Skip to main content
Log in

Spinal Cord Stimulation Waveforms for the Treatment of Chronic Pain

  • Chronic Pain Medicine (O Viswanath, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Since the advent of spinal cord stimulation (SCS), advances in technology have allowed for improvement and treatment of various conditions, especially chronic pain. Additionally, as the system has developed, the ability to provide different stimulation waveforms for patients to treat different conditions has improved. The purpose and objective of the paper is to discuss basics of waveforms and present the most up-to-date literature and research studies on the different types of waveforms that currently exist. During our literature search, we came across over sixty articles that discuss the various waveforms we intend to evaluate.

Recent Findings

There are several publications on several waveforms used in clinical practice, but to our knowledge, this is the only educational document teaching on waveforms which provides essential knowledge.

Summary

There is a gap of knowledge related to understanding wave forms and how they work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No data was used for the context of this paper.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rock AK, Truong H, Park YL, Pilitis J. Spinal cord stimulation. Neurosurg Clin N Am. 2019;30(2):169–94.

    Article  PubMed  Google Scholar 

  2. Ranjan M, Kumar P, Konrad P, Rezai AR. Finding optimal neuromodulation for chronic pain: waves, bursts, and beyond. Neurol India. 2020;68(Supplement):S218–23. https://doi.org/10.4103/0028-3886.302465. PMID: 33318354.

    Article  PubMed  Google Scholar 

  3. Chakravarthy K, Reddy R, Al-Kaisy A, Yearwood T, Grider J. A call to action toward optimizing the electrical dose received by neural targets in spinal cord stimulation therapy for neuropathic pain. J Pain Res. 2021;7(14):2767–76. https://doi.org/10.2147/JPR.S323372.PMID:34522135;PMCID:PMC8434932.

    Article  Google Scholar 

  4. Miller JP, Eldabe S, Buchser E, Johanek LM, Guan Y, Linderoth B. Parameters of spinal cord stimulation and their role in electrical charge delivery: a review. Neuromodulation. 2016;19:373–84.

    Article  PubMed  Google Scholar 

  5. Yang F, Xu Q, Cheong YK, Shechter R, Sdrulla A, He SQ, Tiwari V, Dong X, Wacnik PW, Meyer R, Raja SN, Guan Y. Comparison of intensity-dependent inhibition of spinal wide-dynamic range neurons by dorsal column and peripheral nerve stimulation in a rat model of neuropathic pain. Eur J Pain. 2014;18(7):978–88. https://doi.org/10.1002/j.1532-2149.2013.00443.x. Epub 2014 Jan 6. PMID: 24390782; PMCID: PMC4558098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sdrulla AD, Guan Y, Raja SN. Spinal cord stimulation: clinical efficacy and potential mechanisms. Pain Pract. 2018;18:1048–67.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Head J, Mazza J, Sabourin V, Turpin J, Hoelscher C, Wu C, et al. Waves of pain relief: a systematic review of clinical trials in spinal cord stimulation waveforms for the treatment of chronic neuropathic low back and leg pain. World Neurosurg. 2019;131:264-74.e3.

    Article  PubMed  Google Scholar 

  8. Chakravarthy K, Fishman MA, Zuidema X, Hunter CW, Levy R. Mechanism of action in burst spinal cord stimulation: review and recent advances. Pain Med. 2019;20(Suppl 1):S13–22. https://doi.org/10.1093/pm/pnz073.PMID:31152180;PMCID:PMC6544550.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Russo M, Cousins MJ, Brooker C, Taylor N, Boesel T, Sullivan R, Poree L, Shariati NH, Hanson E, Parker J. Effective relief of pain and associated symptoms with closed-loop spinal cord stimulation system: preliminary results of the Avalon study. Neuromodulation. 2018;21(1):38–47. https://doi.org/10.1111/ner.12684. (Epub 2017 Sep 18 PMID: 28922517).

    Article  PubMed  Google Scholar 

  10. Vallejo R, Kelley CA, Gupta A, et al. Modulation of neuroglial interactions using differential target multiplexed spinal cord stimulation in an animal model of neuropathic pain. Mol Pain. 2020;16:1744806920918057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. • Duarte RV, Nevitt S, Copley S, Maden M, de Vos CC, Taylor RS, Eldabe S. Systematic review and network meta-analysis of neurostimulation for painful diabetic neuropathy. Diabetes Care. 2022;45(10):2466–75. https://doi.org/10.2337/dc22-0932Recent article discussing important disease condition.

    Article  PubMed  Google Scholar 

  12. •• Ho E, Yazdanpanah N, Ho J, Drukman B, Chang A, Agarwal S. Parameters of spinal cord stimulation in complex regional pain syndrome: systematic review and meta-analysis of randomized controlled trials. Pain Physician. 2022;25(8):521–30. Recent article with analysks of clinical trials.

    PubMed  Google Scholar 

  13. De Vos CC, Meier K, Zaalberg PB, Nijhuis HJ, Duyvendak W, Vesper J, Enggaard TP, Lenders MW. Spinal cord stimulation in patients with painful diabetic neuropathy: a multicentre randomized clinical trial. Pain. 2014;155(11):2426–31. https://doi.org/10.1016/j.pain.2014.08.031.

    Article  PubMed  Google Scholar 

  14. Van Beek M, Geurts JW, Slangen R, Schaper NC, Faber CG, Joosten EA, Dirksen CD, van Dongen RT, van Kuijk SMJ, van Kleef M. Severity of neuropathy is associated with long-term spinal cord stimulation outcome in painful diabetic peripheral neuropathy: five-year follow-up of a prospective two-center clinical trial. Diabetes Care. 2018;41(1):32–8. https://doi.org/10.2337/dc17-0983.

    Article  PubMed  Google Scholar 

  15. Head J, Mazza J, Sabourin V, Turpin J, Hoelscher C, Wu C, Sharan A. Waves of pain relief: a systematic review of clinical trials in spinal cord stimulation waveforms for the treatment of chronic neuropathic low back and leg pain. World neurosurgery. 2019;131:264-274.e3. https://doi.org/10.1016/j.wneu.2019.07.167.

    Article  PubMed  Google Scholar 

  16. Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, Thomson S, O’Callaghan J, Eisenberg E, Milbouw G, Buchser E, Fortini G, Richardson J, North RB. The effects of spinal cord stimulation in neuropathic pain are sustained: a 24-month follow-up of the prospective randomized controlled multicenter trial of the effectiveness of spinal cord stimulation. Neurosurgery. 2008;63(4):762–70. https://doi.org/10.1227/01.NEU.0000325731.46702.D9.

    Article  PubMed  Google Scholar 

  17. Sato KL, Johanek LM, Sanada LS, Sluka KA. Spinal cord stimulation reduces mechanical hyperalgesia and glial cell activation in animals with neuropathic pain. Anesth Analg. 2014;118(2):464–72. https://doi.org/10.1213/ANE.0000000000000047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Andres J, Monsalve-Dolz V, Fabregat-Cid G, Villanueva-Perez V, Harutyunyan A, Asensio-Samper JM, Sanchis-Lopez N. Prospective, randomized blind effect-on-outcome study of conventional vs high-frequency spinal cord stimulation in patients with pain and disability due to failed back surgery syndrome. Pain medicine (Malden, Mass). 2017;18(12):2401–21. https://doi.org/10.1093/pm/pnx241.

    Article  PubMed  Google Scholar 

  19. Eldabe S, Duarte R, Gulve A, Williams H, Garner F, Brookes M, Madzinga G, Buchser E, Batterham AM. Analgesic efficacy of “burst” and tonic (500 Hz) spinal cord stimulation patterns: a randomized placebo-controlled crossover study. Neuromodulation : journal of the International Neuromodulation Society. 2021;24(3):471–8. https://doi.org/10.1111/ner.13321.

    Article  PubMed  Google Scholar 

  20. Asimakidou E, Matis GK. Spinal cord stimulation in the treatment of peripheral vascular disease: a systematic review - revival of a promising therapeutic option? Br J Neurosurg. 2022;36(5):555–63. https://doi.org/10.1080/02688697.2021.1884189.

    Article  PubMed  Google Scholar 

  21. Chakravarthy K, Richter H, Christo PJ, Williams K, Guan Y. Spinal cord stimulation for treating chronic pain: reviewing preclinical and clinical data on paresthesia-free high-frequency therapy. Neuromodulation. 2018;21(1):10–8. https://doi.org/10.1111/ner.12721. Epub 2017 Nov 3. PMID: 29105244; PMCID: PMC5766402.

    Article  PubMed  Google Scholar 

  22. •• Hoelzer BC, Edgar D, Lu SP, Taylor RS. Indirect comparison of 10 kHz spinal cord stimulation (SCS) versus traditional low-frequency scs for the treatment of painful diabetic neuropathy: a systematic review of randomized controlled trials. Biomedicines. 2022;10(10):2630. https://doi.org/10.3390/biomedicines10102630. PMID: 36289892; PMCID: PMC9599433. Article discussing one of the earliest modern waveforms.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Petersen EA, Stauss TG, Scowcroft JA, Brooks ES, White JL, Sills SM, Amirdelfan K, Guirguis MN, Xu J, Yu C, Nairizi A, Patterson DG, Tsoulfas KC, Creamer MJ, Galan V, Bundschu RH, Paul CA, Mehta ND, Choi H, Sayed D, Mekhail NA. Effect of high-frequency (10-kHz) spinal cord stimulation in patients with painful diabetic neuropathy: a randomized clinical trial. JAMA neurology. 2021;78(6):687–98. https://doi.org/10.1001/jamaneurol.2021.0538.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Baranidharan G, Edgar D, Bretherton B, Crowther T, Lalkhen AG, Fritz AK, Vajramani G. Efficacy and safety of 10 kHz spinal cord stimulation for the treatment of chronic pain: a systematic review and narrative synthesis of real-world retrospective studies. Biomedicines. 2021;9(2):180. https://doi.org/10.3390/biomedicines9020180. PMID:33670252;PMCID:PMC7918133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hagedorn JM, Romero J, Thuc Ha C, Bendel MA, D’Souza RS. Paresthesia-based versus high-frequency spinal cord stimulation: a retrospective, real-world, single-center comparison. Neuromodulation : journal of the International Neuromodulation Society. 2021. Advance online publication. https://doi.org/10.1111/ner.13497.

  26. Bicket MC, Dunn RY, Ahmed S. High-frequency spinal cord stimulation for chronic pain: pre-clinical overview and systematic review of controlled trials. Pain medicine (Malden, Mass). 2016;17(12):2326–36. https://doi.org/10.1093/pm/pnw156.

    Article  PubMed  Google Scholar 

  27. De Geus TJ, Franken G, Joosten EAJ. Spinal cord stimulation paradigms and pain relief: a preclinical systematic review on modulation of the central inflammatory response in neuropathic pain. Neuromodulation. journal of the International Neuromodulation Society. 2022;S1094–7159(22):00685–7. https://doi.org/10.1016/j.neurom.2022.04.049.

    Article  Google Scholar 

  28. Pollard EM, Lamer TJ, Moeschler SM, Gazelka HM, Hooten WM, Bendel MA, Warner NS, Murad MH. The effect of spinal cord stimulation on pain medication reduction in intractable spine and limb pain: a systematic review of randomized controlled trials and meta-analysis. J Pain Res. 2019;12:1311–24. https://doi.org/10.2147/JPR.S186662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perruchoud C, Eldabe S, Batterham AM, Madzinga G, Brookes M, Durrer A, Rosato M, Bovet N, West S, Bovy M, Rutschmann B, Gulve A, Garner F, Buchser E. Analgesic efficacy of high-frequency spinal cord stimulation: a randomized double-blind placebo-controlled study. Neuromodulation : journal of the International Neuromodulation Society. 2013;16(4):363–9. https://doi.org/10.1111/ner.12027.

    Article  PubMed  Google Scholar 

  30. Abraham ME, Gold J, Dondapati A, Sheaffer K, Gendreau JL, Mammis A. High frequency 10 kHz spinal cord stimulation as a first line programming option for patients with chronic pain: a retrospective study and review of the current evidence. Cureus. 2021;13(8): e17220. https://doi.org/10.7759/cureus.17220.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kapural L, Yu C, Doust MW, Gliner BE, Vallejo R, Sitzman BT, Amirdelfan K, Morgan DM, Brown LL, Yearwood TL, Bundschu R, Burton AW, Yang T, Benyamin R, Burgher AH. Novel 10-kHz high-frequency therapy (HF10 therapy) is superior to traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: the SENZA-RCT randomized controlled trial. Anesthesiology. 2015;123(4):851–60. https://doi.org/10.1097/ALN.0000000000000774.

    Article  PubMed  Google Scholar 

  32. Al-Kaisy A, Van Buyten JP, Smet I, Palmisani S, Pang D, Smith T. Sustained effectiveness of 10 kHz high-frequency spinal cord stimulation for patients with chronic, low back pain: 24-month results of a prospective multicenter study. Pain medicine (Malden, Mass). 2014;15(3):347–54. https://doi.org/10.1111/pme.12294.

    Article  PubMed  Google Scholar 

  33. Van Buyten JP, Al-Kaisy A, Smet I, Palmisani S, Smith T. High-frequency spinal cord stimulation for the treatment of chronic back pain patients: results of a prospective multicenter European clinical study. Neuromodulation : journal of the International Neuromodulation Society. 2013;16(1):59–66. https://doi.org/10.1111/ner.12006.

    Article  PubMed  Google Scholar 

  34. Conger A, Sperry BP, Cheney CW, Burnham TM, Mahan MA, Onofrei LV, Cushman DM, Wagner GE, Shipman H, Teramoto M, McCormick ZL. The effectiveness of spinal cord stimulation for the treatment of axial low back pain: a systematic review with narrative synthesis. Pain Med. 2020;21(11):2699–712. https://doi.org/10.1093/pm/pnaa142. (PMID: 32472130).

    Article  PubMed  Google Scholar 

  35. Kirketeig T, Schultheis C, Zuidema X, Hunter CW, Deer T. Burst spinal cord stimulation: a clinical review. Pain Med. 2019;20(Suppl 1):S31–40. https://doi.org/10.1093/pm/pnz003.PMID:31152175;PMCID:PMC6544556.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chakravarthy K, Malayil R, Kirketeig T, Deer T. Burst spinal cord stimulation: a systematic review and pooled analysis of real-world evidence and outcomes data. Pain Med. 2019;20(Suppl 1):S47–57. https://doi.org/10.1093/pm/pnz046.PMID:31152177;PMCID:PMC6544549.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Leong SL, De Ridder D, Deer T, Vanneste S. Potential therapeutic effect of low amplitude burst spinal cord stimulation on pain. Neuromodulation. 2021;24(3):574–80. https://doi.org/10.1111/ner.13090. (Epub 2019 Dec 18 PMID: 31854070).

    Article  PubMed  Google Scholar 

  38. Pan X, Bao H, Si Y, Xu C, Chen H, Gao X, Xie X, Xu Y, Sun F, Zeng L. Spinal cord stimulation for refractory angina pectoris: a systematic review and meta-analysis. Clin J Pain. 2017;33(6):543–51. https://doi.org/10.1097/AJP.0000000000000435.PMID:27875377;PMCID:PMC5417578.

    Article  PubMed  Google Scholar 

  39. Deer T, Slavin KV, Amirdelfan K, North RB, Burton AW, Yearwood TL, Tavel E, Staats P, Falowski S, Pope J, Justiz R, Fabi AY, Taghva A, Paicius R, Houden T, Wilson D. Success using neuromodulation with BURST (SUNBURST) study: results from a prospective, randomized controlled trial using a novel burst waveform. Neuromodulation. 2018;21(1):56–66. https://doi.org/10.1111/ner.12698. (Epub 2017 Sep 29 PMID: 28961366).

    Article  PubMed  Google Scholar 

  40. Falowski, Steven M. MD. 122 ECAP-controlled closed-loop spinal cord stimulation (CL SCS): double-blind, randomized trial for the treatment of chronic pain – 24-month outcomes. Neurosurgery 2022;68(Supplement_1):35. https://doi.org/10.1227/NEU.0000000000001880_122

  41. Russo M, Brooker C, Cousins MJ, et al. Sustained long-term outcomes with closed-loop spinal cord stimulation: 12-month results of the prospective, multicenter, open-label Avalon study [published correction appears in Neurosurgery. 2020 Sep 1;87(3):611]. Neurosurgery. 2020;87(4):E485–95. https://doi.org/10.1093/neuros/nyaa003.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mekhail N, Levy RM, Deer TR, Kapural L, Li S, Amirdelfan K, Hunter CW, Rosen SM, Costandi SJ, Falowski SM, Burgher AH, Pope JE, Gilmore CA, Qureshi FA, Staats PS, Scowcroft J, Carlson J, Kim CK, Yang MI, Stauss T, Poree L. Evoke Study Group. Long-term safety and efficacy of closed-loop spinal cord stimulation to treat chronic back and leg pain (Evoke): a double-blind, randomized, controlled trial. Lancet Neurol. 2020;(2):123–134. https://doi.org/10.1016/S1474-4422(19)30414-4. Epub 2019 Dec 20. PMID: 31870766.

  43. Mekhail N, Levy RM, Deer TR, Kapural L, Li S, Amirdelfan K, Hunter CW, Rosen SM, Costandi SJ, Falowski SM, Burgher AH, Pope JE, Gilmore CA, Qureshi FA, Staats PS, Scowcroft J, McJunkin T, Carlson J, Kim CK, Yang MI, Stauss T, Pilitsis J, Poree L, Evoke Study Group, Brounstein D, Gilbert S, Gmel GE, Gorman R, Gould I, Hanson E, Karantonis DM, Khurram A, Leitner A, Mugan D, Obradovic M, Ouyang Z, Parker J, Single P, Soliday N. Durability of clinical and quality-of-life outcomes of closed-loop spinal cord stimulation for chronic back and leg pain: a secondary analysis of the evoke randomized clinical trial. JAMA Neurol. 2022;79(3):251–60. https://doi.org/10.1001/jamaneurol.2021.4998. Erratum in: JAMA Neurol. 2022 Feb 14;:null. PMID: 34998276; PMCID: PMC8742908.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Brooker C, Russo M, Cousins MJ, Taylor N, Holford L, Martin R, Boesel T, Sullivan R, Hanson E, Gmel GE, Shariati NH, Poree L, Parker J. ECAP-controlled closed-loop spinal cord stimulation efficacy and opioid reduction over 24-months: final results of the prospective, multicenter, open-label Avalon study. Pain Pract. 2021;(6):680–691. https://doi.org/10.1111/papr.13008. Epub 2021 May 2. PMID: 33768664; PMCID: PMC8359972.

  45. Montenegro TS, Ali R, Arle JE. Closed-loop systems in neuromodulation: electrophysiology and wearables. Neurosurg Clin N Am. 2022;33(3):297–303. https://doi.org/10.1016/j.nec.2022.02.008. (Epub 2022 May 26 PMID: 35718399).

    Article  PubMed  Google Scholar 

  46. Vallejo R, Tilley DM, Cedeño DL, Kelley CA, DeMaegd M, Benyamin R. Genomics of the effect of spinal cord stimulation on an animal model of neuropathic pain. Neuromodulation. 2016;19(6):576–86. https://doi.org/10.1111/ner.12465. (Epub 2016 Jul 8 PMID: 27391866).

    Article  PubMed  Google Scholar 

  47. Fishman MA, Calodney A, Kim P, Slezak J, Benyamin R, Rehman A, et al. Prospective, multicenter feasibility study to evaluate differential target multiplexed spinal cord stimulation programming in subjects with chronic intractable back pain with or without leg pain. Pain Pract. 2020;20(7):761–8.

    Article  PubMed  Google Scholar 

  48. Fishman M, Cordner H, Justiz R, Provenzano D, Merrell C, Shah B, Naranjo J, Kim P, Calodney A, Carlson J, Bundschu R, Sanapati M, Mangal V, Vallejo R. Twelve-Month results from multicenter, open-label, randomized controlled clinical trial comparing differential target multiplexed spinal cord stimulation and traditional spinal cord stimulation in subjects with chronic intractable back pain and leg pain. Pain Pract. 2021;21(8):912–23. https://doi.org/10.1111/papr.13066. Epub 2021 Aug 27. PMID: 34363307; PMCID: PMC9290817.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fukaya N, Tanei T, Nishimura Y, Hara M, Hata N, Nagashima Y, Maesawa S, Araki Y, Saito R. Spinal cord stimulation for neuropathic pain following a spinal cord lesion with past spinal surgical histories using a paddle lead placed on the rostral side of the lesion: report of three cases. NMC Case Rep J. 2022;13(9):349–55. https://doi.org/10.2176/jns-nmc.2022-0218. PMID:36381134;PMCID:PMC9633090 .

    Article  Google Scholar 

  50. Zannou AL, Khadka N, Bikson M. Bioheat model of spinal column heating during high-density spinal cord stimulation. Neuromodulation. 2022;S1094–7159(22):00762–0. https://doi.org/10.1016/j.neurom.2022.07.006. Epub ahead of print. PMID: 36030146; PMCID: PMC9950282.

    Article  Google Scholar 

  51. De Jaeger M, Goudman L, Brouns R, De Smedt A, Linderoth B, Eldabe S, Discover consortium, Moens M. The long-term response to high-dose spinal cord stimulation in patients with failed back surgery syndrome after conversion from standard spinal cord stimulation: an effectiveness and prediction study. Neuromodulation. 2021;24(3):546–55. https://doi.org/10.1111/ner.13138. Epub 2020 Mar 12. PMID: 32166849.

    Article  PubMed  Google Scholar 

  52. Peeters JB, Raftopoulos C. Tonic, burst, high-density, and 10-kHz high-frequency spinal cord stimulation: efficiency and patients’ preferences in a failed back surgery syndrome predominant population. Review of Literature World Neurosurg. 2020;144:e331–40. https://doi.org/10.1016/j.wneu.2020.08.128. (Epub 2020 Sep 2 PMID: 32889188).

    Article  PubMed  Google Scholar 

  53. Provenzano DA, Rebman J, Kuhel C, Trenz H, Kilgore J. The efficacy of high-density spinal cord stimulation among trial, implant, and conversion patients: a retrospective case series. Neuromodulation. 2017;20(7):654–60. https://doi.org/10.1111/ner.12612. (Epub 2017 May 25 PMID: 28547853).

    Article  PubMed  Google Scholar 

  54. Sweet J, Badjatiya A, Tan D, Miller J. Paresthesia-free high-density spinal cord stimulation for postlaminectomy syndrome in a prescreened population: a prospective case series. Neuromodulation. 2016;19(3):260–7. https://doi.org/10.1111/ner.12357. Epub 2015 Oct 20 PMID: 26481726.

    Article  PubMed  Google Scholar 

  55. Vervaat FE, van Suijlekom H, Wijnbergen IF. ingle-center experience with high-density spinal cord stimulation in patients with refractory angina pectoris. Neuromodulation. 2022;S1094–7159(22):01367–8. https://doi.org/10.1016/j.neurom.2022.11.006. Epub ahead of print. PMID: 36513588.

    Article  Google Scholar 

  56. Wille F, Breel JS, Bakker EW, Hollmann MW. Altering conventional to high density spinal cord stimulation: an energy dose-response relationship in neuropathic pain therapy. Neuromodulation. 2017;20(1):71–80. https://doi.org/10.1111/ner.12529. (Epub 2016 Oct 24 PMID: 27778413).

    Article  PubMed  Google Scholar 

  57. Desai MJ, Salmon J, Verrills P, Mitchell B, Du Toit N, Bates D, Vajramani G, Williams A, Love-Jones S, Patel N, Nikolic S, Mehta V, Ahmad A, Yu J, Christellis N, Harkin S, Baranidharan G, Levy R, Staats P, Malinowski MN, Makous J, Sullivan N, Kottalgi S, Hartley M, Mishra LN. A novel pulsed stimulation pattern in spinal cord stimulation: clinical results and postulated mechanisms of action in the treatment of chronic low back and leg pain. Neuromodulation. 2023;26(1):182–91. https://doi.org/10.1016/j.neurom.2022.10.053. (Epub 2022 Dec 9 PMID: 36503999).

    Article  PubMed  Google Scholar 

  58. Qing KY, Ward MP, Irazoqui PP. Burst-modulated waveforms optimize electrical stimuli for charge efficiency and fiber selectivity. EEE Trans Neural Syst Rehabil Eng. 2015;23(6):936–45. https://doi.org/10.1109/TNSRE.2015.2421732. Epub 2015 Apr 9. PMID: 25872215.

    Article  Google Scholar 

  59. Sakas DE, Panourias IG, Simpson BA, Krames ES. An introduction to operative neuromodulation and functional neuroprosthetics, the new frontiers of clinical neuroscience and biotechnology. Acta Neurochir Suppl. 2007;97(Pt 1):3–10. https://doi.org/10.1007/978-3-211-33079-1_1. (PMID: 17691351).

    Article  PubMed  Google Scholar 

  60. Hughes ML, Castioni EE, Goehring JL, Baudhuin JL. Temporal response properties of the auditory nerve: data from human cochlear-implant recipients. Hear Res. 2012;285(1–2):46–57. https://doi.org/10.1016/j.heares.2012.01.010. Epub 2012 Feb 8. PMID: 22326590; PMCID: PMC3299843.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bushnell MC, Ceko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci. 2013;14(7):502–11. https://doi.org/10.1038/nrn3516. Epub 2013 May 30. PMID: 23719569; PMCID: PMC4465351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kulkarni B, Bentley DE, Elliott R, Youell P, Watson A, Derbyshire SW, Frackowiak RS, Friston KJ, Jones AK. Attention to pain localization and unpleasantness discriminates the functions of the medial and lateral pain systems. Eur J Neurosci. 2005;21(11):3133–42. https://doi.org/10.1111/j.1460-9568.2005.04098.x. (PMID: 15978022).

    Article  CAS  PubMed  Google Scholar 

  63. Kinfe TM, Muhammad S, Link C, Roeske S, Chaudhry SR, Yearwood TL. Burst spinal cord stimulation increases peripheral antineuroinflammatory interleukin 10 levels in failed back surgery syndrome patients with predominant back pain. Neuromodulation. 2017;20(4):322–30. https://doi.org/10.1111/ner.12586. (Epub 2017 Feb 13 PMID: 28194840).

    Article  PubMed  Google Scholar 

  64. Chen JL, Hesseltine AW, Nashi SE, Sills SM, McJunkin TL, Patil S, Bharara M, Caraway DL, Brooks ES. A real-world analysis of high-frequency 10 kHz spinal cord stimulation for the treatment of painful diabetic peripheral neuropathy. J Diabetes Sci Technol. 2022;16(2):282–8. https://doi.org/10.1177/19322968211060316. Epub 2021 Nov 29. PMID: 34842489; PMCID: PMC8861794.

    Article  CAS  PubMed  Google Scholar 

  65. Surges G, Paulus J, Blaß T, Mendryscha K, Bettag M, Rotte A. Efficacy and safety of 10 kHz spinal cord stimulation using cervical and thoracic leads: a single-center retrospective experience. Pain Ther. 2021;10(2):1255–68. https://doi.org/10.1007/s40122-021-00287-4. Epub 2021 Jul 8. PMID: 34236671; PMCID: PMC8586300.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Feng H, Doherty P, Rotte A. Decreased opioid consumption and durable pain relief in patients treated with 10 kHz SCS: a retrospective analysis of outcomes from single-center. J Pain Res. 2021;24(14):2593–600. https://doi.org/10.2147/JPR.S312932.PMID:34466027;PMCID:PMC8403026.

    Article  Google Scholar 

  67. Garg I, Wang D. Complications of spinal cord stimulator trials and implants: a review. Curr Pain Headache Rep. 2023;27(12):837–42. https://doi.org/10.1007/s11916-023-01190-7. (Epub 2023 Nov 27 PMID: 38010489).

    Article  PubMed  Google Scholar 

  68. Falowski SM, Tan H, Parks J, Abd-Elsayed A, Raslan A, Pope J. Anticipating and preventing complications in spinal cord stimulator implantation. Expert Rev Med Devices. 2023;20(5):365–72. https://doi.org/10.1080/17434440.2023.2196399. (Epub 2023 Apr 3 PMID: 36974624).

    Article  CAS  PubMed  Google Scholar 

  69. Berger AA, Urits I, Hasoon J, Gill J, Aner M, Yazdi CA, Viswanath O, Cornett EM, Kaye AD, Imani F, Imani F, Varrassi G, Simopoulos TT. Improved pain control with combination spinal cord stimulator therapy utilizing sub-perception and traditional paresthesia based waveforms: a pilot study. Anesth Pain Med. 2021;11(1):e113089. https://doi.org/10.5812/aapm.113089 PMID:34221951;PMCID:PMC8241823.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Urits I, Osman M, Orhurhu V, Viswanath O, Kaye AD, Simopoulos T, Yazdi C. A case study of combined perception-based and perception-free spinal cord stimulator therapy for the management of persistent pain after a total knee arthroplasty. Pain Ther. 2019;8(2):281–4. https://doi.org/10.1007/s40122-019-00136-5. Epub 2019 Aug 20. PMID: 31432457; PMCID: PMC6857201.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Viswanath O, Urits I, Bouley E, Peck JM, Thompson W, Kaye AD. Evolving spinal cord stimulation technologies and clinical implications in chronic pain management. Curr Pain Headache Rep. 2019;23(6):39. https://doi.org/10.1007/s11916-019-0778-9. (PMID: 31044337).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AC, EJ, SS, AA. Writing—original draft preparation, AC, EJ, SS. Supervision, AA, PM. All authors have read and agreed to the published version of the manuscript. Please turn to the CRediT taxonomy for the term explanation. Authorship must be limited to those who have contributed substantially to the work reported.

Corresponding author

Correspondence to Alaa Abd-Elsayed.

Ethics declarations

Conflict of Interest

Dr. Abd-Elsayed serves as a section editor for the journal and consultant of Medtronic and Curonix.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitneni, A., Jain, E., Sahni, S. et al. Spinal Cord Stimulation Waveforms for the Treatment of Chronic Pain. Curr Pain Headache Rep (2024). https://doi.org/10.1007/s11916-024-01247-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11916-024-01247-1

Keywords

Navigation