Skip to main content

Advertisement

Log in

Neuroimaging in alzheimer’s disease: Relevance for treatment

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Neuroimaging methodologies have shown some of their greatest promise in studies of Alzheimer’s disease (AD). Imaging outcome measures are now entering the arena of investigational trials for AD, to elucidate treatment mechanisms, optimize drug dosing, and perhaps serve as surrogate efficacy measures. Drugs that enhance central cholinergic neurotransmission have been extensively examined for their effects on regional cerebral blood flow, regional cerebral glucose metabolism, or levels of N-acetylaspartate in AD patients. Putative disease-modifying agents will be studied by structural magnetic resonance imaging for their ability to reduce rates of hippocampal or whole brain atrophy. When anti-amyloid therapies reach widespread clinical testing, their effects may be monitored by specific imaging probes for amyloid-b peptide-containing senile plaques. Neuroimaging studies of AD patients and asymptomatic subjects who carry the apolipoprotein E e4 allele suggest that these individuals may be particularly suitable for testing candidate prevention therapies for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Knapp MJ, Knopman DS, Solomon PR, et al.: A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer’s disease. JAMA 1994, 271:985–991.

    Article  PubMed  CAS  Google Scholar 

  2. Rogers SL, Farlow MR, Doody RS, et al.: A 24-week, doubleblind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Neurology 1998, 50:136–145.

    PubMed  CAS  Google Scholar 

  3. Corey-Bloom J, Anand R, Veach J: A randomized trial evaluating the efficacy and safety of ENA 713, a new acetylcholinesterase inhibitor, in patients with mild to moderately severe Alzheimer’s disease. Int J Geriatric Psychopharmacol 1998, 1:55–65.

    CAS  Google Scholar 

  4. Knopman D, Schneider L, Davis K, et al.: Long-term tacrine (Cognex) treatment: effects on nursing home placement and mortality. Neurology 1996, 47:166–177.

    PubMed  CAS  Google Scholar 

  5. Leber P: Slowing the progression of Alzheimer’s disease: methodologic issues. Alzheimer Dis Assoc Disord 1997, 11:S10-S21.

    PubMed  Google Scholar 

  6. Mulnard RA, Cotman CW, Kawas C, van Dyck CH, et al.: Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial. JAMA 2000, 283:1007–1015.

    Article  PubMed  CAS  Google Scholar 

  7. Aisen PS, Davis KL, Berg JD, et al.: A randomized controlled trial of prednisone in Alzheimer’s disease. Neurology 2000, 54:588–593.

    PubMed  CAS  Google Scholar 

  8. Sano M, Ernesto C, Thomas RG, et al.: A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. N Engl J Med 1997, 336:1216–1222.

    Article  PubMed  CAS  Google Scholar 

  9. Schenk D, Barbour R, Dunn W, et al.: Immunization with amyloid-b attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999, 400:173–177.

    Article  PubMed  CAS  Google Scholar 

  10. Li Y-M, Xu M, Lai M-T, et al.: Photoactivated g-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 2000, 405:689–694.

    Article  PubMed  CAS  Google Scholar 

  11. Esler WP, Kimberly WT, Ostaszewski BL, et al.: Transition-state analogue inhibitors of g-secretase bind directly to presenilin-1. Nat Cell Biol 2000, 2:428–434.

    Article  PubMed  CAS  Google Scholar 

  12. Vassar R, Bennett BD, Babu-Khan S, et al.: B-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999, 286:735–741.

    Article  PubMed  CAS  Google Scholar 

  13. Mazziotta JC, Phelps ME: Positron emission tomography studies of the brain. In Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart. Edited by Phelps M, Mazziotta J, Schelbert H. New York: Raven Press; 1986.

    Google Scholar 

  14. McGeer PL, Kamo H, Harrop R, et al.: Comparison of PET, MRI, and CT with pathology in a proven case of Alzheimer’s disease. Neurology 1986, 36:1569–1574.

    PubMed  CAS  Google Scholar 

  15. DeCarli C, Atack JR, Ball MJ, et al.: Post-mortem regional neurofibrillary tangle densities but not senile plaque densities are related to regional cerebral metabolic rates for glucose during life in Alzheimer’s disease patients. Neurodegeneration 1992, 1:113–121.

    Google Scholar 

  16. Rapoport SI: Positron emission tomography in Alzheimer’s disease in relation to disease pathogenesis. Cerebrovasc Brain Metab Rev 1991, 3:297–335.

    PubMed  CAS  Google Scholar 

  17. Minoshima S, Frey KA, Koeppe RA, et al.: A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 1995, 36:1238–1248.

    PubMed  CAS  Google Scholar 

  18. van Dyck CH, Lin CH, Robinson R, et al.: Comparison of technetium-99m-HMPAO and technetium-99m-ECD cerebral SPECT images in Alzheimer’s disease. J Nucl Med 1996, 37:1749–1755.

    PubMed  Google Scholar 

  19. van Dyck CH, Lin CH, Robinson R, et al.: The acetylcholine releaser linopirdine increases parietal regional cerebral blood flow in Alzheimer’s disease. Psychopharmacology 1997, 132:217–226.

    Article  PubMed  Google Scholar 

  20. Gustafson I, Edvinsson L, Dahlgren N, et al.: Intravenous physostigmine treatment of Alzheimer’s disease evaluated by psychometric testing, regional cerebral blood flow (rCBF) measurement, and EEG. Psychopharmacology 1987, 93:31–35.

    Article  PubMed  CAS  Google Scholar 

  21. Geaney DP, Soper N, Shepstone BJ, et al.: Effect of central cholinergic stimulation on regional cerebral blood flow in Alzheimer disease. Lancet 1990, 335:1484–1487.

    Article  PubMed  CAS  Google Scholar 

  22. R, Wyper DJ, Patterson J, et al.: Cerebral pharmacodynamics of physostigmine in Alzheimer’s disease investigated using single-photon computerised tomography. Br J Psychiatry 1991, 158:351–357.

    Google Scholar 

  23. Tune L, Brandt J, Frost JJ, et al.: Physostigmine in Alzheimer’s disease: effects on cognitive functioning, cerebral glucose metabolism analyzed by positron emission tomography and cerebral blood flow analyzed by single photon emission tomography. Acta Psychiatr Scand 1991 Suppl 366:61–65.

    Google Scholar 

  24. Besson JAO, Crawford JR, Evans NTS, et al.: PET imaging in Alzheimer’s disease. J Royal Soc Med 1992, 85:231–234.

    CAS  Google Scholar 

  25. Ebmeier KP, Hunter R, Curran SM, et al.: Effects of a single dose of the acetylcholinesterase inhibitor velnacrine on recognition memory and regional cerebral blood flow in Alzheimer’s disease. Psychopharmacology 1992, 108:103–109.

    Article  PubMed  CAS  Google Scholar 

  26. Minthon L, Gustafson L, Dalfelt G, et al.: Oral tetrahydroaminoacridine treatment of Alzheimer’s disease evaluated clinically and by regional cerebral blood flow and EEG. Dementia 1993, 4:32–42.

    PubMed  CAS  Google Scholar 

  27. Szelies B, Herholz K, Pawlik G, et al.: Zerebraler glukosestoffwechsel bei präseniler demenz vom Alzheimer-typ-verlaufskontrolle unter therapie mit muskarinergem cholinagonisten. Fortschr Neurol Psychiat 1986, 54:364–373.

    PubMed  CAS  Google Scholar 

  28. Battistin L, Pizzolato G, Dam M, et al.: Single-photon emission computed tomography studies with 99mTc-hexamethylpropyleneamine oxime in dementia: Effects of acute administration of l-acetylcarnitine. Eur Neurol 1989, 29:261–265.

    PubMed  CAS  Google Scholar 

  29. Najlerahim A, Bowen DM: Biochemical measurements in Alzheimer’s disease reveal a necessity for improved neuroimaging techniques to study metabolism. Biochem J 1988, 251:305–308.

    PubMed  CAS  Google Scholar 

  30. Procter AW, Lowe SL, Palmer AM, et al.: Topographical distribution of neurochemical changes in Alzheimer’s disease. J Neurol Sci 1988, 84:125–140.

    Article  PubMed  CAS  Google Scholar 

  31. Voytko ML, Olton DS, Richardson RT, et al.: Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J Neurosci 1994, 14:167–186.

    PubMed  CAS  Google Scholar 

  32. Muramoto O, Sugishita M, Sugita H, et al.: Effect of physostigmine on constructional and memory tasks in Alzheimer’s disease. Arch Neurol 1979, 36:501–503.

    PubMed  CAS  Google Scholar 

  33. Muramoto O, Sugishita M, Ando K: Cholinergic system and constructional praxis: a further study of physostigmine in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1984, 47:485–491.

    PubMed  CAS  Google Scholar 

  34. Rosen WG, Mohs RC, Davis KL: A new rating scale for Alzheimer’s disease. Am J Psychiatry 1984, 141:1356–1364.

    PubMed  CAS  Google Scholar 

  35. Nordberg A, Hartvig P, Lilja A, et al.: Decreased uptake and binding of 11C-nicotine in the brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm (P-D sect) 1990, 2:215–224.

    Article  CAS  Google Scholar 

  36. Weinberger DR, Gibson R, Coppola R, et al.: The distribution of cerebral muscarinic acetylcholine receptors in vivo in patients with dementia: a controlled study with 123IQNB and single photon emission computed tomography. Arch Neurol 1991, 48:169–176.

    PubMed  CAS  Google Scholar 

  37. Kuhl DE, Minoshima S, Fessler JA, et al.: In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol 1996, 40:399–410.

    Article  PubMed  CAS  Google Scholar 

  38. Shinotoh H, Namba H, Fukushi K, et al.: Brain acetylcholinesterase activity in Alzheimer disease measured by positron emission tomorgraphy. Alzheimer Dis Assoc Disord 2000, 14:S114-S118.

    Article  PubMed  CAS  Google Scholar 

  39. Kuhl DE, Koeppe RA, Minoshima S, et al.: In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 1999, 52:691–699.

    PubMed  CAS  Google Scholar 

  40. Nordberg A, Lilja A, Lundqvist H, et al.: Tacrine restores cholinergic nicotinic receptors and glucose metabolism in Alzheimer patients as visualized by positron emission tomography. Neurobiol Aging 1992, 13:747–758.

    Article  PubMed  CAS  Google Scholar 

  41. Perry EK, Perry RH, Blessed G, et al.: Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol Appl Neurobiol 1978, 4:273–277.

    PubMed  CAS  Google Scholar 

  42. McClure RJ, Kanfer JN, Panchalingam K, et al.: Magnetic resonance spectroscopy and its application to aging and Alzheimer’s disease. Neuroimaging Clin North Am 1995, 5:69–80.

    CAS  Google Scholar 

  43. Adalsteinsson E, Sullivan EV, Kleinhans N, et al.: Longitudinal decline of the neuronal marker N-acetyl aspartate in Alzheimer’s disease. Lancet 2000, 355:1696–1697.

    Article  PubMed  CAS  Google Scholar 

  44. Krishnan KRR, Charles HC, Duraiswamy PM, et al.: Donepezil’s effect on N-acetyl aspartate levels of patients with Alzheimer’s disease using proton magnetic resonance spectroscopy. J Cereb Blood Flow Metab 1999, 19:S20.

    Google Scholar 

  45. Tomlinson BE, Blessed G, Roth M: Observations on the brains of demented old people. J Neurol Sci 1970, 11:205–242.

    Article  PubMed  CAS  Google Scholar 

  46. Hyman BT, Van Hoesen GW, Damasio AR, et al.: Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 1984, 225:1168–1170.

    Article  PubMed  CAS  Google Scholar 

  47. Braak H, Braak E: Morphological criteria for the recognition of Alzheimer’s disease and the distribution pattern of cortical changes related to this disorder. Neurobiol Aging 1994, 15:355–356.

    Article  PubMed  CAS  Google Scholar 

  48. Jack CR, Peterson RC, O’Brien PC, et al.: MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 1992, 42:183–188.

    PubMed  Google Scholar 

  49. Pearlson GD, Harris GJ, Powers RE, et al.: Quantitative changes in mesial temporal volume, regional cerebral blood flow, and cognition in Alzheimer’s disease. Arch Gen Psychiatry 1992, 49:402–408.

    PubMed  CAS  Google Scholar 

  50. Killiany RJ, Moss MB, Albert MS, et al.: Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer’s disease. Arch Neurol 1993, 50:949–954.

    PubMed  CAS  Google Scholar 

  51. Lehtovirta M, Soininen H, Laakso MP, et al.: SPECT and MRI analysis in Alzheimer’s disease: relation to apolipoprotein E e4 allele. J Neurol Neurosurg Psychiatry 1996, 60:644–649.

    PubMed  CAS  Google Scholar 

  52. Juottonen K, Lehtovirta M, Helisalmi S, et al.: Major decrease in the volume of the entorhinal cortex in patients with Alzheimer’s disease carrying the apolipoprotein E e4 allele. J Neurol Neurosurg Psychiatry 1998, 65:322–327.

    PubMed  CAS  Google Scholar 

  53. Geroldi C, Pihlajamäki M, Laakso MP, et al.: APOE-e4 is associated with less frontal and more medial temporal lobe atrophy in AD. Neurology 1999, 53:1825–1832.

    PubMed  CAS  Google Scholar 

  54. van Dyck CH, Basso M, Yang J, et al.: Apolipoprotein E e4 allele is associated with atrophy of the amygdala in Alzheimer’s disease. In Scientific Abstracts, 38th Annual Meeting of the American College of Neuropsychopharmacology, Acapulco, Mexico: 1999, December 12–16.

  55. Xu Y, Jack CR, O’Brien PC, et al.: Usefulness of MRI measures of entorhinal cortex verus hippocampus in AD. Neurology 2000, 54:1760–1767.

    PubMed  CAS  Google Scholar 

  56. Jack CR, Petersen RC, Xu Y, et al.: Rate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease. Neurology 1998, 51:993–999. This important study illustrates the use of longitudinal structural MRI to calculate an annualized rate of decline in hippocampal volume against which disease-modifying treatments might be tested.

    PubMed  Google Scholar 

  57. Fox NC, Freeborough PA, Rossor MN: Visualization and quantification of rates of atrophy in Alzheimer’s disease. Lancet 1996, 348:94–97.

    Article  PubMed  CAS  Google Scholar 

  58. Fox NC, Cousens S, Scahill R, et al.: Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer’s disease. Arch Neurol 2000, 57:339–344.

    Article  PubMed  CAS  Google Scholar 

  59. Petersen RC, Smith GE, Waring SC, et al.: Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999, 56:303–308.

    Article  PubMed  CAS  Google Scholar 

  60. Jack CR, Peterson RC, Xu YC, et al.: Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 2000, 55:484–489.

    PubMed  Google Scholar 

  61. Klunk WE, Debnath ML, Pettegrew JW: Chrysamine-G binding to Alzheimer and control brain: autopsy study of a new amyloid probe. Neurobiol Aging 1995, 16:541–548.

    Article  PubMed  CAS  Google Scholar 

  62. Dezutter NA, Dom RJ, de Groot TJ, et al.: 99mTc-MAMAchrysamine G, a probe for beta-amyloid protein of Alzheimer’s disease. Eur J Nucl Med 1999, 26:1392–1399.

    Article  PubMed  CAS  Google Scholar 

  63. Skovronsky DM, Zhang B, Kung M-P, et al.: In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci 2000, 97:7609–7614.

    Article  PubMed  CAS  Google Scholar 

  64. Wengenack TM, Curran GL, Poduslo JF: Targeting Alzheimer amyloid plaques in vivo. Nat Biotechnol 2000, 18:868–872.

    Article  PubMed  CAS  Google Scholar 

  65. Agdeppa ED, Kepe V, Kiziloglu ZN, et al.: FDDNP analogs as probes for plaques and tangles in Alzheimer’s disease. J Nucl Med 2000, 41:25P.

    Google Scholar 

  66. Benveniste H, Einstein G, Kim KR, et al.: Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc Natl Acad Sci 1999, 96:14079–14084.

    Article  PubMed  CAS  Google Scholar 

  67. Saunders AM, Strittmatter WJ, Schmechel DE, et al.: Association of apolipoprotein E allele e4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993, 43:1467–1472.

    PubMed  CAS  Google Scholar 

  68. Schmechel DE, Saunders AM, Strittmatter WJ, et al.: Increased amyloid β-peptide deposition as a consequence of apolipoprotein E genotype in late-onset Alzheimer’s disease. Proc Natl Acad Sci 1993, 90:9649–9653.

    Article  PubMed  CAS  Google Scholar 

  69. Gomez-Isla T, West HL, Rebeck GW, et al.: Clinical and pathological correlates of apolipoprotein E e4 in Alzheimer’s disease. Ann Neurol 1996, 39:62–70.

    Article  PubMed  CAS  Google Scholar 

  70. Lehtovirta M, Laakso MP, Frisoni GB, et al.: How does the apolipoprotein E genotype modulate the brain in aging and in Alzheimer’s disease? A review of neuroimaging studies. Neurobiol Aging 2000, 21:293–300. This comprehensive and current review provides a thoughtful and detailed discussion of neuroimaging studies of ApoE e4 in AD patients and asymptomatic subjects.

    Article  PubMed  CAS  Google Scholar 

  71. Lehtovirta M, Soininen H, Laakso MP, et al.: SPECT and MRI analysis in Alzheimer’s disease: relation to apolipoprotein E e4 allele. J Neurol Neurosurg Psychiatry 1996, 60:644–649.

    PubMed  CAS  Google Scholar 

  72. Corder EH, Jelic V, Basun H, et al.: No difference in cerebral glucose metabolism in patients with Alzheimer disease and differing apolipoprotein E genotypes. Arch Neurol 1997, 54:273–277.

    PubMed  CAS  Google Scholar 

  73. van Dyck CH, Gelernter J, MacAvoy MG, et al: The absence of an apolipoprotein E e4 allele is associated with increased parietal rCBF asymmetry in Alzheimer’s disease. Arch Neurol 1998, 55:1460–1466.

    Article  PubMed  Google Scholar 

  74. Lehtovirta M, Kuikka J, Helisalmi S, et al.: Longitudinal SPECT study in Alzheimer’s disease: relation to apolipoprotein E polymorphism. J Neurol Neurosurg Psychiatry 1998, 64:742–746.

    Article  PubMed  CAS  Google Scholar 

  75. Small GW, Mazziotta JC, Collins MT, et al.: Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 1995, 273:942–947.

    Article  PubMed  CAS  Google Scholar 

  76. Reiman EM, Caselli RJ, Yun LS, et al.: Preclinical evidence of Alzheimer’s disease in persons homozygous for the e4 allele for apolipoprotein E. N Engl J Med 1996, 334:752–758.

    Article  PubMed  CAS  Google Scholar 

  77. Reiman E: Using brain imaging techniques to track the progression of Alzheimer’s disease in the absence of symptoms. Am J Geriatr Psychiatry 2000, 8 (Fall supplement 1):58.

    Google Scholar 

  78. Reiman EM, Uecker A, Caselli RJ, et al.: Hippocampal volumes in cognitively normal persons at genetic risk for Alzheimer’s disease. Ann Neurol 1998, 44:288–291.

    Article  PubMed  CAS  Google Scholar 

  79. Schmidt H, Schmidt R, Fazekas F, et al.: Apolipoprotein E e4 allele in the normal elderly: neuropsychologic and brain MRI correlates. Clin Genet 1996, 50:293–299.

    Article  PubMed  CAS  Google Scholar 

  80. Tohgi H, Takahashi S, Kato E, et al.: Reduced size of right hippocampus in 39-to 80-year-old normal subjects carrying the apolipoprotein E e4 allele. Neurosci Lett 1997, 236:21–24.

    Article  PubMed  CAS  Google Scholar 

  81. Plassman BL, Welsh-Bohmer KA, Bigler ED, et al.: Apolipoprotein E e4 allele and hippocampal volume in twins with normal cognition. Neurology 1997, 48:985.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dyck, C.H. Neuroimaging in alzheimer’s disease: Relevance for treatment. Curr Psychiatry Rep 3, 13–19 (2001). https://doi.org/10.1007/s11920-001-0066-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-001-0066-2

Keywords

Navigation