Novel Pharmacological Nonopioid Therapies in Chronic Pain

  • Alan David Kaye
  • Elyse M. Cornett
  • Brendon Hart
  • Shilpadevi Patil
  • Andrew Pham
  • Matthew Spalitta
  • Kenneth F. Mancuso
Other Pain (A Kaye and N Vadivelu, Section Editors)
  • 276 Downloads
Part of the following topical collections:
  1. Topical Collection on Other Pain

Abstract

Purpose of Review

Opioid use and abuse has led to a worldwide opioid epidemic. And while opioids are clinically useful when appropriately indicated, they are associated with a wide range of dangerous side effects and whether they are effective at treating or eliminating chronic pain is controversial. There has long been a need for the development of nonopioid alternative treatments for patients that live in pain, and until recently, only a few effective treatments were available. Today, there are a wide range of nonopioid treatments available including NSAIDs, acetaminophen, corticosteroids, nerve blocks, SSRIs, neurostimulators, and anticonvulsants. However, these treatments are still not entirely effective at treating pain, which has sparked a new exploration of novel nonopioid pharmacotherapies.

Recent Findings

This manuscript will outline the most recent trends in novel nonopioid pharmacotherapy development including tramadol/dexketoprofen, TrkA inhibitors, tapentadol, opioid agonists, Nektar 181, TRV 130, ßarrestin2, bisphosphonates, antibodies, sodium channel blockers, NMDA antagonists, TRP receptors, transdermal vitamin D, AAK1 kinase inhibition, calcitonin gene-related peptide (CGRP), TRPV4 antagonists, cholecystokinin, delta opioid receptor, neurokinin, and gene therapy.

Summary

The pharmacotherapies discussed in this manuscript outline promising opioid alternatives which can change the future of chronic pain treatment.

Keywords

Chronic pain Pain treatment Nonopioid 

Notes

Compliance with Ethical Standards

Conflict of Interest

Elyse M. Cornett, Brendon Hart, Shilpadevi Patil, Andrew Pham, and Kenneth F. Mancuso declare no conflict of interest. Alan D. Kaye is a speaker for Depomed, Inc. and Merck, Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance.

  1. 1.
    Woolf CJ. Pain: moving from symptom control toward mechanism-specific pharmacologic management. Ann Intern Med. 2004;140(6):441–51.  https://doi.org/10.7326/0003-4819-140-8-200404200-00010.PubMedCrossRefGoogle Scholar
  2. 2.
    Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2016;16(1):19–34.  https://doi.org/10.1038/nrd.2016.230.PubMedCrossRefGoogle Scholar
  3. 3.
    Ray WA, Chung CP, Murray KT, Hall K, Stein CM. Prescription of long-acting opioids and mortality in patients with chronic noncancer pain. JAMA. 2016;315(22):2415–23.  https://doi.org/10.1001/jama.2016.7789.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Goldenberg DL, Clauw DJ, Palmer RE, Clair AG. Opioid use in fibromyalgia: a cautionary tale. Mayo Clin Proc. 2016;91(5):640–8.  https://doi.org/10.1016/j.mayocp.2016.02.002.PubMedCrossRefGoogle Scholar
  5. 5.
    Hoffman EM, Watson JC, St Sauver J, N. P. Staff, Klein CJ. Association of long-term opioid therapy with functional status, adverse outcomes, and mortality among patients with polyneuropathy. JAMA Neurol. 2017;74(7):773–9.  https://doi.org/10.1001/jamaneurol.2017.0486.PubMedCrossRefGoogle Scholar
  6. 6.
    Hayhurst CJ, Durieux ME. Differential opioid tolerance and opioid-induced hyperalgesia. Anesthesiology. 2016;124(2):483–8.  https://doi.org/10.1097/ALN.0000000000000963.PubMedCrossRefGoogle Scholar
  7. 7.
    Roeckel LA, Le Coz GM, Gavériaux-Ruff C, Simonin F. Opioid-induced hyperalgesia: cellular and molecular mechanisms. Neuroscience. 2016;338:160–82.  https://doi.org/10.1016/j.neuroscience.2016.06.029.PubMedCrossRefGoogle Scholar
  8. 8.
    Gereau RW, et al. A pain research agenda for the 21st century. J Pain. Dec. 2014;15(12):1203–14.  https://doi.org/10.1016/j.jpain.2014.09.004.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Q. Links, NIH categorical spending, 2015.Google Scholar
  10. 10.
    Bruehl S, et al.. Chronic pain: opportunities and challenges, vol. 14, no. 2, pp. 103–113, 2014.Google Scholar
  11. 11.
    Dowell D, Haegerich TM, Chou R. CDC guideline for prescribing opioids for chronic pain—United States, 2016. MMWR Recomm Reports. 2016;65(1):1–49.  https://doi.org/10.15585/mmwr.rr6501e1.CrossRefGoogle Scholar
  12. 12.
    Frank JW, Lovejoy TI, Becker WC, Morasco BJ, Koenig CJ, Hoffecker L, et al. Patient outcomes in dose reduction or discontinuation of long-term opioid therapy: a systematic review. Ann Intern Med. Aug. 2017;167(3):181–91.  https://doi.org/10.7326/M17-0598.PubMedCrossRefGoogle Scholar
  13. 13.
    Sessle BJ. The pain crisis: what it is and what can be done. Pain Res Treat. 2012;2012:703947.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Stewart WF, Ricci JA, Chee E, Morganstein D, Lipton R. Lost productive time and cost due to common pain conditions in the US workforce. JAMA. Nov. 2003;290(18):2443–54.  https://doi.org/10.1001/jama.290.18.2443.PubMedCrossRefGoogle Scholar
  15. 15.
    Vashishtha D, Mittal ML, Werb D. The North American opioid epidemic: current challenges and a call for treatment as prevention. Harm Reduct J. 2017;14(1):7.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Rudd RA, Aleshire N, Zibbell JE, Gladden RM. Increases in drug and opioid overdose deaths—United States, 2000–2014, 2016.Google Scholar
  17. 17.
    Relieving Pain in America. Washington, D.C.: National Academies Press, 2011.Google Scholar
  18. 18.
    Hunnicutt JN, Ulbricht CM, Tjia J, Lapane KL. Pain and pharmacologic pain management in long-stay nursing home residents. Pain. 2017;158(6):1091–9.  https://doi.org/10.1097/j.pain.0000000000000887.PubMedCrossRefGoogle Scholar
  19. 19.
    Baker DW. History of The Joint Commission’s Pain Standards. JAMA. Mar. 2017;317(11):1117–8.  https://doi.org/10.1001/jama.2017.0935.PubMedCrossRefGoogle Scholar
  20. 20.
    • Fornasari D, Allegri M, Gerboni S, Fanelli G. A novel association to treat pain: tramadol/dexketoprofen. The first drug of a new pharmacological class. Acta Biomed. 2017;88(1):17–24. This is a good paper regarding novel treatment for chronic pain. PubMedGoogle Scholar
  21. 21.
    Derry S, Cooper TE, Phillips T. Single fixed-dose oral dexketoprofen plus tramadol for acute postoperative pain in adults. In: Derry S, editor. Cochrane database of systematic reviews, vol. 9. Chichester: John Wiley & Sons, Ltd; 2016. p. CD012232.Google Scholar
  22. 22.
    Varrassi G, Hanna M, Macheras G, Montero A, Montes Perez A, Meissner W, et al. Multimodal analgesia in moderate-to-severe pain: a role for a new fixed combination of dexketoprofen and tramadol. Curr Med Res Opin. Jun. 2017;33(6):1165–73.  https://doi.org/10.1080/03007995.2017.1310092.PubMedCrossRefGoogle Scholar
  23. 23.
    Stachel SJ, Sanders JM, Henze DA, Rudd MT, Su HP, Li Y, et al. Maximizing diversity from a kinase screen: identification of novel and selective pan-Trk inhibitors for chronic pain. J Med Chem. Jul. 2014;57(13):5800–16.  https://doi.org/10.1021/jm5006429.PubMedCrossRefGoogle Scholar
  24. 24.
    Ghilardi JR, et al. Administration of a tropomyosin receptor kinase inhibitor attenuates sarcoma-induced nerve sprouting, neuroma formation and bone cancer pain. Mol Pain. Dec. 2010;6:87.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Vadivelu N, Huang Y, Mirante B, Jacoby M, Braveman FR, Hines RL, et al. Patient considerations in the use of tapentadol for moderate to severe pain. Drug Healthc Patient Saf. 2013;5:151–9.  https://doi.org/10.2147/DHPS.S28829.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    • Carmona-Bayonas A, Jiménez Fonseca P, Virizuela Echaburu J. Tapentadol for cancer pain management: a narrative review. Pain Pract. 2017. This is a good paper regarding a novel treatment for cancer pain.;17(8):1075–88.  https://doi.org/10.1111/papr.12556.PubMedCrossRefGoogle Scholar
  27. 27.
    C. Therapeutics, Cara therapeutics announces top-line results from phase 2b trial of oral CR845 in chronic pain patients with osteoarthritis of the hip or knee. 2017.Google Scholar
  28. 28.
    Therapeutics C. Cara therapeutics reports continuation of phase 3 trial of I.V. CR845 in postoperative pain following interim assessment, 2017.Google Scholar
  29. 29.
    Nektar, NKTR-181 meets primary and secondary endpoints in phase 3 SUMMIT-07 study in chronic pain, 2017.Google Scholar
  30. 30.
    Altarifi AA, David B, Muchhala KH, Blough BE, Akbarali H, Negus SS. Effects of acute and repeated treatment with the biased mu opioid receptor agonist TRV130 (oliceridine) on measures of antinociception, gastrointestinal function, and abuse liability in rodents. J Psychopharmacol. 2017;31(6):730–9.  https://doi.org/10.1177/0269881116689257.PubMedCrossRefGoogle Scholar
  31. 31.
    Singla N, Minkowitz H, Soergel D, Burt D, Subach RA, Salamea M, et al. A randomized, phase IIb study investigating oliceridine (TRV130), a novel μ-receptor G-protein pathway selective (μ-GPS) modulator, for the management of moderate to severe acute pain following abdominoplasty. J Pain Res. 2017;10:2413–24.  https://doi.org/10.2147/JPR.S137952.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hales TG. Arresting the development of morphine tolerance and dependence. Br J Anaesth. 2011;107(5):653–5.  https://doi.org/10.1093/bja/aer294.PubMedCrossRefGoogle Scholar
  33. 33.
    •• Olson KM, Lei W, Keresztes A, LaVigne J, Streicher JM. Novel molecular strategies and targets for opioid drug discovery for the treatment of chronic pain. Yale J Biol Med. 2017;90(1):97–110. This is a good overall review of novel treatments for chronic pain. PubMedPubMedCentralGoogle Scholar
  34. 34.
    Yang C-H, Huang H-W, Chen K-H, Chen Y-S, Sheen-Chen S-M, Lin C-R. Antinociceptive potentiation and attenuation of tolerance by intrathecal-arrestin 2 small interfering RNA in rats. Br J Anaesth. 2011;107(5):774–81.  https://doi.org/10.1093/bja/aer291.PubMedCrossRefGoogle Scholar
  35. 35.
    Giusti A, Bianchi G. Treatment of complex regional pain syndrome type I with bisphosphonates: table 1. RMD Open. 2015;1(Suppl 1):e000056.  https://doi.org/10.1136/rmdopen-2015-000056.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Cohen SP, Chang D, Hsu E, Hottinger D. Anti-nerve growth factor in pain management: current evidence. J Pain Res. 2016;9:373.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Abbasi J. FDA fast tracks nonopioid pain medication. JAMA. 2017;318(6):510.  https://doi.org/10.1001/jama.2017.10250.Google Scholar
  38. 38.
    Jensen TS. Selective sodium channel blockers in trigeminal neuralgia. Lancet Neurol. 2017;16(4):255–6.  https://doi.org/10.1016/S1474-4422(17)30017-0.PubMedCrossRefGoogle Scholar
  39. 39.
    Zakrzewska JM, Palmer J, Morisset V, Giblin GM, Obermann M, Ettlin DA, et al. Safety and efficacy of a Nav1.7 selective sodium channel blocker in patients with trigeminal neuralgia: a double-blind, placebo-controlled, randomised withdrawal phase 2a trial. Lancet Neurol. 2017;16(4):291–300.  https://doi.org/10.1016/S1474-4422(17)30005-4.PubMedCrossRefGoogle Scholar
  40. 40.
    Cruccu G. Trigeminal neuralgia. Continuum (N. Y)., vol. 23, no. 2, selected topics in outpatient. Neurology, pp. 396–420, 2017.Google Scholar
  41. 41.
    Littlejohn G, Guymer E. Modulation of NMDA receptor activity in fibromyalgia. Biomedicine. 2017;5(2):15.  https://doi.org/10.3390/biomedicines5020015.CrossRefGoogle Scholar
  42. 42.
    Cohen SP, Verdolin MH, Chang AS, Kurihara C, Morlando BJ, Mao J. The intravenous ketamine test predicts subsequent response to an oral dextromethorphan treatment regimen in fibromyalgia patients. J Pain. 2006;7(6):391–8.  https://doi.org/10.1016/j.jpain.2005.12.010.PubMedCrossRefGoogle Scholar
  43. 43.
    Olivan-Blazquez B, et al. Efficacy of memantine in the treatment of fibromyalgia: a double-blind, randomised, controlled trial with 6-month follow-up. Pain. 2014;155(12):2517–25.  https://doi.org/10.1016/j.pain.2014.09.004.PubMedCrossRefGoogle Scholar
  44. 44.
    Jardín I, et al. TRPs in pain sensation. Front Physiol. vol. 8, no. 2017.Google Scholar
  45. 45.
    Straube S, Moore AR, Derry S, McQuay HJ, Vitamin D. Chronic pain. Pain. 2009;141(1):10–3.  https://doi.org/10.1016/j.pain.2008.11.010.PubMedCrossRefGoogle Scholar
  46. 46.
    Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81.  https://doi.org/10.1056/NEJMra070553.PubMedCrossRefGoogle Scholar
  47. 47.
    de Torrente G, de la Jara AP, Favrat B. Musculoskeletal pain in female asylum seekers and hypovitaminosis D3. BMJ. 2004;329(7458):156–7.  https://doi.org/10.1136/bmj.329.7458.156.CrossRefGoogle Scholar
  48. 48.
    Lee P, Chen R. Vitamin D as an analgesic for patients with type 2 diabetes and neuropathic pain. Arch Intern Med. 2008;168(7):771–2.  https://doi.org/10.1001/archinte.168.7.771.PubMedCrossRefGoogle Scholar
  49. 49.
    Sadat-Ali M, Bubshait DA, Al-Turki HA, Al-Dakheel DA, Al-Olayani WS. Topical delivery of vitamin d3: a randomized controlled pilot study. Int J Biomed Sci. 2014;10(1):21–4.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Ghai B, et al. Vitamin D supplementation in patients with chronic low back pain: an open label, single arm clinical trial. Pain Phys. 20(1): pp. E99–E105.Google Scholar
  51. 51.
    Kostich W, Hamman BD, Li YW, Naidu S, Dandapani K, Feng J, et al. Inhibition of AAK1 kinase as a novel therapeutic approach to treat neuropathic pain. J Pharmacol Exp Ther. 2016;358(3):371–86.  https://doi.org/10.1124/jpet.116.235333.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Schou WS, Ashina S, Amin FM, Goadsby PJ, Ashina M. Calcitonin gene-related peptide and pain: a systematic review. J. Headache Pain. 2017;18(1):34.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Liedtke W, Choe Y, Martí-Renom MA, Bell AM, Denis CS, AndrejŠali, et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell. 2000;103(3):525–35.  https://doi.org/10.1016/S0092-8674(00)00143-4.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Alessandri-Haber N, Joseph E, Dina OA, Liedtke W, Levine JD. TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain. 2005;118(1–2):70–9.  https://doi.org/10.1016/j.pain.2005.07.016.PubMedCrossRefGoogle Scholar
  55. 55.
    Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, Materazzi S, et al. Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol. Feb. 2007;578(3):715–33.  https://doi.org/10.1113/jphysiol.2006.121111.PubMedCrossRefGoogle Scholar
  56. 56.
    Brierley SM, Page AJ, Hughes PA, Adam B, Liebregts T, Cooper NJ, et al. Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology. 2008;134(7):2059–69.  https://doi.org/10.1053/j.gastro.2008.01.074.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Alessandri-Haber N. Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci. 2004;24(18):4444–52.  https://doi.org/10.1523/JNEUROSCI.0242-04.2004.PubMedCrossRefGoogle Scholar
  58. 58.
    Wei ZL, Nguyen MT, O’Mahony DJR, Acevedo A, Zipfel S, Zhang Q, et al. Identification of orally-bioavailable antagonists of the TRPV4 ion-channel. Bioorganic Med. Chem. Lett. 2015;25(18):4011–5.  https://doi.org/10.1016/j.bmcl.2015.06.098.CrossRefGoogle Scholar
  59. 59.
    Tsuno N, Yukimasa A, Yoshida O, Suzuki S, Nakai H, Ogawa T, et al. Pharmacological evaluation of novel (6-aminopyridin-3-yl)(4-(pyridin-2-yl)piperazin-1-yl) methanone derivatives as TRPV4 antagonists for the treatment of pain. Bioorganic Med Chem. 2017;25(7):2177–90.  https://doi.org/10.1016/j.bmc.2017.02.047.CrossRefGoogle Scholar
  60. 60.
    Tsuno N, Yukimasa A, Yoshida O, Suzuki S, Nakai H, Ogawa T, et al. Discovery of novel 2′,4′-dimethyl-[4,5′-bithiazol]-2-yl amino derivatives as orally bioavailable TRPV4 antagonists for the treatment of pain: part 2. Bioorganic Med. Chem. Lett. 2016;26(20):4936–41.  https://doi.org/10.1016/j.bmcl.2016.09.014.CrossRefGoogle Scholar
  61. 61.
    Kanju P, et al. Small molecule dual-inhibitors of TRPV4 and TRPA1 for attenuation of inflammation and pain. Sci Rep. 2016;6(1):26894.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Qu Y-J, et al. Effect of TRPV4-p38 MAPK pathway on neuropathic pain in rats with chronic compression of the dorsal root ganglion. Biomed Res Int. 2016;2016:1–12.Google Scholar
  63. 63.
    Wiles MD, Nathanson MH. Local anaesthetics and adjuvants—future developments. Anaesthesia. 2010;65:22–37.  https://doi.org/10.1111/j.1365-2044.2009.06201.x.PubMedCrossRefGoogle Scholar
  64. 64.
    Ganzberg S, Kramer KJ. The use of local anesthetic agents in medicine. Dent Clin N Am. 2010;54(4):601–10.  https://doi.org/10.1016/j.cden.2010.06.001.PubMedCrossRefGoogle Scholar
  65. 65.
    Bang S, Yang TJ, Yoo S, Heo TH, Hwang SW. Inhibition of sensory neuronal TRPs contributes to anti-nociception by butamben. Neurosci Lett. 2012;506(2):297–302.  https://doi.org/10.1016/j.neulet.2011.11.026.PubMedCrossRefGoogle Scholar
  66. 66.
    Larsson LI, Rehfeld JF. Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Res. 1979;165(2):201–18.  https://doi.org/10.1016/0006-8993(79)90554-7.PubMedCrossRefGoogle Scholar
  67. 67.
    Vanderhaeghen JJ, Signeau JC, Gepts W. New peptide in the vertebrate CNS reacting with antigastrin antibodies. Nature. 1975;257(5527):604–5.  https://doi.org/10.1038/257604a0.PubMedCrossRefGoogle Scholar
  68. 68.
    O’Neill MF, Dourish CT, Iversen SD. Morphine-induced analgesia in the rat paw pressure test is blocked by CCK and enhanced by the CCK antagonist MK-329. Neuropharmacology. 1989;28(3):243–7.  https://doi.org/10.1016/0028-3908(89)90099-3.PubMedCrossRefGoogle Scholar
  69. 69.
    Han JS, Ding XZ, Fan SG. Cholecystokinin octapeptide (CCK-8): antagonism to electroacupuncture analgesia and a possible role in electroacupuncture tolerance. Pain. Oct. 1986;27(1):101–15.  https://doi.org/10.1016/0304-3959(86)90227-7.PubMedCrossRefGoogle Scholar
  70. 70.
    Li Y, Han JS. Cholecystokinin-octapeptide antagonizes morphine analgesia in periaqueductal gray of the rat. Brain Res. Feb. 1989;480(1–2):105–10.  https://doi.org/10.1016/0006-8993(89)91572-2.PubMedCrossRefGoogle Scholar
  71. 71.
    Kellstein DE, Mayer DJ. Spinal co-administration of cholecystokinin antagonists with morphine prevents the development of opioid tolerance. Pain. Nov. 1991;47(2):221–9.  https://doi.org/10.1016/0304-3959(91)90208-F.PubMedCrossRefGoogle Scholar
  72. 72.
    L. R. Watkins, I. B. Kinscheck, and D. J. Mayer, Potentiation of opiate analgesia and apparent reversal of morphine tolerance by proglumide., Science, vol. 224, no. April, pp. 395–396, 1984.Google Scholar
  73. 73.
    McCleane GJ. The cholecystokinin antagonist proglumide enhances the analgesic effect of dihydrocodeine. Clin J Pain. 2003;19(3):200–1.  https://doi.org/10.1097/00002508-200305000-00008.PubMedCrossRefGoogle Scholar
  74. 74.
    Schiller PW. Bi- or multifunctional opioid peptide drugs. Life Sci. 2010;86(15–16):598–603.  https://doi.org/10.1016/j.lfs.2009.02.025.PubMedCrossRefGoogle Scholar
  75. 75.
    Lee YS, Fernandes S, Kulkarani V, Mayorov A, Davis P, Ma Sw, et al. Design and synthesis of trivalent ligands targeting opioid, cholecystokinin, and melanocortin receptors for the treatment of pain. Bioorganic Med Chem Lett. 2010;20(14):4080–4.  https://doi.org/10.1016/j.bmcl.2010.05.078.CrossRefGoogle Scholar
  76. 76.
    Hanlon KE, Herman DS, Agnes RS, Largent-Milnes TM, Kumarasinghe IR, Ma SW, et al. Novel peptide ligands with dual acting pharmacophores designed for the pathophysiology of neuropathic pain. Brain Res. 2011;1395:1–11.  https://doi.org/10.1016/j.brainres.2011.04.024.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Agnes RS, Ying J, Kövér KE, Lee YS, Davis P, Ma Sw, et al. Structure-activity relationships of bifunctional cyclic disulfide peptides based on overlapping pharmacophores at opioid and cholecystokinin receptors. Peptides. 2008;29(8):1413–23.  https://doi.org/10.1016/j.peptides.2008.03.022.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Suarez-Mendez S, Tovilla-Zarate CA, Ortega-Varela LF, Bermudez-Ocaña DY, Blé-Castillo JL, González-Castro TB, et al. Isobolographic analyses of proglumide-celecoxib interaction in rats with painful diabetic neuropathy. Drug Dev Res. 2017;78(2):116–23.  https://doi.org/10.1002/ddr.21382.PubMedCrossRefGoogle Scholar
  79. 79.
    Lattmann E, Sattayasai J, Schwalbe CH, Boonprakob Y, Dunn S, Fajana F, et al. Analgesic effects of 5-alkyloxy-4-amino-2(5H)-furanones as cholecystokinin-2 antagonists. Arch Pharm (Weinheim). 2016;349(6):456–65.  https://doi.org/10.1002/ardp.201600036.CrossRefGoogle Scholar
  80. 80.
    Lattmann E, Sattayasai J, Lattmann P, Billington DC, Schwalbe CH, Boonprakob J, et al. Anti-depressant and anti-nociceptive effects of 1,4-benzodiazepine-2-ones based cholecystokinin (CCK(2)) antagonists. Drug Discov Ther. 2007;1(1):45–56.PubMedGoogle Scholar
  81. 81.
    Lattmann E, Singh H, Lattmann P, Boonprakob Y, Sattayasai J. Synthesis and evaluation of N-(3-oxo-2,3-dihydro-1 H-pyrazol-4-yl)-1 H-indole-carboxamides as cholecystokinin antagonists. J Pharm Pharmacol. 2006;58(3):393–401.  https://doi.org/10.1211/jpp.58.3.0015.PubMedCrossRefGoogle Scholar
  82. 82.
    Yao G, Han X, Hao T, Huang Q, Yu T. Effects of rizatriptan on the expression of calcitonin gene-related peptide and cholecystokinin in the periaqueductal gray of a rat migraine model. Neurosci Lett. 2015;587:29–34.  https://doi.org/10.1016/j.neulet.2014.12.021.PubMedCrossRefGoogle Scholar
  83. 83.
    Vanderah TW. Delta and kappa opioid receptors as suitable drug targets for pain. Clin J Pain. 2010;26(Supplement 10):S10–5.  https://doi.org/10.1097/AJP.0b013e3181c49e3a.PubMedCrossRefGoogle Scholar
  84. 84.
    Torrecilla M, Marker CL, Cintora SC, Stoffel M, Williams JT, Wickman K. G-protein-gated potassium channels containing Kir3.2 and Kir3.3 subunits mediate the acute inhibitory effects of opioids on locus ceruleus neurons. J Neurosci. 2002;22(11):4328–34.PubMedGoogle Scholar
  85. 85.
    Chu Sin Chung P, Kieffer BL. Delta opioid receptors in brain function and diseases. Pharmacol Ther. 2013;140(1):112–20.  https://doi.org/10.1016/j.pharmthera.2013.06.003.PubMedCrossRefGoogle Scholar
  86. 86.
    Goldenberg DL. Pain/depression dyad: a key to a better understanding and treatment of functional somatic syndromes. Am J Med. 2010;123(8):675–82.  https://doi.org/10.1016/j.amjmed.2010.01.014.PubMedCrossRefGoogle Scholar
  87. 87.
    Abdelhamid EE, Sultana M, Portoghese PS, Takemori AE. Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J Pharmacol Exp Ther. 1991;258(1):299–303.PubMedGoogle Scholar
  88. 88.
    Zhu Y, King MA, Schuller AGP, Nitsche JF, Reidl M, Elde RP, et al. Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice. Neuron. Sep. 1999;24(1):243–52.  https://doi.org/10.1016/S0896-6273(00)80836-3.PubMedCrossRefGoogle Scholar
  89. 89.
    Suzuki T, Ikeda H, Tsuji M, Misawa M, Narita M, Tseng LF. Antisense oligodeoxynucleotide to delta opioid receptors attenuates morphine dependence in mice. Life Sci. 1997;61(11):PL 165–70.CrossRefGoogle Scholar
  90. 90.
    Wells JL, Bartlett JL, Ananthan S, Bilsky EJ. In vivo pharmacological characterization of SoRI 9409, a nonpeptidic opioid mu-agonist/delta-antagonist that produces limited antinociceptive tolerance and attenuates morphine physical dependence. J Pharmacol Exp Ther. 2001;297(2):597–605.PubMedGoogle Scholar
  91. 91.
    Fujita W, Gomes I, Dove LS, Prohaska D, McIntyre G, Devi LA. Molecular characterization of eluxadoline as a potential ligand targeting mu-delta opioid receptor heteromers. Biochem Pharmacol. Dec. 2014;92(3):448–56.  https://doi.org/10.1016/j.bcp.2014.09.015.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Harland AA, Yeomans L, Griggs NW, Anand JP, Pogozheva ID, Jutkiewicz EM, et al. Further optimization and evaluation of bioavailable, mixed-efficacy μ-opioid receptor (MOR) agonists/δ-opioid receptor (DOR) antagonists: balancing MOR and DOR affinities. J Med Chem. 2015;58(22):8952–69.  https://doi.org/10.1021/acs.jmedchem.5b01270.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Mosberg HI, Yeomans L, Anand JP, Porter V, Sobczyk-Kojiro K, Traynor JR, et al. Development of a bioavailable μ opioid receptor (MOPr) agonist, δ opioid receptor (DOPr) antagonist peptide that evokes antinociception without development of acute tolerance. J Med Chem. 2014;57(7):3148–53.  https://doi.org/10.1021/jm5002088.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Mosberg HI, et al. Opioid peptidomimetics: leads for the design of bioavailable mixed efficacy mu opioid receptor (MOR) agonist/delta opioid receptor (DOR) antagonist ligands. J Med Chem. 2014;56(5):2139–49.CrossRefGoogle Scholar
  95. 95.
    Bird MF, Vardanyan RS, Hruby VJ, Calò G, Guerrini R, Salvadori S, et al. Development and characterisation of novel fentanyl-delta opioid receptor antagonist based bivalent ligands. Br J Anaesth. 2015;114(4):646–56.  https://doi.org/10.1093/bja/aeu454.PubMedCrossRefGoogle Scholar
  96. 96.
    Feliciani F, Pinnen F, Stefanucci A, Costante R, Cacciatore I, Lucente G, et al. Structure-activity relationships of biphalin analogs and their biological evaluation on opioid receptors. Mini Rev Med Chem. 2013;13(1):11–33.  https://doi.org/10.2174/138955713804484776.PubMedCrossRefGoogle Scholar
  97. 97.
    Gomes I, Fujita W, Gupta A, Saldanha SA, Negri A, Pinello CE, et al. Identification of a μ-δ opioid receptor heteromer-biased agonist with antinociceptive activity. Proc Natl Acad Sci. 2013;110(29):12072–7.  https://doi.org/10.1073/pnas.1222044110.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Costantino CM, Gomes I, Stockton SD, Lim MP, Devi LA. Opioid receptor heteromers in analgesia. Expert Rev Mol Med. 2012;14:e9.  https://doi.org/10.1017/erm.2012.5.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Burford NT, Livingston KE, Canals M, Ryan MR, Budenholzer LML, Han Y, et al. Discovery, synthesis, and molecular pharmacology of selective positive allosteric modulators of the δ-opioid receptor. J Med Chem. 2015;58(10):4220–9.  https://doi.org/10.1021/acs.jmedchem.5b00007.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Shiwarski DJ, Tipton A, Giraldo MD, Schmidt BF, Gold MS, Pradhan AA, et al. A PTEN-regulated checkpoint controls surface delivery of δ opioid receptors. J Neurosci. Apr. 2017;37(14):3741–52.  https://doi.org/10.1523/JNEUROSCI.2923-16.2017.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Vicente-Sanchez A, Segura L, Pradhan AA. The delta opioid receptor tool box. Neuroscience. 2016;338:145–59.  https://doi.org/10.1016/j.neuroscience.2016.06.028.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Mantyh PW, Allen CJ, Ghilardi JR, Rogers SD, Mantyh CR, Liu H, et al. Rapid endocytosis of a G protein-coupled receptor: substance P evoked internalization of its receptor in the rat striatum in vivo. Proc Natl Acad Sci U S A. 1995;92(7):2622–6.  https://doi.org/10.1073/pnas.92.7.2622.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Powell KJ, Quirion R, Jhamandas K. Inhibition of neurokinin-1-substance P receptor and prostanoid activity prevents and reverses the development of morphine tolerance in vivo and the morphine-induced increase in CGRP expression in cultured dorsal root ganglion neurons. Eur J Neurosci. 2003;18(6):1572–83.  https://doi.org/10.1046/j.1460-9568.2003.02887.x.PubMedCrossRefGoogle Scholar
  104. 104.
    Vera-Portocarrero LP, Zhang ET, King T, Ossipov MH, Vanderah TW, Lai J, et al. Spinal NK-1 receptor expressing neurons mediate opioid-induced hyperalgesia and antinociceptive tolerance via activation of descending pathways. Pain. 2007;129(1–2):35–45.  https://doi.org/10.1016/j.pain.2006.09.033.PubMedCrossRefGoogle Scholar
  105. 105.
    Suzuki R, Morcuende S, Webber M, Hunt SP, Dickenson AH. Superficial NK1-expressing neurons control spinal excitability through activation of descending pathways. Nat Neurosci. 2002;5(12):1319–26.  https://doi.org/10.1038/nn966.PubMedCrossRefGoogle Scholar
  106. 106.
    Nichols ML, Allen BJ, Rogers SD, Ghilardi JR, Honore P, Luger NM, et al. Transmission of chronic nociception by spinal neurons expressing the substance P receptor. Science. 1999;286(5444):1558–61.  https://doi.org/10.1126/science.286.5444.1558.PubMedCrossRefGoogle Scholar
  107. 107.
    Khasabov SG, Brink TS, Schupp M, Noack J, Simone DA. Changes in response properties of rostral ventromedial medulla neurons during prolonged inflammation: modulation by neurokinin-1 receptors. Neuroscience. 2012;224:235–48.  https://doi.org/10.1016/j.neuroscience.2012.08.029.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Khasabov SG, Simone DA. Loss of neurons in rostral ventromedial medulla that express neurokinin-1 receptors decreases the development of hyperalgesia. Neuroscience. 2013;250:151–65.  https://doi.org/10.1016/j.neuroscience.2013.06.057.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Giri AK, Apostol CR, Wang Y, Forte BL, Largent-Milnes TM, Davis P, et al. Discovery of novel multifunctional ligands with μ/δ opioid agonist/neurokinin-1 (NK1) antagonist activities for the treatment of pain. J Med Chem. 2015;58(21):8573–83.  https://doi.org/10.1021/acs.jmedchem.5b01170.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Largent-Milnes TM, Yamamoto T, Nair P, Moulton JW, Hruby VJ, Lai J, et al. Spinal or systemic TY005, a peptidic opioid agonist/neurokinin 1 antagonist, attenuates pain with reduced tolerance. Br J Pharmacol. 2010;161(5):986–1001.  https://doi.org/10.1111/j.1476-5381.2010.00824.x.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Yamamoto T, Nair P, Largent-Milnes TM, Jacobsen NE, Davis P, Ma SW, et al. Discovery of a potent and efficacious peptide derivative for δ/μ opioid agonist/neurokinin 1 antagonist activity with a 2′,6′-dimethyl-L-tyrosine: in vitro, in vivo, and NMR-based structural studies. J Med Chem. 2011;54(7):2029–38.  https://doi.org/10.1021/jm101023r.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Nair P, Yamamoto T, Cowell S, Kulkarni V, Moye S, Navratilova E, et al. Discovery of tripeptide-derived multifunctional ligands possessing delta/mu opioid receptor agonist and neurokinin 1 receptor antagonist activities. Bioorganic Med. Chem. Lett. 2015;25(17):3716–20.  https://doi.org/10.1016/j.bmcl.2015.06.030.CrossRefGoogle Scholar
  113. 113.
    Yamamoto T, Nair P, Davis P, Ma Sw, Navratilova E, Moye S, et al. Design, synthesis, and biological evaluation of novel bifunctional C-terminal-modified peptides for δ/μ opioid receptor agonists and neurokinin-1 receptor antagonists. J Med Chem. 2007;50(12):2779–86.  https://doi.org/10.1021/jm061369n.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Fan L, et al. Impaired neuropathic pain and preserved acute pain in rats overexpressing voltage-gated potassium channel subunit Kv1.2 in primary afferent neurons. Mol Pain. 2014;10:8.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Wolfe D, Wechuck J, Krisky D, Mata M, Fink DJ. A clinical trial of gene therapy for chronic pain. Pain Med. 2009;10(7):1325–30.  https://doi.org/10.1111/j.1526-4637.2009.00720.x.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Guedon J-MG, Wu S, Zheng X, Churchill CC, Glorioso JC, Liu CH, et al. Current gene therapy using viral vectors for chronic pain. Mol Pain. 2015;11:s12990-015-0018.  https://doi.org/10.1186/s12990-015-0018-1.CrossRefGoogle Scholar
  117. 117.
    Fink DJ, Wechuck J, Mata M, Glorioso JC, Goss J, Krisky D, et al. Gene therapy for pain: results of a phase I clinical trial. Ann Neurol. 2011;70(2):207–12.  https://doi.org/10.1002/ana.22446.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alan David Kaye
    • 1
  • Elyse M. Cornett
    • 2
  • Brendon Hart
    • 2
  • Shilpadevi Patil
    • 2
  • Andrew Pham
    • 3
  • Matthew Spalitta
    • 4
  • Kenneth F. Mancuso
    • 1
  1. 1.Department of Anesthesiology, LSU School of MedicineLSUHSCNew OrleansUSA
  2. 2.Department of AnesthesiologyLSU Health ShreveportShreveportUSA
  3. 3.Tulane University School of MedicineNew OrleansUSA
  4. 4.LSU New Orleans School of MedicineNew OrleansUSA

Personalised recommendations