Skip to main content
Log in

Pain Scales: What Are They and What Do They Mean

  • Chronic Pain Medicine (A Abd-Elsayed, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

It is essential to have validated and reliable pain measurement tools that cover a wide range of areas and are tailored to individual patients to ensure effective pain management. The main objective of this review is to provide comprehensive information on commonly used pain scales and questionnaires, including their usefulness, intended purpose, applicability to different patient populations, and associated advantages and disadvantages.

Recent Findings

Acute pain questionnaires typically focus on measuring the severity of pain and the extent of relief achieved through interventions. Chronic pain questionnaires evaluate additional aspects such as pain-related functional limitations, psychological distress, and psychological well-being. The selection of an appropriate pain scale depends on the specific assessment objectives. Additionally, each pain scale has its strengths and limitations. Understanding the differences among these pain scales is essential for selecting the most appropriate tool tailored to individual patient needs in different settings.

Conclusion

Medical professionals encounter challenges in accurately assessing pain. Physicians must be familiar with the different pain scales and their applicability to specific patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. R3 Report Issue 11: Pain Assessment and Management Standards for Hospitals | The Joint Commission. https://www.jointcommission.org/standards/r3-report/r3-report-issue-11-pain-assessment-and-management-standards-for-hospitals/#.ZGJLWezMIq2. Accessed 7 July 2023.

  2. Turk DC, Okifuji A. Psychological factors in chronic pain: evolution and revolution. J Consult Clin Psychol. 2002;70:678–90.

    Article  PubMed  Google Scholar 

  3. Creamer P, Hochberg MC. Why does osteoarthritis of the knee hurt--sometimes? Br J Rheumatol. 1997;36:726–8.

    Article  CAS  PubMed  Google Scholar 

  4. EQ-5D. https://euroqol.org/. Accessed 7 July 2023.

  5. Rabin R, De Charro F. EQ-5D: a measure of health status from the EuroQol Group. Ann Med. 2001;33:337–43.

    Article  CAS  PubMed  Google Scholar 

  6. Longworth L, et al. Use of generic and condition-specific measures of health-related quality of life in NICE decision-making: a systematic review, statistical modelling and survey. Health Technol Assess. 2014;18:1–224.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Payakachat N, Ali MM, Tilford JM. Can the EQ-5D detect meaningful change?A systematic review. Pharmacoeconomics. 2015;33:1137.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schwenkglenks M, Matter-Walstra K. Is the EQ-5D suitable for use in oncology? An overview of the literature and recent developments. Expert Rev Pharmacoecon Outcomes Res. 2016;16:207–19.

    Article  PubMed  Google Scholar 

  9. Herdman M, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res. 2011;20:1727–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feng YS, Kohlmann T, Janssen MF, Buchholz I. Psychometric properties of the EQ-5D-5L: a systematic review of the literature. Qual Life Res. 2021;30:647–73.

    Article  PubMed  Google Scholar 

  11. Stucki G, et al. Measurement properties of a self-administered outcome measure in lumbar spinal stenosis. Spine (Phila Pa 1976). 1996;21:796–803.

    Article  CAS  PubMed  Google Scholar 

  12. Abou-Al-Shaar H, Adogwa O, Mehta AI. Lumbar spinal stenosis: objective measurement scales and ambulatory status. Asian Spine J. 2018;12:765–74.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hara N, et al. Psychometric assessment of the Japanese version of the Zurich Claudication Questionnaire (ZCQ): reliability and validity. PLoS One. 2016;11

  14. Tomkins CC, Battié MC, Hu R. Construct validity of the physical function scale of the Swiss Spinal Stenosis Questionnaire for the measurement of walking capacity. Spine (Phila Pa 1976). 2007;32:1896–901.

    Article  PubMed  Google Scholar 

  15. Azimi P, et al. Severity of symptoms, physical functioning and satisfaction in patients with lumbar spinal stenosis: a validation study of the Iranian version of the Swiss Spinal Stenosis Score. J Neurosurg Sci. 2014;58:177–82.

    CAS  PubMed  Google Scholar 

  16. Fukushima M, et al. Evaluation of the minimum clinically important differences of the Zurich Claudication Questionnaire in patients with lumbar spinal stenosis. Clin Spine Surg. 2020;33:E499–503.

    Article  PubMed  Google Scholar 

  17. Bouknaitir JB, Carreon LY, Brorson S, Andersen MØ. Translation and validation of the Danish Version of the Zurich Claudication Questionnaire. Global Spine J. 2022;12:53–60.

    Article  PubMed  Google Scholar 

  18. Comer CM, Conaghan PG, Tennant A. Internal construct validity of the Swiss Spinal Stenosis questionnaire: Rasch analysis of a disease-specific outcome measure for lumbar spinal stenosis. Spine (Phila Pa 1976). 2011;36:1969–76.

    Article  PubMed  Google Scholar 

  19. Kreiner DS, et al. An evidence-based clinical guideline for the diagnosis and treatment of degenerative lumbar spinal stenosis (update). Spine J. 2013;13:734–43.

    Article  PubMed  Google Scholar 

  20. Pratt RK, Fairbank JCT, Virr A. The reliability of the Shuttle Walking Test, the Swiss Spinal Stenosis Questionnaire, the Oxford Spinal Stenosis Score, and the Oswestry Disability Index in the assessment of patients with lumbar spinal stenosis. Spine (Phila Pa 1976). 2002;27:84–91.

    Article  PubMed  Google Scholar 

  21. Lovejoy TI, Turk DC, Morasco BJ. Evaluation of the psychometric properties of the revised short-form McGill pain questionnaire. J Pain. 2012;13:1250–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Burckhardt CS, Jones KD. Adult measures of pain: The McGill Pain Questionnaire (MPQ), Rheumatoid Arthritis Pain Scale (RAPS), Short-Form McGill Pain Questionnaire (SF-MPQ), Verbal Descriptive Scale (VDS), Visual Analog Scale (VAS), and West Haven-Yale Multidisciplinary Pain Inventory (WHYMPI). Arthritis Rheum. 2003;49:S96–104.

    Article  Google Scholar 

  23. Williams DA, Arnold LM. Measures of fibromyalgia: Fibromyalgia Impact Questionnaire (FIQ), Brief Pain Inventory (BPI), Multidimensional Fatigue Inventory (MFI-20), Medical Outcomes Study (MOS) Sleep Scale, and Multiple Ability Self-Report Questionnaire (MASQ). Arthritis Care Res (Hoboken). 2011;63(Suppl 11).

  24. Melzack R. The McGill pain questionnaire: from description to measurement. Anesthesiology. 2005;103:199–202.

    Article  PubMed  Google Scholar 

  25. Mendoza TR, et al. The utility and validity of the modified brief pain inventory in a multiple-dose postoperative analgesic trial. Clin J Pain. 2004;20:357–62.

    Article  PubMed  Google Scholar 

  26. Cleeland, C. S. The Brief Pain Inventory User Guide. 2009.

  27. Majedi H, et al. Validation of the Persian version of the Brief Pain Inventory (BPI-P) in chronic pain patients. J Pain Symptom Manage. 2017;54:132-138.e2.

    Article  PubMed  Google Scholar 

  28. Im DD, Jambaulikar GD, Kikut A, Gale J, Weiner SG. Brief Pain Inventory–Short Form: a new method for assessing pain in the emergency department. Pain Med. 2020;21:3263–9.

    Article  PubMed  Google Scholar 

  29. Dudgeon D, Raubertas RF, Rosenthal SN. The short-form McGill Pain Questionnaire in chronic cancer pain. J Pain Symptom Manage. 1993;8:191–5.

    Article  CAS  PubMed  Google Scholar 

  30. Ngamkham S, et al. The McGill Pain Questionnaire as a multidimensional measure in people with cancer: an integrative review. Pain Manag Nurs. 2012;13:27–51.

    Article  PubMed  Google Scholar 

  31. • Garg A, Pathak H, Churyukanov MV, Uppin RB, Slobodin TM. Low back pain: critical assessment of various scales. Eur Spine J. 2020;29:503–18. An evaluation of pain assessment tools for low back pain based on psychometric properties and ease of use.

    Article  PubMed  Google Scholar 

  32. Gauthier LR, et al. Validation of the short-form McGill pain questionnaire-2 in younger and older people with cancer pain. J Pain. 2014;15:756–70.

    Article  PubMed  Google Scholar 

  33. Stanhope J. Brief Pain Inventory review. Occup Med (Chic Ill). 2016;66:496–7.

    Article  Google Scholar 

  34. Vernon H. The Neck Disability Index: state-of-the-art, 1991-2008. J Manipulative Physiol Ther. 2008;31:491–502.

    Article  PubMed  Google Scholar 

  35. Pietrobon R, Coeytaux RR, Carey TS, Richardson WJ, DeVellis RF. Standard scales for measurement of functional outcome for cervical pain or dysfunction: a systematic review. Spine (Phila Pa 1976). 2002;27:515–22.

    Article  PubMed  Google Scholar 

  36. Saltychev M, Mattie R, McCormick Z, Laimi K. Psychometric properties of the neck disability index amongst patients with chronic neck pain using item response theory. Disabil Rehabil. 2018;40:2116–21.

    Article  PubMed  Google Scholar 

  37. Thorp J, Willson J. The Neck Disability Index is not correlated with some parameters of temporomandibular disorders: a cross-sectional study. J Oral Facial Pain Headache. 2019;33:39–46.

    Article  PubMed  Google Scholar 

  38. • Khan I, et al. Does Neck Disability Index correlate with 12-month satisfaction after elective surgery for cervical radiculopathy? Results from a National Spine Registry. Neurosurgery. 2020;86:736–41. Recent study to determine the association of baseline and 12-mo Neck Disability Index (NDI) with patient satisfaction after elective surgery for DCR.

    Article  PubMed  Google Scholar 

  39. Smeets R, Köke A, Lin CW, Ferreira M, Demoulin C. Measures of function in low back pain/disorders: Low Back Pain Rating Scale (LBPRS), Oswestry Disability Index (ODI), Progressive Isoinertial Lifting Evaluation (PILE), Quebec Back Pain Disability Scale (QBPDS), and Roland-Morris Disability Questionnaire (RDQ). Arthritis Care Res (Hoboken). 2011;63(Suppl 11).

  40. Brodke DS, et al. Oswestry Disability Index: a psychometric analysis with 1,610 patients. Spine J. 2017;17:321–7.

    Article  PubMed  Google Scholar 

  41. Maughan EF, Lewis JS. Outcome measures in chronic low back pain. Eur Spine J. 2010;19:1484–94.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Davidson M, Keating JL. A comparison of five low back disability questionnaires: reliability and responsiveness. Phys Ther. 2002;82:8–24.

    Article  PubMed  Google Scholar 

  43. Clark P, Lavielle P, Martinez H, et al. Learning from pain scales: patient perspective. J Rheumatol. 2003;30:1584–8.

    PubMed  Google Scholar 

  44. Gracely RH, McGrath P, Dubner R. Ratio scales of sensory and affective verbal pain descriptors. Pain (Amsterdam). 1978;5:5–18.

    Google Scholar 

  45. Herr KA, Spratt K, Mobily PR, Richardson G. Pain intensity assessment in older adults: use of experimental pain to compare psychometric properties and usability of selected pain scales with younger adults. Clin J Pain. 2004;20:207–19.

    Article  PubMed  Google Scholar 

  46. Hjermstad MJ, et al. Studies comparing Numerical Rating Scales, Verbal Rating Scales, and Visual Analogue Scales for assessment of pain intensity in adults: a systematic literature review. J Pain Symptom Manage. 2011;41:1073–93.

    Article  PubMed  Google Scholar 

  47. Lasheen W, Walsh D, Hauser K, Gutgsell T, Karafa MT. Symptom variability during repeated measurement among hospice patients with advanced cancer. Am J Hosp Palliat Care. 2009;26:368–75.

    Article  PubMed  Google Scholar 

  48. Loos MJA, Houterman S, Scheltinga MRM, Roumen RMH. Evaluating postherniorrhaphy groin pain: Visual Analogue or Verbal Rating Scale? Hernia. 2008;12:147–51.

    Article  CAS  PubMed  Google Scholar 

  49. Lund I, Lundeberg T, Sandberg L, et al. Lack of interchangeability between visual analogue and verbal rating pain scales: a cross sectional description of pain etiology groups. BMC Med Res Methodol. 2005;5:31.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pesonen A, Suojaranta-Ylinen R, Tarkkila P, Rosenberg PH. Applicability of tools to assess pain in elderly patients after cardiac surgery. Acta Anaesthesiol Scand. 2008;52:267–73.

    Article  CAS  PubMed  Google Scholar 

  51. Peters ML, Patijn J, Lame I. Pain assessment in younger and older pain patients: psychometric properties and patient preference of five commonly used measures of pain intensity. Pain Med. 2007;8:601–10.

    Article  PubMed  Google Scholar 

  52. Briggs M, Closs JS. A Descriptive Study of the Use of Visual Analogue Scales and Verbal Rating Scales for the Assessment of Postoperative Pain in Orthopedic Patients. J Pain Symptom Manage. 1999;18.

  53. Williamson A, Hoggart B. Pain: a review of three commonly used pain rating scales. J Clin Nurs. 2005;14:798–804.

    Article  PubMed  Google Scholar 

  54. Ware JE, Gandek B. Overview of the SF-36 Health Survey and the International Quality of Life Assessment (IQOLA) Project. J Clin Epidemiol. 1998;51:903–12.

    Article  PubMed  Google Scholar 

  55. Garratt AM, Ruta DA, Abdalla MI, Russell IT. SF 36 health survey questionnaire: II. Responsiveness to changes in health status in four common clinical conditions. Qual Health Care. 1994;3:186–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McHorney CA, Ware JE, Raczek AE. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care. 1993;31:247–63.

    Article  CAS  PubMed  Google Scholar 

  57. McHorney CA, Ware JE, Rachel Lu JF, Sherbourne CD. The MOS 36-item Short-Form Health Survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Med Care. 1994;32:40–66.

    Article  CAS  PubMed  Google Scholar 

  58. Ware JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30:473–83.

    Article  PubMed  Google Scholar 

  59. Jenkinson C, Coulter A, Wright L. Short form 36 (SF36) health survey questionnaire: normative data for adults of working age. BMJ. 1993;306:1437–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. MacKenzie CR, Charlson ME, DiGioia D, Kelley K. Can the sickness impact profile measure change? An example of scale assessment. J Chronic Dis. 1986;39:429–38.

    Article  CAS  PubMed  Google Scholar 

  61. Liang MH, Fossel AH, Larson MG. Comparisons of five health status instruments for orthopedic evaluation. Med Care. 1990;28:632–42.

    Article  CAS  PubMed  Google Scholar 

  62. Katz JN, Larson MG, Phillips CB, Fossel AH, Liang MH. Comparative measurement sensitivity of short and longer health status instruments. Med Care. 1992;30:917–25.

    Article  CAS  PubMed  Google Scholar 

  63. Guyatt G, Walter S, Norman G. Measuring change over time: assessing the usefulness of evaluative instruments. J Chronic Dis. 1987;40:171–8.

    Article  CAS  PubMed  Google Scholar 

  64. Deyo RA, Inui TS, Wood R, Clinical J, Program S. Toward clinical applications of health status measures: sensitivity of scales to clinically important changes. Health Serv Res. 1984;19:275.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Busija L, et al. Adult measures of general health and health-related quality of life. Arthritis Care Res (Hoboken). 2020;72(Suppl 10):522–64.

    Article  PubMed  Google Scholar 

  66. White MK, McCausland KL, Sanchorawala V, Guthrie SD, Bayliss MS. Psychometric validation of the SF-36 Health Survey in light chain amyloidosis: results from community-based and clinic-based samples. Patient Relat Outcome Meas. 2017;8:157–67.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hicks GE, Manal TJ. Psychometric properties of commonly used low back disability questionnaires: are they useful for older adults with low back pain? Pain Med. 2009;10:85–94.

    Article  PubMed  Google Scholar 

  68. Chiarotto A, et al. Roland-Morris Disability Questionnaire and Oswestry Disability Index: which has better measurement properties for measuring physical functioning in nonspecific low back pain? Systematic review and meta-analysis. Phys Ther. 2016;96:1620–37.

    Article  PubMed  Google Scholar 

  69. Riddle DL, Lee KT, Stratford PW. Use of SF-36 and SF-12 health status measures: a quantitative comparison for groups versus individual patients. Med Care. 2001;39:867–78.

    Article  CAS  PubMed  Google Scholar 

  70. Jakobsson U, Westergren A, Lindskov S, Hagell P. Construct validity of the SF-12 in three different samples. J Eval Clin Pract. 2012;18:560–6.

    Article  PubMed  Google Scholar 

  71. Lee PH, Wong FKY, Wang SL, Chow SKY. Substitution of SF-36 by SF-12 among Hong Kong Chinese Older Adults: Secondary Analysis of Randomized Controlled Trials. Int J Behav Med. 2016;23:635–44.

    Article  PubMed  Google Scholar 

  72. Ware JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care. 1996;34:220–33.

    Article  PubMed  Google Scholar 

  73. Lam ETP, Lam CLK, Fong DYT, Huang WW. Is the SF-12 version 2 Health Survey a valid and equivalent substitute for the SF-36 version 2 Health Survey for the Chinese? J Eval Clin Pract. 2013;19:200–8.

    Article  PubMed  Google Scholar 

  74. Failde I, Medina P, Ramirez C, Arana R. Construct and criterion validity of the SF-12 health questionnaire in patients with acute myocardial infarction and unstable angina. J Eval Clin Pract. 2010;16:569–73.

    Article  PubMed  Google Scholar 

  75. Tucker G, Adams R, Wilson D. Results from several population studies show that recommended scoring methods of the SF-36 and the SF-12 may lead to incorrect conclusions and subsequent health decisions. Qual Life Res. 2014;23:2195–203.

    Article  PubMed  Google Scholar 

  76. Østhus TBH, et al. Mortality and health-related quality of life in prevalent dialysis patients: comparison between 12-items and 36-items short-form health survey. Health Qual Life Outcomes. 2012;10:1–9.

    Article  Google Scholar 

  77. Lacson E, et al. A comparison of SF-36 and SF-12 composite scores and subsequent hospitalization and mortality risks in long-term dialysis patients. Clin J Am Soc Nephrol. 2010;5:252–60.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Dempster M, Donnelly M. A Comparative analysis of the SF-12 and the SF-36 among ischaemic heart disease patients. J Health Psychol. 2001;6:707–11.

    Article  CAS  PubMed  Google Scholar 

  79. Müller-Nordhorn J, Roll S, Willich SN. Comparison of the short form (SF)-12 health status instrument with the SF-36 in patients with coronary heart disease. Heart. 2004;90:523.

    Article  PubMed  PubMed Central  Google Scholar 

  80. 12-Item Short Form Survey (SF-12) | RAND. https://www.rand.org/health-care/surveys_tools/mos/12-item-short-form.html. Accessed 17 July 2023.

  81. Roland M, Fairbank J. The Roland-Morris Disability Questionnaire and the Oswestry Disability Questionnaire. Spine (Phila Pa 1976). 2000;25:3115–24.

    Article  CAS  PubMed  Google Scholar 

  82. Stevens ML, Lin CCW, Maher CG. The Roland Morris Disability Questionnaire. J Physiother. 2016;62:116.

    Article  PubMed  Google Scholar 

  83. Atlas SJ, et al. Long-term disability and return to work among patients who have a herniated lumbar disc: the effect of disability compensation. J Bone Joint Surg Am. 2000;82:4–15.

    Article  CAS  PubMed  Google Scholar 

  84. Yamato TP, Maher CG, Saragiotto BT, Catley MJ, McAuley JH. The Roland-Morris Disability Questionnaire: one or more dimensions? Eur Spine J. 2017;26:301–8.

    Article  PubMed  Google Scholar 

  85. Kopec JA, Esdaile JM. Functional disability scales for back pain. Spine (Phila Pa 1976). 1995;20:1943–9.

    Article  CAS  PubMed  Google Scholar 

  86. Macedo LG, et al. Responsiveness of the 24-, 18- and 11-item versions of the Roland Morris Disability Questionnaire. Eur Spine J. 2011;20:458.

    Article  PubMed  Google Scholar 

  87. Hiyama A, et al. Effect of depression and neuropathic pain using questionnaires on quality of life in patients with low back pain; cross-sectional retrospective study. Eur Spine J. 2016;25:2750–60.

    Article  PubMed  Google Scholar 

  88. Stratford PW, et al. Defining the minimum level of detectable change for the Roland-Morris Questionnaire. Phys Ther. 1996;76:359–65.

    Article  CAS  PubMed  Google Scholar 

  89. Bijur PE, Latimer CT, Gallagher EJ. Validation of a verbally administered numerical rating scale of acute pain for use in the emergency department. Acad Emerg Med. 2003;10:390–2.

    Article  PubMed  Google Scholar 

  90. Hawker GA, Mian S, Kendzerska T, French M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res (Hoboken). 2011;63(Suppl 11).

  91. von Baeyer CL. Numerical rating scale for self-report of pain intensity in children and adolescents: recent progress and further questions. Eur J Pain. 2009;13:1005–7.

    Article  Google Scholar 

  92. Castarlenas E, Jensen MP, Von Baeyer CL, Miró J. Psychometric properties of the Numerical Rating Scale to assess self-reported pain intensity in children and adolescents: a systematic review. Clin J Pain. 2017;33:376–83.

    Article  PubMed  Google Scholar 

  93. Taylor R. Interpretation of the correlation coefficient: a basic review. J Diagn Med Sonogr. 1990;6:35–9. https://doi.org/10.1177/875647939000600106.

    Article  MathSciNet  Google Scholar 

  94. Callahan LF, Brooks RH, Summey JA, Pincus T. Quantitative pain assessment for routine care of rheumatoid arthritis patients, using a pain scale based on activities of daily living and a visual analog pain scale. Arthritis Rheum. 1987;30:630–6.

    Article  CAS  PubMed  Google Scholar 

  95. Collins SL, Moore RA, McQuay HJ. The visual analogue pain intensity scale: what is moderate pain in millimetres? Pain. 1997;72:95–7.

    Article  CAS  PubMed  Google Scholar 

  96. Thiese MS, Ronna B, Ott U. P value interpretations and considerations. J Thorac Dis. 2016;8:E928–31.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Jacobson CJ, et al. Qualitative evaluation of pediatric pain behavior, quality, and intensity item candidates and the PROMIS pain domain framework in children with chronic pain. J Pain. 2015;16:1243–55.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Salo D, et al. Can patients accurately read a Visual Analog Pain Scale? Am J Emerg Med. 2003;21:515–9.

    Article  PubMed  Google Scholar 

  99. Revicki DA, et al. Development and psychometric analysis of the PROMIS pain behavior item bank. Pain. 2009;146:158–69.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Askew RL, Cook KF, Revicki DA, Cella D, Amtmann D. Evidence from diverse clinical populations supported clinical validity of PROMIS pain interference and pain behavior. J Clin Epidemiol. 2016;73:103–11.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kean J, et al. Comparative responsiveness of the PROMIS Pain Interference Short Forms, Brief Pain Inventory, PEG, and SF-36 Bodily Pain Subscale. Med Care. 2016;54:414–21.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kendall R, et al. The relationship of PROMIS Pain Interference and Physical Function Scales. Pain Med: Off J Am Acad Pain Med. 2018;19:1720.

    Article  Google Scholar 

  103. Bernstein DN, et al. PROMIS Pain Interference is superior vs Numeric Pain Rating Scale for pain assessment in foot and ankle patients. Foot Ankle Int. 2019;40:139–44.

    Article  PubMed  Google Scholar 

  104. Chen CX, et al. Estimating minimally important differences for the PROMIS pain interference scales: results from 3 randomized clinical trials. Pain. 2018;159:775–82.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CLR, AP, MD, ER, RR, DUM, and EZ wrote the initial manuscript. All authors provided revisions to the manuscript. All authors reviewed the final manuscript.

Corresponding author

Correspondence to Jamal Hasoon.

Ethics declarations

Ethical Approval

Not applicable as this article does not contain any studies with human or animal subjects.

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, C.L., Phung, A., Dominguez, M. et al. Pain Scales: What Are They and What Do They Mean. Curr Pain Headache Rep 28, 11–25 (2024). https://doi.org/10.1007/s11916-023-01195-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-023-01195-2

Keywords

Navigation