Skip to main content

Advertisement

Log in

Artificial Intelligence and Virtual Reality in Headache Disorder Diagnosis, Classification, and Management

  • Alternative Treatments for Pain Medicine (C Robinson, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review provides an overview of the current and future role of artificial intelligence (AI) and virtual reality (VR) in addressing the complexities inherent to the diagnosis, classification, and management of headache disorders.

Recent Findings

Through machine learning and natural language processing approaches, AI offers unprecedented opportunities to identify patterns within complex and voluminous datasets, including brain imaging data. This technology has demonstrated promise in optimizing diagnostic approaches to headache disorders and automating their classification, an attribute particularly beneficial for non-specialist providers. Furthermore, AI can enhance headache disorder management by enabling the forecasting of acute events of interest, such as migraine headaches or medication overuse, and by guiding treatment selection based on insights from predictive modeling. Additionally, AI may facilitate the streamlining of treatment efficacy monitoring and enable the automation of real-time treatment parameter adjustments. VR technology, on the other hand, offers controllable and immersive experiences, thus providing a unique avenue for the investigation of the sensory-perceptual symptomatology associated with certain headache disorders. Moreover, recent studies suggest that VR, combined with biofeedback, may serve as a viable adjunct to conventional treatment. Addressing challenges to the widespread adoption of AI and VR in headache medicine, including reimbursement policies and data privacy concerns, mandates collaborative efforts from stakeholders to enable the equitable, safe, and effective utilization of these technologies in advancing headache disorder care.

Summary

This review highlights the potential of AI and VR to support precise diagnostics, automate classification, and enhance management strategies for headache disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Stovner LJ, Hagen K, Linde M, Steiner TJ. The global prevalence of headache: an update, with analysis of the influences of methodological factors on prevalence estimates. J Headache Pain. 2022;23(1):34. https://doi.org/10.1186/s10194-022-01402-2.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Safiri S, et al. Global, regional, and national burden of migraine in 204 countries and territories, 1990 to 2019. Pain. 2022;163(2):e293–309. https://doi.org/10.1097/j.pain.0000000000002275.

    Article  CAS  PubMed  Google Scholar 

  3. Rizzoli P, Mullally WJ. Headache. Am J Med. 2018;131(1):17–24. https://doi.org/10.1016/j.amjmed.2017.09.005.

    Article  PubMed  Google Scholar 

  4. Robbins MS. Diagnosis and Management of Headache. JAMA. 2021;325(18):1874. https://doi.org/10.1001/jama.2021.1640.

    Article  PubMed  Google Scholar 

  5. Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders. Cephalalgia. 2018;38(1):1–211. https://doi.org/10.1177/0333102417738202.

    Article  Google Scholar 

  6. Steiner TJ, Stovner LJ, Jensen R, Uluduz D, Katsarava Z. Lifting The Burden: the Global Campaign against Headache. Migraine remains second among the world’s causes of disability, and first among young women: findings from GBD2019. J Headache Pain. 2020;21(1):137. https://doi.org/10.1186/s10194-020-01208-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ashina M, et al. Migraine: epidemiology and systems of care. Lancet. 2021;397(10283):1485–95. https://doi.org/10.1016/S0140-6736(20)32160-7.

    Article  PubMed  Google Scholar 

  8. Bonafede M, Sapra S, Shah N, Tepper S, Cappell K, Desai P. Direct and Indirect Healthcare Resource Utilization and Costs Among Migraine Patients in the United States. Headache. 2018;58(5):700–14. https://doi.org/10.1111/head.13275.

    Article  PubMed  Google Scholar 

  9. Bhatia R. Emerging health technologies and how they can transform healthcare delivery. J Health Manag. 2021;23(1):63–73. https://doi.org/10.1177/0972063421995025.

    Article  Google Scholar 

  10. Russell S, Norvig P. Artificial Intelligence: A Modern Approach. 3rd ed. New Jersey: Pearson; 2010.

    Google Scholar 

  11. Daripa B, Lucchese S. Artificial intelligence-aided headache classification based on a set of questionnaires: A short review. Cureus. 2022. https://doi.org/10.7759/CUREUS.29514.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gazerani P. Intelligent digital twins for personalized migraine care. J Pers Med. 2023. https://doi.org/10.3390/JPM13081255.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kwon J, Lee H, Cho S, Chung C-S, Lee MJ, Park H. Machine learning-based automated classification of headache disorders using patient-reported questionnaires. Sci Rep. 2020;10(1):14062. https://doi.org/10.1038/s41598-020-70992-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. • Zhang M, et al. Using artificial intelligence to improve pain assessment and pain management: a scoping review. J Am Med Inform Assoc. 2023;30(3):570. https://doi.org/10.1093/JAMIA/OCAC231. This comprehensive synthesis of current artificial intelligence-based interventions for pain assessment and management explores how machine learning, data mining, and natural language processing can contribute to more efficient pain recognition, assessment, and chronic pain management.

    Article  PubMed  Google Scholar 

  15. Nagireddi JN, Vyas AK, Sanapati MR, Soin A, Manchikanti L. The analysis of pain research through the lens of artificial intelligence and machine learning. Pain Physician. 2022;25(2):E211–43.

    PubMed  Google Scholar 

  16. Yang F, Banerjee T, Narine K, Shah N. Improving pain management in patients with sickle cell disease from physiological measures using machine learning techniques. Smart Health. 2018;7–8:48–59. https://doi.org/10.1016/j.smhl.2018.01.002.

    Article  PubMed  Google Scholar 

  17. Robbins MS, Dodick DW. Diagnosing secondary and primary headache disorders. Continuum (Minneap Minn). 2021;27(3):572–85. https://doi.org/10.1212/CON.0000000000000980.

    Article  Google Scholar 

  18. Robbins MS. Diagnosis and management of headache: A review. JAMA. 2021;325(18):1874–85. https://doi.org/10.1001/JAMA.2021.1640.

    Article  PubMed  Google Scholar 

  19. International Headache Society. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia. 2018;38(1):1–211. https://doi.org/10.1177/0333102417738202.

    Article  Google Scholar 

  20. Torrente A, et al. The clinical relevance of artificial intelligence in migraine. Brain Sci. 2024. https://doi.org/10.3390/BRAINSCI14010085.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Woldeamanuel YW, Cowan RP. Computerized migraine diagnostic tools: a systematic review. Ther Adv Chronic Dis. 2022. https://doi.org/10.1177/20406223211065235.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Katsuki M, et al. Developing an artificial intelligence-based diagnostic model of headaches from a dataset of clinic patients’ records. Headache. 2023;63(8):1097–108. https://doi.org/10.1111/HEAD.14611.

    Article  PubMed  Google Scholar 

  23. Sasaki S, et al. Developing an artificial intelligence-based pediatric and adolescent migraine diagnostic model. Cureus. 2023. https://doi.org/10.7759/CUREUS.44415.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Simić S, Villar JR, Calvo-Rolle JL, Sekulić SR, Simić SD, Simić D. An Application of a hybrid intelligent system for diagnosing primary headaches. Int J Environ Res Public Health. 2021;18(4):1–15. https://doi.org/10.3390/IJERPH18041890.

    Article  Google Scholar 

  25. Liu F, Bao G, Yan M, Lin G. A decision support system for primary headache developed through machine learning. PeerJ. 2022. https://doi.org/10.7717/PEERJ.12743/SUPP-2.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ellertsson S, Loftsson H, Sigurdsson EL. Artificial intelligence in the GPs office: a retrospective study on diagnostic accuracy. Scand J Prim Health Care. 2021;39(4):448–58. https://doi.org/10.1080/02813432.2021.1973255.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Katsuki M, et al. Developing an artificial intelligence-based headache diagnostic model and its utility for non-specialists’ diagnostic accuracy. Cephalalgia. 2023. https://doi.org/10.1177/03331024231156925.

    Article  PubMed  Google Scholar 

  28. Li ML, et al. A state-of-the-art review of functional magnetic resonance imaging technique integrated with advanced statistical modeling and machine learning for primary headache diagnosis. Front Hum Neurosci. 2023. https://doi.org/10.3389/FNHUM.2023.1256415.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sun A, Chen N, He L, Zhang J. Research on migraine time-series features classification based on small-sample functional magnetic resonance imaging data. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023;40(1):110–7. https://doi.org/10.7507/1001-5515.202206060.

    Article  PubMed  Google Scholar 

  30. Nie W, Zeng W, Yang J, Zhao L, Shi Y. Classification of migraine using static functional connectivity strength and dynamic functional connectome patterns: A resting-state fMRI study. Brain Sci. 2023. https://doi.org/10.3390/BRAINSCI13040596.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nie W, et al. Extraction and analysis of dynamic functional connectome patterns in migraine sufferers: A resting-state fMRI study. Comput Math Methods Med. 2021. https://doi.org/10.1155/2021/6614520.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mitrović K, Savić AM, Radojičić A, Daković M, Petrušić I. Machine learning approach for Migraine Aura Complexity Score prediction based on magnetic resonance imaging data. 2023. https://doi.org/10.1186/S10194-023-01704-Z.

    Article  Google Scholar 

  33. Mitrović K, Petrušić I, Radojičić A, Daković M, Savić A. Migraine with aura detection and subtype classification using machine learning algorithms and morphometric magnetic resonance imaging data. Front Neurol. 2023. https://doi.org/10.3389/FNEUR.2023.1106612.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Marino S, et al. Classifying migraine using PET compressive big data analytics of brain’s μ-opioid and D2/D3 dopamine neurotransmission. Front Pharmacol. 2023. https://doi.org/10.3389/FPHAR.2023.1173596.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chiang C-C, et al. A Large language model-based generative natural language processing framework finetuned on clinical notes accurately extracts headache frequency from electronic health records. medRxiv. 2023. https://doi.org/10.1101/2023.10.02.23296403.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Malden DE, et al. Natural language processing for improved characterization of COVID-19 symptoms: Observational study of 350,000 patients in a large integrated health care system. JMIR Public Health Surveill. 2022. https://doi.org/10.2196/41529.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Riskin D, Cady R, Shroff A, Hindiyeh NA, Smith T, Kymes S. Using artificial intelligence to identify patients with migraine and associated symptoms and conditions within electronic health records. BMC Med Inform Decis Mak. 2023. https://doi.org/10.1186/S12911-023-02190-8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hindiyeh NA, Riskin D, Alexander K, Cady R, Kymes S. Development and validation of a novel model for characterizing migraine outcomes within real-world data. J Headache Pain. 2022;23(1):124. https://doi.org/10.1186/S10194-022-01493-X.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chartier C, Gfrerer L, Knoedler L, Austen WG. Artificial intelligence-enabled evaluation of pain sketches to predict outcomes in headache surgery. Plast Reconstr Surg. 2023;151(2):405–11. https://doi.org/10.1097/PRS.0000000000009855.

    Article  CAS  PubMed  Google Scholar 

  40. Martinelli D, et al. Searching for the predictors of response to BoNT-A in migraine using machine learning approaches. Toxins (Basel). 2023. https://doi.org/10.3390/TOXINS15060364.

    Article  PubMed  Google Scholar 

  41. Gonzalez-Martinez A, et al. Machine-learning-based approach for predicting response to anti-calcitonin gene-related peptide (CGRP) receptor or ligand antibody treatment in patients with migraine: A multicenter Spanish study. Eur J Neurol. 2022;29(10):3102–11. https://doi.org/10.1111/ENE.15458.

    Article  PubMed  Google Scholar 

  42. Stubberud A, Gray R, Tronvik E, Matharu M, Nachev P. Machine prescription for chronic migraine. Brain Commun. 2022. https://doi.org/10.1093/BRAINCOMMS/FCAC059.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Turner DP, Lebowitz AD, Chtay I, Houle TT. Forecasting migraine attacks and the utility of identifying triggers. Curr Pain Headache Rep. 2018;22(9):62. https://doi.org/10.1007/s11916-018-0715-3.

    Article  PubMed  Google Scholar 

  44. Silberstein SD. Preventive migraine treatment. Contin Lifelong Learn Neurol. 2015;21(4):973. https://doi.org/10.1212/CON.0000000000000199.

    Article  Google Scholar 

  45. Katsuki M, et al. Investigating the effects of weather on headache occurrence using a smartphone application and artificial intelligence: A retrospective observational cross-sectional study. Headache. 2023;63(5):585–600. https://doi.org/10.1111/HEAD.14482.

    Article  PubMed  Google Scholar 

  46. Stubberud A, et al. Forecasting migraine with machine learning based on mobile phone diary and wearable data. Cephalalgia. 2023. https://doi.org/10.1177/03331024231169244.

    Article  PubMed  Google Scholar 

  47. Diener HC, et al. Pathophysiology, prevention, and treatment of medication overuse headache. Lancet Neurol. 2019;18(9):891–902. https://doi.org/10.1016/S1474-4422(19)30146-2.

    Article  PubMed  Google Scholar 

  48. Ferroni P, et al. Machine learning approach to predict medication overuse in migraine patients. Comput Struct Biotechnol J. 2020;18:1487. https://doi.org/10.1016/J.CSBJ.2020.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Juhasz G, Gecse K, Baksa D. Towards precision medicine in migraine: Recent therapeutic advances and potential biomarkers to understand heterogeneity and treatment response. Pharmacol Ther. 2023. https://doi.org/10.1016/J.PHARMTHERA.2023.108523.

    Article  PubMed  Google Scholar 

  50. Ciancarelli I, et al. Identification of determinants of biofeedback treatment’s efficacy in treating migraine and oxidative stress by ARIANNA (ARtificial Intelligent Assistant for Neural Network Analysis). Healthcare (Basel). 2022. https://doi.org/10.3390/HEALTHCARE10050941.

    Article  PubMed  Google Scholar 

  51. Nimri R, Phillip M, Kovatchev B. Closed-loop and artificial intelligence-based decision support systems. Diabetes Technol Ther. 2023;25(S1):S70–89. https://doi.org/10.1089/DIA.2023.2505.

    Article  PubMed  Google Scholar 

  52. Daniel O, Sharon R, Tepper SJ. A device review of Relivion®: an external combined occipital and trigeminal neurostimulation (eCOT-NS) system for self-administered treatment of migraine and major depressive disorder. Expert Rev Med Devices. 2021;18(4):333–42. https://doi.org/10.1080/17434440.2021.1908122.

    Article  CAS  PubMed  Google Scholar 

  53. Chuan A, Zhou JJ, Hou RM, Stevens CJ, Bogdanovych A. Virtual reality for acute and chronic pain management in adult patients: a narrative review. Anaesthesia. 2021;76(5):695–704. https://doi.org/10.1111/anae.15202.

    Article  CAS  PubMed  Google Scholar 

  54. Hadjiat Y, Marchand S. Virtual Reality and the Mediation of Acute and Chronic Pain in Adult and Pediatric Populations: Research Developments. Front Pain Res. 2022;3:840921. https://doi.org/10.3389/FPAIN.2022.840921/BIBTEX.

    Article  Google Scholar 

  55. Cerda IH, et al. Telehealth and virtual reality technologies in chronic pain management: a narrative review. Curr Pain Headache Rep. 2024. https://doi.org/10.1007/S11916-023-01205-3/METRICS.

    Article  PubMed  Google Scholar 

  56. Goudman L, et al. Virtual reality applications in chronic pain management: systematic review and meta-analysis. JMIR Serious Games. 2022. https://doi.org/10.2196/34402.

    Article  PubMed  PubMed Central  Google Scholar 

  57. • Grassini S. Virtual reality assisted non-pharmacological treatments in chronic pain management: a systematic review and quantitative meta-analysis. Int J Environ Res Public Health. 2022. https://doi.org/10.3390/IJERPH19074071. This systematic review and quantitative meta-analysis emphasizes the potential of VR as a complementary treatment for chronic pain management, highlighting the need for further research to explore its long-term effects, optimal usage, and underlying mechanisms of action in different chronic pain conditions.

    Article  PubMed  PubMed Central  Google Scholar 

  58. •Austin PD. The analgesic effects of virtual reality for people with chronic pain: a scoping review. Pain Med. 2022;23(1):105–21. https://doi.org/10.1093/PM/PNAB217. A systematic review of the literature summarizing the use of virtual reality in chronic pain conditions.

    Article  PubMed  Google Scholar 

  59. Smith V, et al. The effectiveness of virtual reality in managing acute pain and anxiety for medical inpatients: systematic review. J Med Internet Res. 2020;22(11):e17980. https://doi.org/10.2196/17980.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gupta A, Scott K, Dukewich M. Innovative technology using virtual reality in the treatment of pain: does it reduce pain via distraction, or is there more to it? Pain Med. 2018;19(1):151–9. https://doi.org/10.1093/pm/pnx109.

    Article  PubMed  Google Scholar 

  61. Wong KP, Tse MMY, Qin J. Effectiveness of virtual reality-based interventions for managing chronic pain on pain reduction, anxiety. depression and mood: a systematic review healthcare (Switzerland). 2022. https://doi.org/10.3390/HEALTHCARE10102047/S1.

    Article  PubMed Central  Google Scholar 

  62. Vekhter D, Robbins MS, Minen M, Buse DC. Efficacy and feasibility of behavioral treatments for migraine, headache, and pain in the acute care setting. Curr Pain Headache Rep. 2020;24(10):1–9. https://doi.org/10.1007/S11916-020-00899-Z/METRICS.

    Article  Google Scholar 

  63. Furman JM, Marcus DA, Balaban CD. Vestibular migraine: clinical aspects and pathophysiology. Lancet Neurol. 2013;12(7):706–15. https://doi.org/10.1016/S1474-4422(13)70107-8.

    Article  CAS  PubMed  Google Scholar 

  64. Akdal G, Özge A, Ergör G. The prevalence of vestibular symptoms in migraine or tension-type headache1. J Vestib Res. 2013;23(2):101–6. https://doi.org/10.3233/VES-130477.

    Article  PubMed  Google Scholar 

  65. Cesaroni S, da Silva AM, Ganança MM, Caovilla HH. Postural control at posturography with virtual reality in the intercritical period of vestibular migraine. Braz J Otorhinolaryngol. 2021;87(1):35. https://doi.org/10.1016/J.BJORL.2019.06.015.

    Article  PubMed  Google Scholar 

  66. Rodríguez-Almagro D, Obrero-Gaitán E, Lomas-Vega R, Zagalaz-Anula N, Catalina Osuna-Pérez M, Achalandabaso-Ochoa A. New mobile device to measure verticality perception: results in young subjects with headaches. Diagnostics. 2020. https://doi.org/10.3390/DIAGNOSTICS10100796.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lubetzky AV, et al. Contextual sensory integration training via head mounted display for individuals with vestibular disorders: a feasibility study. Disabil Rehabil Assist Technol. 2022;17(1):74–84. https://doi.org/10.1080/17483107.2020.1765419.

    Article  PubMed  Google Scholar 

  68. Bottiroli S, et al. The virtual “Enfacement Illusion” on pain perception in patients suffering from chronic migraine: A study protocol for a randomized controlled trial. J Clin Med. 2022. https://doi.org/10.3390/JCM11226876.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Donmez S. The use of virtual reality applications in tension-type headaches. Identifier NCT06155669 [Online] (vol. December 4, 2023-). 2024. Available: https://classic.clinicaltrials.gov/ct2/show/NCT06155669. Accessed 4 Feb 2024.

  70. Donmez S, Isik NI. Potential effects of virtual reality technology on the treatment of migraine-type headaches. Identifier NCT06061588 [Online] (vol. September 29, 2023-). 2024. Available: https://classic.clinicaltrials.gov/ct2/show/NCT06061588. Accessed 4 Feb 2024.

  71. Shiri S, et al. A virtual reality system combined with biofeedback for treating pediatric chronic headache-a pilot study. Pain Medicine (United States). 2013;14(5):621–7. https://doi.org/10.1111/PME.12083/2/PME12083-FIG-0001.JPEG.

    Article  Google Scholar 

  72. Connelly M, Boorigie M, McCabe K. Acceptability and tolerability of extended reality relaxation training with and without wearable neurofeedback in pediatric migraine. Children. 2023. https://doi.org/10.3390/CHILDREN10020329.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cuneo A, et al. The utility of a novel, combined biofeedback-virtual reality device as add-on treatment for chronic migraine: a randomized pilot study. Clin J Pain. 2023;39(6):286–96. https://doi.org/10.1097/AJP.0000000000001114.

    Article  PubMed  Google Scholar 

  74. Mucha T, Halminen O, Tenhunen H, Seppälä T. Commercial adoption of AI in the healthcare sector: An exploratory analysis of S&P500 companies. Stud Health Technol Inform. 2020;270:113–7. https://doi.org/10.3233/SHTI200133.

    Article  PubMed  Google Scholar 

  75. Halbig A, Babu SK, Gatter S, Latoschik ME, Brukamp K, von Mammen S. Opportunities and challenges of virtual reality in healthcare – A domain experts inquiry. Front Virtual Real. 2022. https://doi.org/10.3389/frvir.2022.837616.

    Article  Google Scholar 

  76. ‘Centers for Medicare & Medicaid Services’ (CMS’) Healthcare Common Procedure Coding System (HCPCS) Level II Final Coding, Benefit Category and Payment Determinations. [Online]. Available: https://www.cms.gov/files/document/2022-hcpcs-application-summary-biannual-2-2022-non-drug-and-non-biological-items-and-services.pdf. Accessed 12 Jan 2024.

  77. Murray NM, et al. Insurance payment for artificial intelligence technology: Methods used by a stroke artificial intelligence system and strategies to qualify for the new technology add-on payment. Neuroradiol J. 2022;35(3):284–9. https://doi.org/10.1177/19714009211067408.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Parikh RB, Helmchen LA. Paying for artificial intelligence in medicine. NPJ Digit Med. 2022;5(1):63. https://doi.org/10.1038/s41746-022-00609-6.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Vincent C, Eberts M, Naik T, Gulick V, O’Hayer CV. Provider experiences of virtual reality in clinical treatment. PLoS ONE. 2021;16(10):e0259364. https://doi.org/10.1371/journal.pone.0259364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sarkar U, Lee JE, Nguyen KH, Lisker S, Lyles CR. Barriers and facilitators to the implementation of virtual reality as a pain management modality in academic, community, and safety-net settings: Qualitative analysis. J Med Internet Res. 2021;23(9):e26623. https://doi.org/10.2196/26623.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Takshi S. Unexpected inequality: Disparate-impact from artificial intelligence in healthcare decisions. J Law Health. 2021;34(2):215–51.

    PubMed  Google Scholar 

  82. •Kouijzer MMTE, Kip H, Bouman YHA, Kelders SM. Implementation of virtual reality in healthcare: a scoping review on the implementation process of virtual reality in various healthcare settings. Implement Sci Commun. 2023;4(1):67. https://doi.org/10.1186/s43058-023-00442-2. A scoping literature review examining the facilitation of virtual reality in healthcare.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Spiegel JS. The ethics of virtual reality technology: Social hazards and public policy recommendations. Sci Eng Ethics. 2018;24(5):1537–50. https://doi.org/10.1007/s11948-017-9979-y.

    Article  PubMed  Google Scholar 

  84. Rudschies C, Schneider I. Ethical, legal, and social implications (ELSI) of virtual agents and virtual reality in healthcare. Soc Sci Med. 2023;340:116483. https://doi.org/10.1016/j.socscimed.2023.116483.

    Article  PubMed  Google Scholar 

  85. Mann M, Kumar C, Zeng W-F, Strauss MT. Artificial intelligence for proteomics and biomarker discovery. Cell Syst. 2021;12(8):759–70. https://doi.org/10.1016/j.cels.2021.06.006.

    Article  CAS  PubMed  Google Scholar 

  86. Nash DM, et al. Perceptions of Artificial Intelligence Use in Primary Care: A Qualitative Study with Providers and Staff of Ontario Community Health Centres. J Am Board Fam Med  2023;36(2):221–8. https://doi.org/10.3122/jabfm.2022.220177R2.

    Article  PubMed  Google Scholar 

  87. York T, Jenney H, Jones G. Clinician and computer: a study on patient perceptions of artificial intelligence in skeletal radiography. BMJ Health Care Inform. 2020. https://doi.org/10.1136/bmjhci-2020-100233.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chang E, Kim HT, Yoo B. Virtual reality sickness: A review of causes and measurements. Int J Hum Comput Interact. 2020;36(17):1658–82. https://doi.org/10.1080/10447318.2020.1778351.

    Article  Google Scholar 

  89. Regan C. An investigation into nausea and other side-effects of head-coupled immersive virtual reality. Virtual Real. 1995;1(1):17–31. https://doi.org/10.1007/BF02009710.

    Article  Google Scholar 

  90. •Matthie NS, et al. Use and efficacy of virtual, augmented, or mixed reality technology for chronic pain: a systematic review. Pain Manag. 2022;12(7):859–78. https://doi.org/10.2217/pmt-2022-0030. A systematic review demonstrating an improvement of pain-related outcomes with the use of virtual, augmented, and mixed reality technology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu K, et al. Preliminary study of virtual-reality-guided meditation for veterans with stress and chronic pain. Altern Ther Health Med. 2023;29(6):42–9.

    PubMed  Google Scholar 

  92. Shiri S, et al. A virtual reality system combined with biofeedback for treating pediatric chronic headache–a pilot study. Pain Med. 2013;14(5):621–7. https://doi.org/10.1111/pme.12083.

    Article  PubMed  Google Scholar 

  93. Park C, Yi C, Choi WJ, Lim H-S, Yoon HU, You SH. Long-term effects of deep-learning digital therapeutics on pain, movement control, and preliminary cost-effectiveness in low back pain: A randomized controlled trial. Digit Health. 2023. https://doi.org/10.1177/20552076231217817.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Piette JD, et al. Patient-centered pain care using artificial intelligence and mobile health tools: A randomized comparative effectiveness trial. JAMA Intern Med. 2022;182(9):975–83. https://doi.org/10.1001/jamainternmed.2022.3178.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Daripa B, Lucchese S. Artificial intelligence-aided headache classification based on a set of questionnaires: A short review. Cureus. 2022;14(9):e29514. https://doi.org/10.7759/cureus.29514.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Katsuki M, et al. Developing an artificial intelligence-based headache diagnostic model and its utility for non-specialists’ diagnostic accuracy. Cephalalgia. 2023;43(5):3331024231156925. https://doi.org/10.1177/03331024231156925.

    Article  PubMed  Google Scholar 

  97. Sasaki S, et al. Developing an artificial intelligence-based pediatric and adolescent migraine diagnostic model. Cureus. 2023;15(8):e44415. https://doi.org/10.7759/cureus.44415.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

IHC, EZ, MD: Planned, wrote, and revised the manuscript. MA, ML, SA, MES, RJY: Wrote, edited, and provided expertise. AF: Planned, wrote, provided expertise, revised the manuscript, and is the primary investigator.

Corresponding author

Correspondence to Alexandra C. G. Fonseca.

Ethics declarations

Conflict of Interest

IHC: Receives consulting fees from Layer Health. ML: Serves as an Associate Partner at MEDA Angels and Vice President of Operations at AMXRAAS. SA: Provided consulting and teaching services for Allergan/Abbvie, Eli Lilly and Company, Impel NeuroPharma, Linpharma, Lundbeck, Satsuma, Percept, Pfizer, Teva, and Theranica. MES: Serves as a research consultant to Modoscript and was a member of an Advisory Committee for Syneos Health.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Authors’ Statement

Artificial intelligence was not used for the generation of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerda, I.H., Zhang, E., Dominguez, M. et al. Artificial Intelligence and Virtual Reality in Headache Disorder Diagnosis, Classification, and Management. Curr Pain Headache Rep (2024). https://doi.org/10.1007/s11916-024-01279-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11916-024-01279-7

Keywords

Navigation