Skip to main content

Advertisement

Log in

Spinal Cord Stimulation, MILD Procedure, and Regenerative Medicine, Novel Interventional Nonopioid Therapies in Chronic Pain

  • Other Pain (A Kaye and N Vadivelu, Section Editors)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Chronic pain is a highly prevalent condition affecting millions of individuals.

Recent Findings

In recent years, newer treatments have emerged that are changing the way clinicians treat pain pathogenesis, including novel nonopioid strategies. In this regard, spinal cord stimulation, the MILD procedure, and regenerative medicine have shown promise. This review summarizes recent literature on these three emerging treatment strategies.

Summary

The results of this review suggest that under certain conditions, spinal cord stimulation, the MILD procedure, and regenerative medicine can be effective treatment modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Kapural L. Spinal cord stimulation for intractable chronic pain. Curr Pain Headache Rep. 2014;18(4):406.

    Article  PubMed  Google Scholar 

  2. Xu J, Liu A, Cheng J. New advancements in spinal cord stimulation for chronic pain management. Curr Opin Anaesthesiol. 2017;30(6):710–7.

    Article  PubMed  Google Scholar 

  3. Zhang TC, Janik JJ, Grill WM. Modeling effects of spinal cord stimulation on wide-dynamic range dorsal horn neurons: influence of stimulation frequency and GABAergic inhibition. J Neurophysiol. 2014;112(3):552–67.

    Article  CAS  PubMed  Google Scholar 

  4. Kapural L, Peterson E, Provenzano DA, Staats P. Clinical evidence for spinal cord stimulation for failed back surgery syndrome (FBSS): systematic review. Spine (Phila Pa 1976). 2017 Jul 15;42(Suppl 14):S61–6.

    Article  Google Scholar 

  5. Kumar K, Buchser E, Linderoth B, Meglio M, Van Buyten JP. Avoiding complications from spinal cord stimulation: practical recommendations from an international panel of experts. Neuromodulation. 2007;10(1):24–33.

    Article  PubMed  Google Scholar 

  6. Rudiger J, Thomson S. Infection rate of spinal cord stimulators after a screening trial period. A 53-month third party follow-up. Neuromodulation. 2011;14(2):136–41.

    Article  PubMed  Google Scholar 

  7. Smith CC, Lin JL, Shokat M, Dosanjh SS, Casthely D. A report of paraparesis following spinal cord stimulator trial, implantation and revision. Pain Physician. 2010;13(4):357–63.

    PubMed  Google Scholar 

  8. Kalichman L, Cole R, Kim DH, Li L, Suri P, Guermazi A, et al. Spinal stenosis prevalence and association with symptoms: the Framingham study. Spine J. 2009;9(7):545–50.

    Article  PubMed  PubMed Central  Google Scholar 

  9. •• Deer TR, Kapural L. New image-guided ultra-minimally invasive lumbar decompression method: the mild procedure. Pain Physician. 2010;13(1):35–41. excellent description of the mild procedure.

    PubMed  Google Scholar 

  10. Schomer DF, Solsberg D, Wong W, Chopko BW. Mild® lumbar decompression for the treatment of lumbar spinal stenosis. Neuroradiol J. 2011;24:620–6.

    Article  CAS  PubMed  Google Scholar 

  11. Basu S. Mild procedure single-site prospective IRB study. Clin J Pain. 2012;28:254–8.

    Article  PubMed  Google Scholar 

  12. Mekhail N, Vallejo R, Coleman MH, Benyamin RM. Long-term results of percutaneous lumbar decompression mild for spinal stenosis. Pain Pract. 2012;12:184–93.

    Article  PubMed  Google Scholar 

  13. Chopko BW. Long-term results of percutaneous lumbar decompression for LSS: two-year outcomes. Clin J Pain. 2013;29(11):939–43.

    Article  PubMed  Google Scholar 

  14. Kreiner DS, MacVicar J, Duszynski B, Nampiaparampil DE. The mild procedure: a systematic review of the current literature. Pain Med. 2014;15:196–205.

    Article  PubMed  Google Scholar 

  15. Staats PS, Benyamin RM, MiDAS ENCORE Investigators. MiDAS ENCORE: randomized controlled clinical trial report of 6-month results. Pain Physician. 2016;19(2):25–38.

    PubMed  Google Scholar 

  16. Benyamin RM, Staats PS, MiDAS Encore I. MILD is an effective treatment for lumbar spinal stenosis with neurogenic claudication: MiDAS ENCORE randomized controlled trial. Pain Physician. 2016;19:229–42.

    PubMed  Google Scholar 

  17. Giannadakis C, Hammersbøen LE, Feyling C, Solheim O, Jakola AS, Nerland US, et al. Microsurgical decompression for central lumbar spinal stenosis: a single-center observational study. Acta Neurochir. 2015 Jul;157(7):1165–71. https://doi.org/10.1007/s00701-015-2450-4.

    Article  PubMed  Google Scholar 

  18. Arai Y, Hirai T, Yoshii T, Sakai K, Kato T, Enomoto M, et al. A prospective comparative study of 2 minimally invasive decompression procedures for lumbar spinal canal stenosis: unilateral laminotomy for bilateral decompression (ULBD) versus muscle-preserving interlaminar decompression (MILD). Spine (Phila Pa 1976). 2014;39(4):332–40. https://doi.org/10.1097/BRS.0000000000000136.

    Article  Google Scholar 

  19. Tonomura H, Hatta Y, Mikami Y, Ikeda T, Harada T, Nagae M, et al. Magnetic resonance imaging evaluation of the effects of surgical invasiveness on paravertebral muscles after muscle-preserving interlaminar decompression (MILD). Clin Spine Surg. 2017;30(2):E76–82. https://doi.org/10.1097/BSD.0b013e31829eb9de.

    Article  PubMed  Google Scholar 

  20. Udeh BL, Costandi S, Dalton JE, Ghosh R, Yousef H, Mekhail N. The 2-year cost-effectiveness of 3 options to treat lumbar spinal stenosis patients. Pain Pract. 2015;15(2):107–16. https://doi.org/10.1111/papr.12160.

    Article  PubMed  Google Scholar 

  21. •• Siniscalco D, Rossi F, Maione S. Stem cell therapy for neuropathic pain treatment. J Stem Cells Regen Med. 2007;3(1):2–11. excellent description of the stem cell therapy for neuropathic pain treatment.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Franchi S, et al. Adult stem cell as new advanced therapy for experimental neuropathic pain treatment. BioMed Res Int. 2014;2014:470983.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Institute of Medicine (US) Committee on Advancing Pain Research, Care, and Education. Relieving pain in America: a blueprint for transforming prevention, care, education, and research. Washington (DC): National Academies Press (US); 2011. 2, pain as a public health challenge

    Google Scholar 

  24. American Academy of Pain Medicine (AAPM). Significant blocking of opioid tolerance with mesenchymal stem cell transplant. ScienceDaily. ScienceDaily, 24 March 2015. www.sciencedaily.com/releases/2015/03/150324153349.htm.

  25. Klass M, Gavrikov V, Drury D, Stewart B, Hunter S, Denson DD, et al. Intravenous mononuclear marrow cells reverse neuropathic pain from experimental mononeuropathy. Anesth Analg. 2007;104(4):944–8.

    Article  PubMed  Google Scholar 

  26. Schultz SS. Adult stem cell application in spinal cord injury. Curr Drug Targets. 2005;6:63–73.

    Article  CAS  PubMed  Google Scholar 

  27. Klein S, Svendsen CN. Stem cells in the injured spinal cord: reducing the pain and increasing the gain. Nat Neurosci. 2005;8:259–60.

    Article  CAS  PubMed  Google Scholar 

  28. Hains BC, Johnson KM, Eaton MJ, Willis WD, Hulsebosch CE. Serotonergic neural precursor cell grafts attenuate bilateral hyperexcitability of dorsal horn neurons after spinal hemisection in rat. Neuroscience. 2003;116:1097–110.

    Article  CAS  PubMed  Google Scholar 

  29. Bonfield TL, Caplan AI. Adult mesenchymal stem cells: an innovative therapeutic for lung diseases. Discov Med. 2010;9(47):337–45.

    PubMed  Google Scholar 

  30. •• Hsu WK, Mishra A, Rodeo SR, et al. Platelet-rich plasma in orthopaedic applications: evidence-based recommendations for treatment. J Am Acad Orthop Surg. 2013;21:739–48. excellent evidence-based recommendations for platelet-rich plasma in orthopaedic applications.

    PubMed  Google Scholar 

  31. Toumi H, Best TM. The inflammatory response: friend or enemy for muscle injury? Br J Sports Med. 2003;37:284–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blair P, Flaumenhaft R. Platelet a-granules: basic biology and clinical correlates. Blood Rev. 2009;23:177–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leslie M. Beyond clotting: the power of platelets. Science. 2010;328:562–4.

    Article  CAS  PubMed  Google Scholar 

  34. Arnoczky SP, Delos D, Rodeo SA. What is platelet-rich plasma? Oper Tech Sports Med. 2011;19:142–8.

    Article  Google Scholar 

  35. Dohan Ehrenfest DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leukocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009;27:158–67.

    Article  CAS  PubMed  Google Scholar 

  36. Mazzocca AD, McCarthy MB, Chowaniec DM, et al. Platelet-rich plasma differs according to preparation method and human variability. J Bone Joint Surg Am. 2012;94:308–16.

    Article  PubMed  Google Scholar 

  37. Marx RE. Platelet-rich plasma (PRP). What is PRP and what is not PRP? Implant Dent. 2001;10:225–8.

    Article  CAS  PubMed  Google Scholar 

  38. Foster TE, Puskas BL, Mandelbaum BR, Gerhardt MB, Rodeo SA. Platelet-rich plasma: from basic science to clinical applications. Am J Sports Med. 2009;37:2259–72.

    Article  PubMed  Google Scholar 

  39. Jeong GK, Sandhu HS, Farmer J. Bone morphogenic proteins: applications in spinal surgery. HSS J. 2005;1:110–7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Alsousou J, Thompson M, Hulley P, et al. The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: a review of the literature. J Bone Joint Surg Br. 2009;91:987–96.

    Article  CAS  PubMed  Google Scholar 

  41. Lee KS. Platelet-rich plasma injection. Semin Musculoskelet Radiol. 2013;17:91–8.

    Article  PubMed  Google Scholar 

  42. Cerza F, Carni S, Carcangiu A, et al. Comparison between hyaluronic acid and platelet-rich plasma, intra-articular infiltration in the treatment of gonarthrosis. Am J Sports Med. 2012;40:2822–7.

    Article  PubMed  Google Scholar 

  43. Patel S, Dhillon MS, Aggarwal S, Marwaha N, Jain A. Treatment with platelet-rich plasma is more effective than placebo for knee osteoarthritis: a prospective, double- blind, randomized trial. Am J Sports Med. 2013;41:356–64.

    Article  PubMed  Google Scholar 

  44. Filardo G, Kon E, Di Martino A, et al. Platelet-rich plasma vs hyaluronic acid to treat knee degenerative pathology: study design and preliminary results of a randomized controlled trial. BMC Musculoskelet Disord. 2012;13:229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kanchanatawan W, Arirachakaran A, Chaijenkij K, Prasathaporn N, Boonard M, Piyapittayanun P, et al. Short-term outcomes of platelet-rich plasma injection for treatment of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc: Off J ESSKA. 2016;24(5):1665–77.

    Article  Google Scholar 

  46. Peerbooms JC, Sluimer J, Bruijn DJ, Gosens T. Positive effect of an autologous platelet concentrate in lateral epicondylitis in a double-blind randomized controlled trial: platelet-rich plasma versus corticosteroid injection with a 1- year follow-up. Am J Sports Med. 2010;38:255–62.

    Article  PubMed  Google Scholar 

  47. Filardo G, Kon E, Della Villa S, Vincentelli F, Fornasari PM, Marcacci M. Use of platelet-rich plasma for the treatment of refractory jumper’s knee. Int Orthop. 2010;34:909–15.

    Article  PubMed  Google Scholar 

  48. Gosens T, Den Oudsten BL, Fievez E, ‘t v, Spijker P, Fievez A. Pain and activity levels before and after platelet-rich plasma injection treatment of patellar tendinopathy: a prospective cohort study and the influence of previous treatments. Int Orthop. 2012;36:1941–6.

    Article  PubMed  PubMed Central  Google Scholar 

  49. de Vos RJ, Weir A, van Schie HTM, Bierma-Zeinstra SMA, Verhaar JAN, Weinans H, et al. Platelet-rich plasma injection for chronic Achilles tendinopathy a randomized controlled trial. JAMA. 2010;303(2):144–9.

    Article  PubMed  Google Scholar 

  50. Emel E, Ergun SS, Kotan D, et al. Effects of insulin-like growth factor-I and platelet-rich plasma on sciatic nerve crush injury in a rat model. J Neurosurg. 2011;114:522–8.

    Article  CAS  PubMed  Google Scholar 

  51. Elgazzar RF, Mutabagani MA, Abdelaal SE, Sadakah AA. Platelet-rich plasma may enhance peripheral nerve regeneration after cyanoacrylate reanasto- mosis: a controlled blind study on rats. Int J Oral Maxillofac Surg. 2008;37:748–55.

    Article  CAS  PubMed  Google Scholar 

  52. Yu W, Wang J, Yin J. Platelet-rich plasma: a promising product for treatment of peripheral nerve regeneration after nerve injury. Int J Neurosci. 2011;121:176–80.

    Article  PubMed  Google Scholar 

  53. Cho HH, Jang S, Lee SC, Jeong HS, Park JS, Han JY, et al. Effect of neural-induced mesenchymal stem cells and platelet-rich plasma on facial nerve regeneration in an acute nerve injury model. Laryngoscope. 2010;120:907–13.

    Article  CAS  PubMed  Google Scholar 

  54. Kuffler DP. Platelet-rich plasma and the elimination of neuropathic pain. Mol Neurobiol. 2013;48:315–32.

    Article  CAS  PubMed  Google Scholar 

  55. Li P, Zhang R, Zhou Q. Efficacy of platelet-rich plasma in retarding intervertebral disc degeneration: a meta-analysis of animal studies. BioMed Res Int. 2017;2017:7919201, 10 pages.

    PubMed  PubMed Central  Google Scholar 

  56. Chen WH, Lo WC, Lee JJ, Su CH, Lin CT, Liu HY, et al. Tissue-engineered intervertebral disc and chon- drogenesis using human nucleus pulposus regulated through TGF-beta1 in platelet-rich plasma. J Cell Physiol. 2006;209:744–54.

    Article  CAS  PubMed  Google Scholar 

  57. Akeda K, An HS, Pichika R, Attawia M, Thonar EJMA, Lenz ME, et al. Platelet-rich plasma (PRP) stimulates the extra- cellular matrix metabolism of porcine nucleus pulposus and annulus fibrosus cells cultured in alginate beads. Spine. 2006;31:959–66.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan David Kaye.

Ethics declarations

Conflict of Interest

Ken P. Ehrhardt Jr., Susan M. Mothersele, Andrew J. Brunk, Jeremy B. Green, Mark R. Jones, Craig B. Billeaud, and Alan David Kaye declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Other Pain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehrhardt, K.P., Mothersele, S.M., Brunk, A.J. et al. Spinal Cord Stimulation, MILD Procedure, and Regenerative Medicine, Novel Interventional Nonopioid Therapies in Chronic Pain. Curr Pain Headache Rep 22, 26 (2018). https://doi.org/10.1007/s11916-018-0680-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11916-018-0680-x

Keywords

Navigation