJ, et al. To assess, to control, to exclude: effects of biobehavioral factors on circulating inflammatory markers. Brain Behav Immun. 2009;23(7):887–97.

    Article  PubMed  Google Scholar 

  53. Pasquini M, Speca A, Mastroeni S, et al. Differences in depressive thoughts between major depressive disorder, IFN-alpha-induced depression, and depressive disorders among cancer patients. J Psychosom Res. 2008;65(2):153–6.

    Article  PubMed  Google Scholar 

  54. Capuron L, Fornwalt FB, Knight BT, et al. Does cytokine-induced depression differ from idiopathic major depression in medically healthy individuals? J Affect Disord. 2009;119(1–3):181–5.

    Article  PubMed  CAS  Google Scholar 

  55. Dean B. Understanding the role of inflammatory-related pathways in the pathophysiology and treatment of psychiatric disorders: evidence from human peripheral studies and CNS studies. Int J Neuropsychopharmacol. 2010;15:1–16.

    Google Scholar 

  56. Frankenstein Z, Alon U, Cohen IR. The immune-body cytokine network defines a social architecture of cell interactions. Biol Direct. 2006;24:1–32.

    Google Scholar 

  57. Micallef J, Dharsee M, Chen J, et al. Applying mass spectrometry based proteomic technology to advance the understanding of multiple myeloma. J Hematol Oncol. 2010;7:3–13.

    Google Scholar 

  58. Iovieno N, van Nieuwenhuizen A, Clain A, et al. Residual symptoms after remission of major depressive disorder with fluoxetine and risk of relapse. Depress Anxiety. 2011;28(2):137–44.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Dr. Li received payment for a plenary presentation at the Toronto Psychopharmacology Update 2011 on the topic covered in this commentary.

Ms. Soczynska has received travel funds from Janssen and was the recipient of the Eli Lilly Fellowship.

S.H. Kennedy has received research funding or honoraria in the past three years from AstraZeneca, Canadian Network for Mood and Anxiety Treatments, Eli Lilly, GlaxoSmithKline, Janssen-Ortho, Lundbeck, Pfizer, St. Jude Medical and Servier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madeline Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Soczynska, J.K. & Kennedy, S.H. Inflammatory Biomarkers in Depression: An Opportunity for Novel Therapeutic Interventions. Curr Psychiatry Rep 13, 316–320 (2011). https://doi.org/10.1007/s11920-011-0210-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-011-0210-6

Keywords

Navigation