Skip to main content
Log in

Biology and recent brain imaging studies in affective psychoses

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Psychosis is a cardinal symptom of schizophrenia, but also occurs in other psychiatric conditions, including mood disorders. In many instances, brain abnormalities in psychotic and mood disorders appear to be on a spectrum, with the most marked changes in schizophrenia, followed by psychotic mood disorders, followed by nonpsychotic mood disorders. Such observations are consistent with the notion that mood disorders and schizophrenia represent a continuum of disease. However, in some instances, cerebral changes with psychosis may be qualitatively different, rather than merely more severe than those seen in mood disorders, more consistent with the theory that they are discrete entities. We review brain imaging studies that have advanced our knowledge of psychosis in mood disorders, with respect to the continuum versus discrete entity hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. KendallRE: The major functional psychoses: are they independent entities or part of a continuum? Philosophical and conceptual issues underlying the debate. InConcepts of Mental Disorder. Edited by KerrA, McClellandH. London: Gaskell; 1991:1–19.

    Google Scholar 

  2. Ketter TA, George MS, Kimbrell TA, et al.: Neuroanatomical models and brain imaging studies. InBipolar Disorder: Neurobiology and Clinical Applications. Edited byJoffeRT, YoungLT.New York: Marcel Dekker; 1997:179–217.

    Google Scholar 

  3. McCarley RW, Wible CG, Frumin M, et al.: MRI anatomy of schizophrenia. Biol Psychiatry 1999, 45:1099–1119.

    Article  PubMed  CAS  Google Scholar 

  4. Elkis H, Friedman L, Wise A, Meltzer HY: Meta-analyses of studies of ventricular enlargement and cortical sulcal prominence in mood disorders. Comparisons with controls or patients with schizophrenia. Arch Gen Psychiatry 1995, 52:735–746.

    PubMed  CAS  Google Scholar 

  5. Rothschild AJ, Benes F, Hebben N, et al.: Relationships between brain CT scan findings and cortisol in psychotic and nonpsychotic depressed patients. Biol Psychiatry 1989, 26:565–575.

    Article  PubMed  CAS  Google Scholar 

  6. Shiraishi H, Koizumi J, Hori M, et al.: A computerized tomographic study in patients with delusional and non-delusional depression. Jpn J Psychiatry Neurol 1992, 46:99–105.

    PubMed  CAS  Google Scholar 

  7. Luchins DJ, Lewine RR, Meltzer HY: Lateral ventricular size, psychopathology, and medication response in the psychoses. Biol Psychiatry 1984, 19:29–44.

    PubMed  CAS  Google Scholar 

  8. Schlegel S, Kretzschmar K: Computed tomography in affective disorders. Part I: ventricular and sulcal measurements. Biol Psychiatry 1987, 22:4–14.

    Article  PubMed  CAS  Google Scholar 

  9. Targum SD, Rosen LN, DeLisi LE, et al.: Cerebral ventricular size in major depressive disorder: association with delusional symptoms. Biol Psychiatry 1983, 18:329–336.

    PubMed  CAS  Google Scholar 

  10. Tonkonogy JM, Geller JL: Late-onset paranoid psychosis as a distinct clinicopathologic entity: magnetic resonance imaging data in elderly patients with paranoid psychosis of late onset and schizophrenia of early onset. Neuropsychiatry Neuropsychol Behav Neurol 1999, 12:230–235.

    PubMed  CAS  Google Scholar 

  11. Swayze VW 2nd, Andreasen NC, Alliger RJ, et al.: Structural brain abnormalities in bipolar affective disorder. Ventricular enlargement and focal signal hyperintensities. Arch Gen Psychiatry 1990, 47:1054–1059.

    PubMed  Google Scholar 

  12. Persaud R, Russow H, Harvey I, et al.: Focal signal hyperintensities in schizophrenia. Schizophr Res 1997, 27:55–64.

    Article  PubMed  CAS  Google Scholar 

  13. Miller BL, Lesser IM, Boone K, et al.: Brain white-matter lesions and psychosis. Br J Psychiatry 1989, 155:73–78.

    Article  PubMed  CAS  Google Scholar 

  14. Shedlack KJ, McDonald WM, Laskowitz DT, Krishnan KR: Geniculocalcarine hyperintensities on brain magnetic resonance imaging associated with visual hallucinations in the elderly. Psychiatry Res 1994, 54:283–293.

    Article  PubMed  CAS  Google Scholar 

  15. Hirayasu Y, Shenton ME, Tanaka S, et al.: Specificity of reduced cortical gray matter to first episode schizophrenic psychosis. 55th Annual Convention and Scientific Program of the Society of Biological Psychiatry. Chicago, IL: May 11–13, 2000. Abstract 341. Biol Psychiatry 2000, 47:102S-103S. Consistent with spectrum hypothesis for decreased left cortical gray matter volumes.

    Article  Google Scholar 

  16. Sheline YI, Wang PW, Gado MH, et al.: Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci U S A 1996, 93:3908–3913.

    Article  PubMed  CAS  Google Scholar 

  17. Rossi A, Stratta P, Di MicheleV, et al.: Temporal lobe structure by magnetic resonance in bipolar affective disorders and schizophrenia. J Affect Disord 1991, 21:19–22.

    Article  PubMed  CAS  Google Scholar 

  18. Hirayasu Y, Shenton ME, Salisbury DF, et al.: Lower left temporal lobe MRI volumes in patients with first-episode schizophrenia compared with psychotic patients with first-episode affective disorder and normal subjects. Am J Psychiatry 1998, 155:1384–1391. Consistent with spectrum hypothesis for decreased temporal volumes.

    PubMed  CAS  Google Scholar 

  19. Simpson S, Baldwin RC, Jackson A, Burns A: The differentiation of DSM-III-R psychotic depression in later life from nonpsychotic depression: comparisons of brain changes measured by multispectral analysis of magnetic resonance brain images, neuropsychological findings, and clinical features. Biol Psychiatry 1999, 45:193–204. Consistent with spectrum hypothesis for decreased temporal volumes.

    Article  PubMed  CAS  Google Scholar 

  20. Kim DK, Kim BL, Sohn SE, et al.: Candidate neuroanatomic substrates of psychosis in old-aged depression. Prog Neuropsychopharmacol Biol Psychiatry 1999, 23:793–807.

    Article  PubMed  CAS  Google Scholar 

  21. Drevets WC, Price JL, Simpson JR Jr, et al.: Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997, 86:824–827.

    Article  Google Scholar 

  22. Hirayasu Y, Shenton ME, Salisbury DF, et al.: Subgenual cingulate cortex volume in first-episode psychosis. Am J Psychiatry 1999, 156:1091–1093.

    PubMed  CAS  Google Scholar 

  23. Shenton ME, Wible CG, McCarley RW: A review of magnetic resonance imaging studies of brain abnormalities in schizophrenia. InBrain Imaging in Clinical Psychiatry. Edited by KrishnanKRR, DoriaswamyPM. New York: Marcel Dekker; 1997:297–380.

    Google Scholar 

  24. Keshavan MS, Bagwell WW, Haas GL, et al.: Changes in caudate volume with neuroleptic treatment [letter]. Lancet 1994, 344:1434.

    Article  PubMed  CAS  Google Scholar 

  25. Ketter TA, George MS, Kimbrell TA, et al.: Functional brain imaging, limbic function, and affective disorders. Neuroscientist 1996, 2:55–65.

    Google Scholar 

  26. Cohen RM, Semple WE, Gross M, et al.: Evidence for common alterations in cerebral glucose metabolism in major affective disorders and schizophrenia. Neuropsychopharmacology 1989, 2:241–254.

    Article  PubMed  CAS  Google Scholar 

  27. Berman KF, Weinberger DR: Functional localization in the brain in schizophrenia. InAmerican Psychiatric Press Review of Psychiatry, vol 10. Edited byTasmanA, GoldfingerSM. Washington, DC: American Psychiatric Press; 1991:24–59.

    Google Scholar 

  28. Weinberger DR, Berman KF, Zec RF: Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 1986, 43:114–124.

    PubMed  CAS  Google Scholar 

  29. Berman KF, Doran AR, Pickar D, Weinberger DR: Is the mechanism of prefrontal hypofunction in depression the same as in schizophrenia? Regional cerebral blood flow during cognitive activation. Br J Psychiatry 1993, 162:183–192.

    PubMed  CAS  Google Scholar 

  30. Dolan RJ, Bench CJ, Liddle PF, et al.: Dorsolateral prefrontal cortex dysfunction in the major psychoses, symptom or disease specificity? J Neurol Neurosurg Psychiatry 1993, 56:1290–1294.

    PubMed  CAS  Google Scholar 

  31. al-Mousawi AH, Evans N, Ebmeier KP, et al.: Limbic dysfunction in schizophrenia and mania. A study using 18F-labelled fluorodeoxyglucose and positron emission tomography. Br J Psychiatry 1996, 169:509–516.

    PubMed  CAS  Google Scholar 

  32. O’Connell RA, Van Heertum RL, Billick SB, et al.: Single photon emission computed tomography (SPECT) with [123I]IMP in the differential diagnosis of psychiatric disorders. J Neuropsychiatry Clin Neurosci 1989, 1:145–153.

    PubMed  CAS  Google Scholar 

  33. O’Connell RA, Van Heertum RL, Luck D, et al.: Single-photon emission computed tomography of the brain in acute mania and schizophrenia. J Neuroimaging 1995, 5:101–104.

    PubMed  CAS  Google Scholar 

  34. Wolkin A, Sanfilipo M, Angrist B, et al.: Acute d-amphetamine challenge in schizophrenia: effects on cerebral glucose utilization and clinical symptomatology. Biol Psychiatry 1994, 36:317–325.

    Article  PubMed  CAS  Google Scholar 

  35. Breier A, Malhotra AK, Pinals DA, et al.: Association of ketamineinduced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatry 1997, 154:805–811.

    PubMed  CAS  Google Scholar 

  36. Lahti AC, Holcomb HH, Medoff DR, Tamminga CA: Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 1995, 6:869–872.

    Article  PubMed  CAS  Google Scholar 

  37. Hermle L, Gouzoulis-Mayfrank E, Spitzer M: Blood flow and cerebral laterality in the mescaline model of psychosis. Pharmacopsychiatry 1998, 31(suppl 2):85–91.

    Article  PubMed  CAS  Google Scholar 

  38. Weiss AP, Heckers S: Neuroimaging of hallucinations: a review of the literature. Psychiatry Res 1999, 92:61–74.

    Article  PubMed  CAS  Google Scholar 

  39. McGuire PK, Shah GM, Murray RM: Increased blood flow in Broca’s area during auditory hallucinations in schizophrenia. Lancet 1993, 342:703–706.

    Article  PubMed  CAS  Google Scholar 

  40. Suzuki M, Yuasa S, Minabe Y, et al.: Left superior temporal blood flow increases in schizophrenic and schizophreniform patients with auditory hallucination: a longitudinal case study using 123I-IMP SPECT. Eur Arch Psychiatry Clin Neurosci 1993, 242:257–261.

    Article  PubMed  CAS  Google Scholar 

  41. Silbersweig DA, Stern E, Frith C, et al.: A functional neuroanatomy of hallucinations in schizophrenia. Nature 1995, 378:176–179.

    Article  PubMed  CAS  Google Scholar 

  42. Vollenweider FX, Vontobel P, Hell D, et al.: 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man—a PET study with [11C]raclopride. Neuropsychopharmacology 1999, 20:424–433. Increased basal ganglia dopamine with psilocybin-induced psychotic symptoms.

    Article  PubMed  CAS  Google Scholar 

  43. Breier A, Adler CM, Weisenfeld N, et al.: Effects of NMDA antagonism on striatal dopamine release in healthy subjects: application of a novel PET approach. Synapse 1998, 29:142–147. Increased basal ganglia dopamine with ketamine-induced psychotic symptoms.

    Article  PubMed  CAS  Google Scholar 

  44. Zakzanis KK, Hansen KT: Dopamine D2 densities and the schizophrenic brain. Schizophr Res 1998, 32:201–206. Meta-analysis found increased basal ganglia dopamine D2 receptors in schizophrenia.

    Article  PubMed  CAS  Google Scholar 

  45. Pearlson GD, Wong DF, Tune LE, et al.: In vivo D2 dopamine receptor density in psychotic and not nonpsychotic patients with bipolar disorder. Arch Gen Psychiatry 1995, 52:471–477.

    PubMed  CAS  Google Scholar 

  46. Laruelle M, Abi-Dargham A, van Dyck CH, et al.: Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci U S A 1996, 93:9235–9240.

    Article  PubMed  CAS  Google Scholar 

  47. Bertolino A, Breier A, Callicott JH, et al.: The relationship between dorsolateral prefrontal neuronal N-acetylaspartate and evoked release of striatal dopamine in schizophrenia. Neuropsychopharmacology 2000, 22:125–132. Dorsolateral prefrontal neuronal integrity related to amphetamineinduced striatal dopamine release in schizophrenia.

    Article  PubMed  CAS  Google Scholar 

  48. Reith J, Benkelfat C, Sherwin A, et al.: Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc Natl Acad Sci U S A 1994, 91:11651–11654.

    Article  PubMed  CAS  Google Scholar 

  49. Hietala J, Syvalahti E, Vuorio K, et al.: Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients. Lancet 1995, 346:1130–1131.

    Article  PubMed  CAS  Google Scholar 

  50. Bertolino A, Nawroz S, Mattay VS, et al.: Regionally specific pattern of neurochemical pathology in schizophrenia as assessed by multislice proton magnetic resonance spectroscopic imaging. Am J Psychiatry 1996, 153:1554–1563.

    PubMed  CAS  Google Scholar 

  51. Renshaw PF, Yurgelun-Todd DA, Tohen M, et al.: Temporal lobe proton magnetic resonance spectroscopy of patients with first-episode psychosis. Am J Psychiatry 1995, 152:444–446.

    PubMed  CAS  Google Scholar 

  52. Winsberg ME, Sachs N, Tate DL, et al.: Decreased dorsolateral prefrontal N-acetyl aspartate in bipolar disorder. Biol Psychiatry 2000, 47:475–481. Decreased dorsolateral prefrontal neuronal integrity in bipolar disorder consistent with overlap with schizophrenia.

    Article  PubMed  CAS  Google Scholar 

  53. Deicken RF, Eliaz Y, Chosaid L, et al.: Altered prefrontalthalamic neuronal integrity in bipolar I disorder, in 55th Annual Convention and Scientific Program of the Society of Biological Psychiatry. Chicago, IL: May 11–13, 2000. Abstract 341. Biol Psychiatry 2000, 47:124S-125S. Decreased dorsolateral prefrontal neuronal integrity in bipolar disorder consistent with overlap with schizophrenia.

    Article  Google Scholar 

  54. Lim KO, Sullivan EV, Pfefferbaum A: Cortical gray matter volume deficit in patients with bipolar disorder [abstract]. 36th Annual Meeting of the American College of Neuropsychopharmacology. Waikoloa, HI: December 8–12, 1997.

  55. Bartha R, Williamson PC, Drost DJ, et al.: Measurement of glutamate and glutamine in the medial prefrontal cortex of never-treated schizophrenic patients and healthy controls by proton magnetic resonance spectroscopy. Arch Gen Psychiatry 1997, 54:959–965.

    PubMed  CAS  Google Scholar 

  56. Mason GF, Sanacora G, Anand A, et al.: Cortical GABA reduced in unipolar but not bipolar depression, in 55th Annual Convention and Scientific Program of the Society of Biological Psychiatry. Chicago, IL: May 11–13, 2000. Abstract 304. Biol Psychiatry 2000, 47:92S. Decreased occipital GABA in unipolar but not bipolar depression.

    Google Scholar 

  57. Volz H, Gaser C, Hager F, et al.: Decreased frontal activation in schizophrenics during stimulation with the continuous performance test—a functional magnetic resonance imaging study. Eur Psychiatry 1999, 14:17–24. Attenuated cerebral activation during continuous performance task in schizophrenia.

    Article  PubMed  CAS  Google Scholar 

  58. Curtis VA, Bullmore ET, Morris RG, et al.: Attenuated frontal activation in schizophrenia may be task dependent. Schizophr Res 1999, 37:35–44. Attenuated cerebral activation during verbal fluency task in schizophrenia.

    Article  PubMed  CAS  Google Scholar 

  59. Stevens AA, Goldman-Rakic PS, Gore JC, et al.: Cortical dysfunction in schizophrenia during auditory word and tone working memory demonstrated by functional magnetic resonance imaging. Arch Gen Psychiatry 1998, 55:1097–1103. Attenuated cerebral activation during working memory task in schizophrenia.

    Article  PubMed  CAS  Google Scholar 

  60. Volz HP, Gaser C, Hager F, et al.: Brain activation during cognitive stimulation with the Wisconsin Card Sorting Test-a functional MRI study on healthy volunteers and schizophrenics. Psychiatry Res 1997, 75:145–157.

    Article  PubMed  CAS  Google Scholar 

  61. Woodruff PW, Wright IC, Bullmore ET, et al.: Auditory hallucinations and the temporal cortical response to speech in schizophrenia: a functional magnetic resonance imaging study. Am J Psychiatry 1997, 154:1676–1682.

    PubMed  CAS  Google Scholar 

  62. Lennox BR, Park SB, Jones PB, et al.: Spatial and temporal mapping of neural activity associated with auditory hallucinations [letter]. Lancet 1999, 353:644. Temporal lobe activation precedes subjective experience of hallucinations.

    Article  PubMed  CAS  Google Scholar 

  63. Kanwisher N, McDermott J, Chun MM: The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 1997, 17:4302–4311.

    PubMed  CAS  Google Scholar 

  64. Lim KO, Hedehus M, Moseley M, et al.: Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch Gen Psychiatry 1999, 56:367–374. Decreased white matter axonal integrity in schizophrenia.

    Article  PubMed  CAS  Google Scholar 

  65. Shihabuddin L, Buchsbaum MS, Tang C, et al.: Diffusion tensor imaging in schizophrenia and schizophrenia spectrum disorders, in 55th Annual Convention and Scientific Program of the Society of Biological Psychiatry. Chicago, IL: May 11–13, 2000. Abstract 322. Biol Psychiatry 2000, 47:97S. Decreased white matter axonal integrity in schizophrenia.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P.W., Ketter, T.A. Biology and recent brain imaging studies in affective psychoses. Curr Psychiatry Rep 2, 298–304 (2000). https://doi.org/10.1007/s11920-000-0071-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-000-0071-x

Keywords

Navigation