Spinal Cord Stimulation, MILD Procedure, and Regenerative Medicine, Novel Interventional Nonopioid Therapies in Chronic Pain

  • Ken P. EhrhardtJr
  • Susan M. Mothersele
  • Andrew J. Brunk
  • Jeremy B. Green
  • Mark R. Jones
  • Craig B. Billeaud
  • Alan David Kaye
Other Pain (A Kaye and N Vadivelu, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Other Pain

Abstract

Purpose of Review

Chronic pain is a highly prevalent condition affecting millions of individuals.

Recent Findings

In recent years, newer treatments have emerged that are changing the way clinicians treat pain pathogenesis, including novel nonopioid strategies. In this regard, spinal cord stimulation, the MILD procedure, and regenerative medicine have shown promise. This review summarizes recent literature on these three emerging treatment strategies.

Summary

The results of this review suggest that under certain conditions, spinal cord stimulation, the MILD procedure, and regenerative medicine can be effective treatment modalities.

Keywords

Spinal cord stimulation MILD procedure Regenerative medicine Pain Ligamentum flavum hypertrophy Lumbar stenosis 

Notes

Compliance with Ethical Standards

Conflict of Interest

Ken P. Ehrhardt Jr., Susan M. Mothersele, Andrew J. Brunk, Jeremy B. Green, Mark R. Jones, Craig B. Billeaud, and Alan David Kaye declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Kapural L. Spinal cord stimulation for intractable chronic pain. Curr Pain Headache Rep. 2014;18(4):406.CrossRefPubMedGoogle Scholar
  2. 2.
    Xu J, Liu A, Cheng J. New advancements in spinal cord stimulation for chronic pain management. Curr Opin Anaesthesiol. 2017;30(6):710–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang TC, Janik JJ, Grill WM. Modeling effects of spinal cord stimulation on wide-dynamic range dorsal horn neurons: influence of stimulation frequency and GABAergic inhibition. J Neurophysiol. 2014;112(3):552–67.CrossRefPubMedGoogle Scholar
  4. 4.
    Kapural L, Peterson E, Provenzano DA, Staats P. Clinical evidence for spinal cord stimulation for failed back surgery syndrome (FBSS): systematic review. Spine (Phila Pa 1976). 2017 Jul 15;42(Suppl 14):S61–6.CrossRefGoogle Scholar
  5. 5.
    Kumar K, Buchser E, Linderoth B, Meglio M, Van Buyten JP. Avoiding complications from spinal cord stimulation: practical recommendations from an international panel of experts. Neuromodulation. 2007;10(1):24–33.CrossRefPubMedGoogle Scholar
  6. 6.
    Rudiger J, Thomson S. Infection rate of spinal cord stimulators after a screening trial period. A 53-month third party follow-up. Neuromodulation. 2011;14(2):136–41.CrossRefPubMedGoogle Scholar
  7. 7.
    Smith CC, Lin JL, Shokat M, Dosanjh SS, Casthely D. A report of paraparesis following spinal cord stimulator trial, implantation and revision. Pain Physician. 2010;13(4):357–63.PubMedGoogle Scholar
  8. 8.
    Kalichman L, Cole R, Kim DH, Li L, Suri P, Guermazi A, et al. Spinal stenosis prevalence and association with symptoms: the Framingham study. Spine J. 2009;9(7):545–50.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    •• Deer TR, Kapural L. New image-guided ultra-minimally invasive lumbar decompression method: the mild procedure. Pain Physician. 2010;13(1):35–41. excellent description of the mild procedure. PubMedGoogle Scholar
  10. 10.
    Schomer DF, Solsberg D, Wong W, Chopko BW. Mild® lumbar decompression for the treatment of lumbar spinal stenosis. Neuroradiol J. 2011;24:620–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Basu S. Mild procedure single-site prospective IRB study. Clin J Pain. 2012;28:254–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Mekhail N, Vallejo R, Coleman MH, Benyamin RM. Long-term results of percutaneous lumbar decompression mild for spinal stenosis. Pain Pract. 2012;12:184–93.CrossRefPubMedGoogle Scholar
  13. 13.
    Chopko BW. Long-term results of percutaneous lumbar decompression for LSS: two-year outcomes. Clin J Pain. 2013;29(11):939–43.CrossRefPubMedGoogle Scholar
  14. 14.
    Kreiner DS, MacVicar J, Duszynski B, Nampiaparampil DE. The mild procedure: a systematic review of the current literature. Pain Med. 2014;15:196–205.CrossRefPubMedGoogle Scholar
  15. 15.
    Staats PS, Benyamin RM, MiDAS ENCORE Investigators. MiDAS ENCORE: randomized controlled clinical trial report of 6-month results. Pain Physician. 2016;19(2):25–38.PubMedGoogle Scholar
  16. 16.
    Benyamin RM, Staats PS, MiDAS Encore I. MILD is an effective treatment for lumbar spinal stenosis with neurogenic claudication: MiDAS ENCORE randomized controlled trial. Pain Physician. 2016;19:229–42.PubMedGoogle Scholar
  17. 17.
    Giannadakis C, Hammersbøen LE, Feyling C, Solheim O, Jakola AS, Nerland US, et al. Microsurgical decompression for central lumbar spinal stenosis: a single-center observational study. Acta Neurochir. 2015 Jul;157(7):1165–71.  https://doi.org/10.1007/s00701-015-2450-4.CrossRefPubMedGoogle Scholar
  18. 18.
    Arai Y, Hirai T, Yoshii T, Sakai K, Kato T, Enomoto M, et al. A prospective comparative study of 2 minimally invasive decompression procedures for lumbar spinal canal stenosis: unilateral laminotomy for bilateral decompression (ULBD) versus muscle-preserving interlaminar decompression (MILD). Spine (Phila Pa 1976). 2014;39(4):332–40.  https://doi.org/10.1097/BRS.0000000000000136.CrossRefGoogle Scholar
  19. 19.
    Tonomura H, Hatta Y, Mikami Y, Ikeda T, Harada T, Nagae M, et al. Magnetic resonance imaging evaluation of the effects of surgical invasiveness on paravertebral muscles after muscle-preserving interlaminar decompression (MILD). Clin Spine Surg. 2017;30(2):E76–82.  https://doi.org/10.1097/BSD.0b013e31829eb9de.CrossRefPubMedGoogle Scholar
  20. 20.
    Udeh BL, Costandi S, Dalton JE, Ghosh R, Yousef H, Mekhail N. The 2-year cost-effectiveness of 3 options to treat lumbar spinal stenosis patients. Pain Pract. 2015;15(2):107–16.  https://doi.org/10.1111/papr.12160.CrossRefPubMedGoogle Scholar
  21. 21.
    •• Siniscalco D, Rossi F, Maione S. Stem cell therapy for neuropathic pain treatment. J Stem Cells Regen Med. 2007;3(1):2–11. excellent description of the stem cell therapy for neuropathic pain treatment. PubMedPubMedCentralGoogle Scholar
  22. 22.
    Franchi S, et al. Adult stem cell as new advanced therapy for experimental neuropathic pain treatment. BioMed Res Int. 2014;2014:470983.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Institute of Medicine (US) Committee on Advancing Pain Research, Care, and Education. Relieving pain in America: a blueprint for transforming prevention, care, education, and research. Washington (DC): National Academies Press (US); 2011. 2, pain as a public health challengeGoogle Scholar
  24. 24.
    American Academy of Pain Medicine (AAPM). Significant blocking of opioid tolerance with mesenchymal stem cell transplant. ScienceDaily. ScienceDaily, 24 March 2015. www.sciencedaily.com/releases/2015/03/150324153349.htm.
  25. 25.
    Klass M, Gavrikov V, Drury D, Stewart B, Hunter S, Denson DD, et al. Intravenous mononuclear marrow cells reverse neuropathic pain from experimental mononeuropathy. Anesth Analg. 2007;104(4):944–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Schultz SS. Adult stem cell application in spinal cord injury. Curr Drug Targets. 2005;6:63–73.CrossRefPubMedGoogle Scholar
  27. 27.
    Klein S, Svendsen CN. Stem cells in the injured spinal cord: reducing the pain and increasing the gain. Nat Neurosci. 2005;8:259–60.CrossRefPubMedGoogle Scholar
  28. 28.
    Hains BC, Johnson KM, Eaton MJ, Willis WD, Hulsebosch CE. Serotonergic neural precursor cell grafts attenuate bilateral hyperexcitability of dorsal horn neurons after spinal hemisection in rat. Neuroscience. 2003;116:1097–110.CrossRefPubMedGoogle Scholar
  29. 29.
    Bonfield TL, Caplan AI. Adult mesenchymal stem cells: an innovative therapeutic for lung diseases. Discov Med. 2010;9(47):337–45.PubMedGoogle Scholar
  30. 30.
    •• Hsu WK, Mishra A, Rodeo SR, et al. Platelet-rich plasma in orthopaedic applications: evidence-based recommendations for treatment. J Am Acad Orthop Surg. 2013;21:739–48. excellent evidence-based recommendations for platelet-rich plasma in orthopaedic applications. PubMedGoogle Scholar
  31. 31.
    Toumi H, Best TM. The inflammatory response: friend or enemy for muscle injury? Br J Sports Med. 2003;37:284–6.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Blair P, Flaumenhaft R. Platelet a-granules: basic biology and clinical correlates. Blood Rev. 2009;23:177–89.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Leslie M. Beyond clotting: the power of platelets. Science. 2010;328:562–4.CrossRefPubMedGoogle Scholar
  34. 34.
    Arnoczky SP, Delos D, Rodeo SA. What is platelet-rich plasma? Oper Tech Sports Med. 2011;19:142–8.CrossRefGoogle Scholar
  35. 35.
    Dohan Ehrenfest DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leukocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009;27:158–67.CrossRefPubMedGoogle Scholar
  36. 36.
    Mazzocca AD, McCarthy MB, Chowaniec DM, et al. Platelet-rich plasma differs according to preparation method and human variability. J Bone Joint Surg Am. 2012;94:308–16.CrossRefPubMedGoogle Scholar
  37. 37.
    Marx RE. Platelet-rich plasma (PRP). What is PRP and what is not PRP? Implant Dent. 2001;10:225–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Foster TE, Puskas BL, Mandelbaum BR, Gerhardt MB, Rodeo SA. Platelet-rich plasma: from basic science to clinical applications. Am J Sports Med. 2009;37:2259–72.CrossRefPubMedGoogle Scholar
  39. 39.
    Jeong GK, Sandhu HS, Farmer J. Bone morphogenic proteins: applications in spinal surgery. HSS J. 2005;1:110–7.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Alsousou J, Thompson M, Hulley P, et al. The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: a review of the literature. J Bone Joint Surg Br. 2009;91:987–96.CrossRefPubMedGoogle Scholar
  41. 41.
    Lee KS. Platelet-rich plasma injection. Semin Musculoskelet Radiol. 2013;17:91–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Cerza F, Carni S, Carcangiu A, et al. Comparison between hyaluronic acid and platelet-rich plasma, intra-articular infiltration in the treatment of gonarthrosis. Am J Sports Med. 2012;40:2822–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Patel S, Dhillon MS, Aggarwal S, Marwaha N, Jain A. Treatment with platelet-rich plasma is more effective than placebo for knee osteoarthritis: a prospective, double- blind, randomized trial. Am J Sports Med. 2013;41:356–64.CrossRefPubMedGoogle Scholar
  44. 44.
    Filardo G, Kon E, Di Martino A, et al. Platelet-rich plasma vs hyaluronic acid to treat knee degenerative pathology: study design and preliminary results of a randomized controlled trial. BMC Musculoskelet Disord. 2012;13:229.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kanchanatawan W, Arirachakaran A, Chaijenkij K, Prasathaporn N, Boonard M, Piyapittayanun P, et al. Short-term outcomes of platelet-rich plasma injection for treatment of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc: Off J ESSKA. 2016;24(5):1665–77.CrossRefGoogle Scholar
  46. 46.
    Peerbooms JC, Sluimer J, Bruijn DJ, Gosens T. Positive effect of an autologous platelet concentrate in lateral epicondylitis in a double-blind randomized controlled trial: platelet-rich plasma versus corticosteroid injection with a 1- year follow-up. Am J Sports Med. 2010;38:255–62.CrossRefPubMedGoogle Scholar
  47. 47.
    Filardo G, Kon E, Della Villa S, Vincentelli F, Fornasari PM, Marcacci M. Use of platelet-rich plasma for the treatment of refractory jumper’s knee. Int Orthop. 2010;34:909–15.CrossRefPubMedGoogle Scholar
  48. 48.
    Gosens T, Den Oudsten BL, Fievez E, ‘t v, Spijker P, Fievez A. Pain and activity levels before and after platelet-rich plasma injection treatment of patellar tendinopathy: a prospective cohort study and the influence of previous treatments. Int Orthop. 2012;36:1941–6.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    de Vos RJ, Weir A, van Schie HTM, Bierma-Zeinstra SMA, Verhaar JAN, Weinans H, et al. Platelet-rich plasma injection for chronic Achilles tendinopathy a randomized controlled trial. JAMA. 2010;303(2):144–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Emel E, Ergun SS, Kotan D, et al. Effects of insulin-like growth factor-I and platelet-rich plasma on sciatic nerve crush injury in a rat model. J Neurosurg. 2011;114:522–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Elgazzar RF, Mutabagani MA, Abdelaal SE, Sadakah AA. Platelet-rich plasma may enhance peripheral nerve regeneration after cyanoacrylate reanasto- mosis: a controlled blind study on rats. Int J Oral Maxillofac Surg. 2008;37:748–55.CrossRefPubMedGoogle Scholar
  52. 52.
    Yu W, Wang J, Yin J. Platelet-rich plasma: a promising product for treatment of peripheral nerve regeneration after nerve injury. Int J Neurosci. 2011;121:176–80.CrossRefPubMedGoogle Scholar
  53. 53.
    Cho HH, Jang S, Lee SC, Jeong HS, Park JS, Han JY, et al. Effect of neural-induced mesenchymal stem cells and platelet-rich plasma on facial nerve regeneration in an acute nerve injury model. Laryngoscope. 2010;120:907–13.CrossRefPubMedGoogle Scholar
  54. 54.
    Kuffler DP. Platelet-rich plasma and the elimination of neuropathic pain. Mol Neurobiol. 2013;48:315–32.CrossRefPubMedGoogle Scholar
  55. 55.
    Li P, Zhang R, Zhou Q. Efficacy of platelet-rich plasma in retarding intervertebral disc degeneration: a meta-analysis of animal studies. BioMed Res Int. 2017;2017:7919201, 10 pages.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Chen WH, Lo WC, Lee JJ, Su CH, Lin CT, Liu HY, et al. Tissue-engineered intervertebral disc and chon- drogenesis using human nucleus pulposus regulated through TGF-beta1 in platelet-rich plasma. J Cell Physiol. 2006;209:744–54.CrossRefPubMedGoogle Scholar
  57. 57.
    Akeda K, An HS, Pichika R, Attawia M, Thonar EJMA, Lenz ME, et al. Platelet-rich plasma (PRP) stimulates the extra- cellular matrix metabolism of porcine nucleus pulposus and annulus fibrosus cells cultured in alginate beads. Spine. 2006;31:959–66.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ken P. EhrhardtJr
    • 1
  • Susan M. Mothersele
    • 1
  • Andrew J. Brunk
    • 1
  • Jeremy B. Green
    • 1
  • Mark R. Jones
    • 2
  • Craig B. Billeaud
    • 1
  • Alan David Kaye
    • 1
    • 3
  1. 1.Department of Anesthesiology and Pain Medicine, LSU Health Science CenterLouisiana State University School of MedicineNew OrleansUSA
  2. 2.Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care and Pain MedicineHarvard Medical SchoolBostonUSA
  3. 3.Department of PharmacologyLSU School of MedicineNew OrleansUSA

Personalised recommendations