Skip to main content

Advertisement

Log in

Recent Advances in Peripheral Opioid Receptor Therapeutics

  • Alternative Treatments for Pain Medicine (M Jones, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Although opioids are excellent analgesics, they are associated with severe short- and long-term side effects that are especially concerning for the treatment of chronic pain. Peripherally acting opioid receptor agonists promise to mitigate the more serious centrally mediated side effects of opioids, and the goal of this paper is to identify and elaborate on recent advances in these peripheral opioid receptor therapeutics.

Recent Findings

Peripheral opioid receptor agonists are effective analgesics that at the same time circumvent the problem of centrally mediated opioid side effects by (1) preferentially targeting peripheral opioid receptors that are often the source of the pain and (2) their markedly diminished permeability or activity across the blood-brain barrier. Recent novel bottom-up approaches have been notable for the design of therapeutics that are either active only at inflamed tissue, as in the case of fentanyl-derived pH-sensitive opioid ligands, or too bulky or hydrophilic to cross the blood-brain barrier, as in the case of morphine covalently bound to hyperbranched polyglycerols.

Summary

Recent innovations in peripheral opioid receptor therapeutics of pH-sensitive opioid ligands and limiting opioid permeability across the blood-brain barrier have had promising results in animal models. While this is grounds for optimism that some of these therapeutics will be efficacious in human subjects at a future date, each drug must undergo individualized testing for specific chronic pain syndromes to establish not only the nuances of each drug’s therapeutic effect but also a comprehensive safety profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Volkow N, Benveniste H, McLellan AT. Use and misuse of opioids in chronic pain. Annu Rev Med. 2018;69:451–65.

    Article  CAS  PubMed  Google Scholar 

  2. Volkow ND, Thomas McLellan A. Opioid abuse in chronic pain-misconceptions and mitigation strategies. N Engl J Med. 2016;374(13):1253–63.

    Article  CAS  PubMed  Google Scholar 

  3. Schuchat A, Houry D, Guy GP. New data on opioid use and prescribing in the United States. JAMA - J Am Med Assoc. 2017;318(5):425–6.

    Article  Google Scholar 

  4. Substance Abuse and Mental Health Services Administration (SAMHSA). Key substance use and mental health indicators in the United States: results from the 2018 National Survey on Drug Use and Health. HHS Publ No PEP19-5068, NSDUH Ser H-54. 2019;170:51–8.

  5. •• Machelska H, Celik M. Advances in achieving opioid analgesia without side effects. Front Pharmacol. 2018;9(NOV):1–22. This review article provides an overview of emerging opioid-based strategies such as peripheral opioid receptor agonists and other approaches including nanocarriers, gene therapy, and enhancing endogenous opioid activity.

  6. Ehrlich AT, Kieffer BL, Darcq E. Current strategies toward safer mu opioid receptor drugs for pain management. Expert Opin Ther Targets. 2019;23(4):315–26.

    Article  PubMed  PubMed Central  Google Scholar 

  7. •• Martínez V, Abalo R. Peripherally acting opioid analgesics and peripherally-induced analgesia. Behav Pharmacol. 2020;136–58. One of the most recent review articles on peripheral opioid receptor agonists with emphasis on hydrophilic/amphiphilic and massive molecules, pH-sensitive opioid agonists, as well as nanocarriers. Of note, Figure 3 from Martínez & Abolo on modifications of fentanyl leading to new opioid analgesics was the motivation for our Figure 1 on fentanyl derived pH-sensitive opioid ligands.

  8. • Stein C. New concepts in opioid analgesia. Vol. 27, Expert Opinion on Investigational Drugs. Taylor and Francis Ltd; 2018. p. 765–75. This article reviews current strategies aimed at reducing opioid-related side effects including augmenting endogenous opioid mechanisms, biased ligands, and selective activation of peripheral opioid receptors.

  9. Vadivelu N, Mitra S, Hines RL. Peripheral opioid receptor agonists for analgesia: a comprehensive review. J Opioid Manag. 2011;7(1):55–68.

    Article  PubMed  Google Scholar 

  10. Grim TW, Acevedo-Canabal A, Bohn LM. Toward directing opioid receptor signaling to refine opioid therapeutics. Biol Psychiatry. 2020;87(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  11. Stein C. Opioid treatment of chronic nonmalignant pain. Anesth Analg. 1997;84:912–4.

    Article  CAS  PubMed  Google Scholar 

  12. Stein C, Machelska H. Modulation of peripheral sensory neurons by the immune system: implications for pain therapy. Pharmacol Rev. 2011;63(4):860–81.

    Article  CAS  PubMed  Google Scholar 

  13. Stein C. Opioid receptors. Annu Rev Med. 2016;67:433–51.

    Article  CAS  PubMed  Google Scholar 

  14. Jeske NA. Dynamic opioid receptor regulation in the periphery. Mol Pharmacol. 2019;95(5):463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Celik M, Labuz D, Henning K, Busch-Dienstfertig M, Gaveriaux-Ruff C, Kieffer BL, et al. Leukocyte opioid receptors mediate analgesia via Ca2+-regulated release of opioid peptides. Brain Behav Immun. 2016;57:227–42.

    Article  CAS  PubMed  Google Scholar 

  16. Antonijevic I, Mousa SA, Schäfer M, Stein C. Perineurial defect and peripheral opioid analgesia in inflammation. J Neurosci. 1995;15(1 I):165–72.

  17. Denk F, Bennett DL, McMahon SB. Nerve growth factor and pain mechanisms. Annu Rev Neurosci. 2017;40:307–25.

    Article  CAS  PubMed  Google Scholar 

  18. Hassan AHS, Ableitner A, Stein C, Herz A. Inflammation of the rat paw enhances axonal transport of opioid receptors in the sciatic nerve and increases their density in the inflamed tissue. Neuroscience. 1993;55(1):185–95.

    Article  CAS  PubMed  Google Scholar 

  19. Stein C, Millan MJ, Shippenberg TS, Peter K, Herz A. Peripheral opioid receptors mediating antinociception in inflammation. Evidence for involvement of mu, delta and kappa receptors. J Pharmacol Exp Ther. 1989;248(3):1269–75.

    CAS  PubMed  Google Scholar 

  20. Stein C, Comisel K, Haimerl E, Yassouridis A, Lehrberger K, Herz A, et al. Analgesic effect of intraarticular morphine after arthroscopic knee surgery. N Engl J Med. 1991;325:1123–6.

    Article  CAS  PubMed  Google Scholar 

  21. Zöllner C, Shaqura MA, Bopaiah CP, Mousa S, Stein C, Schäfer M. Painful inflammation-induced increase in μ-opioid receptor binding and G protein coupling in primary afferent neurons. Mol Pharmacol. 2003;62(2):202–10.

    Article  Google Scholar 

  22. Stein C, Pflüger M, Yassouridis A, Hoelzl J, Lehrberger K, Welte C, et al. No tolerance to peripheral morphine analgesia in presence of opioid expression in inflamed synovia. J Clin Invest. 1996;98(3):793–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zöllner C, Mousa SA, Fischer O, Rittner HL, Shaqura M, Brack A, et al. Chronic morphine use does not induce peripheral tolerance in a rat model of inflammatory pain. J Clin Invest. 2008;118(3):1065–73.

    PubMed  PubMed Central  Google Scholar 

  24. Smith SM, Dart RC, Katz NP, Paillard F, Adams EH, Comer SD, et al. Classification and definition of misuse, abuse, and related events in clinical trials: ACTTION systematic review and recommendations. Pain. 2013;154(11):2287–96.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stein C, Schäfer M, Machelska H. Attacking pain at its source: new perspectives on opioids. Nat Med. 2003;9(8):1003–8.

    Article  CAS  PubMed  Google Scholar 

  26. Sawynok J, Liu J. Contributions of peripheral, spinal, and supraspinal actions to analgesia. Eur J Pharmacol. 2014;734(1):114–21.

    Article  CAS  PubMed  Google Scholar 

  27. Imam MZ, Kuo A, Ghassabian S, Smith MT. Progress in understanding mechanisms of opioid-induced gastrointestinal adverse effects and respiratory depression. Neuropharmacology. 2018;131:238–55.

    Article  CAS  PubMed  Google Scholar 

  28. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tabas I, Glass CK. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science (80- ). 2013;339(January):166–72.

  30. Dowell D, Haegerich TM, Chou R. CDC guideline for prescribing opioids for chronic pain-United States, 2016. JAMA - J Am Med Assoc. 2016;315(15):1624–45.

    Article  CAS  Google Scholar 

  31. Jagla C, Martus P, Stein C. Peripheral opioid receptor blockade increases postoperative morphine demands - a randomized, double-blind, placebo-controlled trial. Pain. 2014;155(10):2056–62.

    Article  CAS  PubMed  Google Scholar 

  32. Gaveriaux-Ruff C. Opiate-induced analgesia: contributions from mu, delta and kappa opioid receptors mouse mutants. Curr Pharm Des. 2013;19(42):7373–81.

    Article  CAS  PubMed  Google Scholar 

  33. Labuz D, Mousa SA, Schäfer M, Stein C, Machelska H. Relative contribution of peripheral versus central opioid receptors to antinociception. Brain Res. 2007;1160(1):30–8.

    Article  CAS  PubMed  Google Scholar 

  34. Shinohara A, Andoh T, Saiki I, Kuraishi Y. Analgesic effects of systemic fentanyl on cancer pain are mediated by not only central but also peripheral opioid receptors in mice. Eur J Pharmacol. 2018;833(December 2017):275–82.

    Article  CAS  PubMed  Google Scholar 

  35. Inui S. Nalfurafine hydrochloride for the treatment of pruritus. Expert Opin Pharmacother. 2012;13(10):1507–13.

    Article  CAS  PubMed  Google Scholar 

  36. Guan Y, Johanek LM, Hartke TV, Shim B, Tao YX, Ringkamp M, et al. Peripherally acting mu-opioid receptor agonist attenuates neuropathic pain in rats after L5 spinal nerve injury. Pain. 2008;138(2):318–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hua S, Cabot PJ. Targeted nanoparticles that mimic immune cells in pain control inducing analgesic and anti-inflammatory actions: a potential novel treatment of acute and chronic pain conditions. Pain Physician. 2013;16(3):1–18.

    Google Scholar 

  38. Chung C, Carteret AF, McKelvy AD, Ringkamp M, Yang F, Hartke TV, et al. Analgesic properties of loperamide differ following systemic and local administration to rats after spinal nerve injury. Eur J Pain. 2012;16(7):1021–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nozaki-Taguchi N, Yaksh TL. Characterization of the antihyperalgesic action of a novel peripheral mu-opioid receptor agonist-loperamide. Anesthesiology. 1999;90(1):225–34.

    Article  CAS  PubMed  Google Scholar 

  40. Nozaki-Taguchi N, Shutoh M, Shimoyama N. Potential utility of peripherally applied loperamide in oral chronic graft-versus-host disease related pain. Jpn J Clin Oncol. 2008;38(12):857–60.

    Article  PubMed  Google Scholar 

  41. Hua S, Dias TH, Pepperall DG, Yang Y. Topical loperamide-encapsulated liposomal gel increases the severity of inflammation and accelerates disease progression in the adjuvant-induced model of experimental rheumatoid arthritis. Front Pharmacol. 2017;8(AUG):1–19.

  42. DeHaven-Hudkins DL, Cortes Burgos L, Cassel JA, Daubert JD, DeHaven RN, Mansson E, et al. Loperamide (ADL 2-1294), an opioid antihyperalgesic agent with peripheral selectivity. J Pharmacol Exp Ther. 1999;289(1):494–502.

    CAS  PubMed  Google Scholar 

  43. Machelska H, Pflüger M, Weber W, Piranvisseh-Völk M, Daubert JD, DeHaven R, et al. Peripheral effects of the κ-opioid agonist EMD 61753 on pain and inflammation in rats and humans. J Pharmacol Exp Ther. 1999;290(1):354–61.

    CAS  PubMed  Google Scholar 

  44. Camilleri M. Novel pharmacology: asimadoline, a κ-opioid agonist, and visceral sensation. Neurogastroenterol Motil. 2008;20(9):971–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Walker J, Catheline G, Guilbaud G, Kayser V. Lack of cross-tolerance between the antinociceptive effects of systemic morphine and asimadoline, a peripherally-selective κ-opioid agonist, in CCI- neuropathic rats. Pain. 1999;83(3):509–16.

    Article  CAS  PubMed  Google Scholar 

  46. Delgado-Aros S, Chial HJ, Cremonini F, Ferber I, McKinzie S, Burton DD, et al. Effects of asimadoline, a κ-opioid agonist, on satiation and postprandial symptoms in health. Aliment Pharmacol Ther. 2003;18(5):507–14.

    Article  CAS  PubMed  Google Scholar 

  47. Delvaux M, Beck A, Jacob J, Bouzamondo H, Weber FT, Frexinos J. Effect of asimadoline, a κ opioid agonist, on pain induced by colonic distension in patients with irritable bowel syndrome. Aliment Pharmacol Ther. 2004;20(2):237–46.

    Article  CAS  PubMed  Google Scholar 

  48. Mangel AW, Bornstein JD, Hamm LR, Buda J, Wang J, Irish W, et al. Clinical trial: asimadoline in the treatment of patients with irritable bowel syndrome. Aliment Pharmacol Ther. 2008;28(2):239–49.

    Article  CAS  PubMed  Google Scholar 

  49. Mangel AW, Hicks GA. Asimadoline and its potential for the treatment of diarrhea-predominant irritable bowel syndrome: a review. Clin Exp Gastroenterol. 2012;5(1):1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Foxx-Orenstein AE. New and emerging therapies for the treatment of irritable bowel syndrome: an update for gastroenterologists. Ther Adv Gastroenterol. 2016;9(3):354–75.

    Article  CAS  Google Scholar 

  51. Abels C, Soeberdt M. Can we teach old drugs new tricks?—Repurposing of neuropharmacological drugs for inflammatory skin diseases. Exp Dermatol. 2019;28(9):1002–9.

    Article  PubMed  Google Scholar 

  52. Jones MR, Kaye AD, Kaye AJ, Urman RD. The emerging therapeutic roles of κ-opioid agonists. J Opioid Manag. 2016;12(2).

  53. Albert-Vartanian A, Boyd MR, Hall AL, Morgado SJ, Nguyen E, Nguyen VPH, et al. Will peripherally restricted kappa-opioid receptor agonists (pKORAs) relieve pain with less opioid adverse effects and abuse potential? J Clin Pharm Ther. 2016;41(4):371–82.

    Article  CAS  PubMed  Google Scholar 

  54. Gurunathan S, Kang MH, Qasim M, Kim JH. Nanoparticle-mediated combination therapy: two-in-one approach for cancer. Int J Mol Sci. 2018;19(10):1–37.

    Article  Google Scholar 

  55. Chakravarthy KV, Boehm FJ, Christo PJ. Nanotechnology: a promising new paradigm for the control of pain. Pain Med. 2018;19(2):232–43.

    Article  PubMed  Google Scholar 

  56. Hua S, Wu SY. The use of lipid-based nanocarriers for targeted pain therapies. Front Pharmacol. 2013;4 NOV(November):1–7.

  57. Viscusi ER, Martin G, Hartrick CT, Singla N, Manvelian G. Forty-eight hours of postoperative pain relief after total hip arthroplasty with a novel, extended-release epidural morphine formulation. Anesthesiology. 2005;102(5):1014–22.

    Article  CAS  PubMed  Google Scholar 

  58. Rose JS, Neal JM, Kopacz DJ. Extended-duration analgesia: update on microspheres and liposomes. Reg Anesth Pain Med. 2005;30:275–85.

    CAS  PubMed  Google Scholar 

  59. Ward BB, Huang B, Desai A, Cheng X-M, Vartanian M, Zong H, et al. Sustained analgesia achieved through esterase-activated morphine prodrugs complexed with PAMAM dendrimer. Pharm Res. 2013;30:247–56.

    Article  CAS  PubMed  Google Scholar 

  60. •• González-Rodríguez S, Quadir MA, Gupta S, Walker KA, Zhang X, Spahn V, et al. Polyglycerol-opioid conjugate produces analgesia devoid of side effects. Elife. 2017;6:1–24 This paper first reported on covalently attaching morphine to hyperbranched polyglycerol (PG-M) to selectively release morphine in injured tissue that was efficacious in a rat model.

    Article  Google Scholar 

  61. Kainthan RK, Janzen J, Levin E, Devine DV, Brooks DE. Biocompatibility testing of branched and linear polyglycidol. Biomacromolecules. 2006;7(3):703–9.

    Article  CAS  PubMed  Google Scholar 

  62. • Miyazaki T, Choi IY, Rubas W, Anand NK, Ali C, Evans J, et al. NKTR-181: A novel Mu-opioid analgesic with inherently low abuse potential. J Pharmacol Exp Ther. 2017;363(1):104–13 This paper first reported on the selective mu-agonist NKTR-181 and its reduced rate of entry across the BBB leading to a reduced abuse potential.

    Article  CAS  PubMed  Google Scholar 

  63. Webster L, Henningfield J, Buchhalter AR, Siddhanti S, Lu L, Odinecs A, et al. Human abuse potential of the new opioid analgesic molecule NKTR-181 compared with oxycodone. Pain Med. 2018;19(2):307–18.

    Article  PubMed  Google Scholar 

  64. Spetea M, Rief SB, Haddou T, Ben, Fink M, Kristeva E, et al. Synthesis, biological, and structural explorations of new zwitterionic derivatives of 14-o-methyloxymorphone, as potent μ/δ opioid agonists and peripherally selective antinociceptives. J Med Chem. 2019;62(2):641–53.

    Article  CAS  PubMed  Google Scholar 

  65. Del Vecchio G, Spahn V, Stein C. Novel opioid analgesics and side effects. ACS Chem Neurosci. 2017;8(8):1638–40.

    Article  PubMed  Google Scholar 

  66. Dosen-Micovic L, Ivanovic M, Micovic V. Steric interactions and the activity of fentanyl analogs at the μ-opioid receptor. Bioorg Med Chem. 2006;14(9):2887–95.

    Article  CAS  PubMed  Google Scholar 

  67. •• Spahn V, Del Vecchio G, Labuz D, Rodriguez-Gaztelumendi A, Massaly N, Temp J, et al. A nontoxic pain killer designed by modeling of pathological receptor conformations. Science (80- ). 2017;355(6328):966–9 This paper reported the first fentanyl derived compound NFEPP with its lower acid dissociation constant selectively activating peripheral mu-opioid receptors. Results showed injury-restricted analgesia without typical side effects.

    Article  CAS  Google Scholar 

  68. Rodriguez-Gaztelumendi A, Spahn V, Labuz D, MacHelska H, Stein C. Analgesic effects of a novel pH-dependent u-opioid receptor agonist in models of neuropathic and abdominal pain. Pain. 2018;159(11):2277–84.

  69. • Spahn V, Del Vecchio G, Rodriguez-Gaztelumendi A, Temp J, Labuz D, Kloner M, et al. Opioid receptor signaling, analgesic and side effects induced by a computationally designed pH-dependent agonist. Sci Rep. 2018;8(1):1–13 A continuation of the recent development of fentanyl derived pH-sensitive opioid ligands after NFEPP with FF3 in this paper that although produced injury-restricted analgesia in a rat model, induced central side effects at higher doses.

    Article  Google Scholar 

  70. Del Vecchio G, Labuz D, Temp J, Seitz V, Kloner M, Negrete R, et al. pKa of opioid ligands as a discriminating factor for side effects. Sci Rep. 2019;9(1):2–10.

    Google Scholar 

  71. • Rosas R, Huang XP, Roth BL, Dockendorff C. β-Fluorofentanyls are pH-sensitive Mu opioid receptor agonists. ACS Med Chem Lett. 2019;10(9):1353–6 The bis-fluorinated RR-49 is the most recent fentanyl derived pH-sensitive opioid ligand that is a promising new candidate with an estimated pKa of 6.60 but remains to be tested in a pain model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghav Seth.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Alternative Treatments for Pain Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seth, R., Kuppalli, S.S., Nadav, D. et al. Recent Advances in Peripheral Opioid Receptor Therapeutics. Curr Pain Headache Rep 25, 46 (2021). https://doi.org/10.1007/s11916-021-00951-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11916-021-00951-6

Keywords

Navigation