Skip to main content
Log in

Neuroimaging of Cavernous Malformations

  • Imaging (L Mechtler, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cerebral cavernous malformations (CCMs) are common vascular abnormalities often discovered on imaging as an incidental finding. The most common clinical presentations of CCMs include seizure, headache, focal neurological deficits, and intracranial hemorrhage. This article discusses the most recent guidelines including imaging diagnostic criteria and radiographic standards of CCMs and reviews the utility of currently available imaging techniques.

Recent Findings

Gradient echo T2*-weighted imaging and susceptibility-weighted imaging are the recommended imaging protocols for evaluation of suspected CCMs. Diffusion tensor imaging-based tractography provides visualization of the eloquent white matter tracks in the brain. This imaging is increasingly used in clinical practice to assist in selecting the optimal surgical approach, especially for brainstem lesions. Quantitative susceptibility mapping and dynamic contrast-enhanced quantitative perfusion are presently considered experimental. Its proposed value might prove helpful in the future to monitor disease activity and response to treatments.

Summary

The choice of imaging modality of CCMs depends on the goals the clinician expects to achieve, such as establishing the initial diagnosis, follow-up and monitoring disease activity, preoperative, intraoperative, and postoperative evaluation, or research and experimental work on patients with CCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Al-Holou WN, O'Lynnger TM, Pandey AS, Gemmete JJ, Thompson BG, Muraszko KM, et al. Natural history and imaging prevalence of cavernous malformations in children and young adults. J Neurosurg Pediatr. 2012;9(2):198–205.

    Article  PubMed  Google Scholar 

  2. Knerlich-Lukoschus F, Steinbok P, Dunham C, Cochrane DD. Cerebellar cavernous malformation in pediatric patients: defining clinical, neuroimaging, and therapeutic characteristics. J Neurosurg Pediatr. 2015;16(3):256–66.

    Article  PubMed  Google Scholar 

  3. Gross BA, Lin N, Du R, Day AL. The natural history of intracranial cavernous malformations. Neurosurg Focus. 2011;30(6):E24.

    Article  PubMed  Google Scholar 

  4. Horne MA, Flemming KD, Su IC, Stapf C, Jeon JP, Li D, et al. Clinical course of untreated cerebral cavernous malformations: a meta-analysis of individual patient data. Lancet Neurol. 2016;15(2):166–73.

    Article  PubMed  PubMed Central  Google Scholar 

  5. •• Akers A, Al-Shahi Salman R, AA I, Dahlem K, Flemming K, Hart B, et al. Synopsis of guidelines for the clinical management of cerebral cavernous malformations: consensus recommendations based on systematic literature review by the Angioma Alliance scientific advisory board clinical experts panel. Neurosurgery. 2017;80(5):665–80. The latest consensus guidelines for the clinical management of cerebral cavernous malformations (CCMs). The guidelines summarize the existing literature related to the clinical care of CCM, focusing on imaging diagnostic criteria and radiology standards of CCMs

    Article  PubMed  Google Scholar 

  6. Bulut HT, Sarica MA, Baykan AH. The value of susceptibility weighted magnetic resonance imaging in evaluation of patients with familial cerebral cavernous angioma. Int J Clin Exp Med. 2014;7(12):5296–302.

    PubMed  PubMed Central  Google Scholar 

  7. de Souza JM, Domingues RC, Cruz LC Jr, Domingues FS, Iasbeck T, Gasparetto EL. Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations: a comparison with t2-weighted fast spin-echo and gradient-echo sequences. AJNR Am J Neuroradiol. 2008;29(1):154–8.

    Article  PubMed  Google Scholar 

  8. Dammann P, Wrede KH, Maderwald S, El Hindy N, Mueller O, Chen B, et al. The venous angioarchitecture of sporadic cerebral cavernous malformations: a susceptibility weighted imaging study at 7 T MRI. J Neurol Neurosurg Psychiatry. 2013;84(2):194–200.

    Article  PubMed  Google Scholar 

  9. Frischer JM, God S, Gruber A, Saringer W, Grabner G, Gatterbauer B, et al. Susceptibility-weighted imaging at 7 T: improved diagnosis of cerebral cavernous malformations and associated developmental venous anomalies. Neuroimage Clin. 2012;1(1):116–20.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dammann P, Barth M, Zhu Y, Maderwald S, Schlamann M, Ladd ME, et al. Susceptibility weighted magnetic resonance imaging of cerebral cavernous malformations: prospects, drawbacks, and first experience at ultra-high field strength (7-Tesla) magnetic resonance imaging. Neurosurg Focus. 2010;29(3):E5.

    Article  PubMed  Google Scholar 

  11. (FDA) USFaDA. FDA identifies no harmful effects to date with brain retention of gadolinium-based contrast agents for MRIs; review to continue 2017 [Available from: https://www.fda.gov/downloads/Drugs/DrugSafety/UCM559654.pdf Accessed 9 Oct 2017.

  12. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4(3):316–29.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Huston JM, Field AS. Clinical applications of diffusion tensor imaging. Magn Reson Imaging Clin N Am. 2013;21(2):279–98.

    Article  PubMed  Google Scholar 

  14. • Flores BC, Whittemore AR, Samson DS, Barnett SL. The utility of preoperative diffusion tensor imaging in the surgical management of brainstem cavernous malformations. J Neurosurg. 2015;122(3):653–62. An example of how diffusion tensor imaging is applied for the surgical treatment of brainstem cerebral cavernous malformations

    Article  PubMed  Google Scholar 

  15. Yao Y, Ulrich NH, Guggenberger R, Alzarhani YA, Bertalanffy H, Kollias SS. Quantification of corticospinal tracts with diffusion tensor imaging in brainstem surgery: prognostic value in 14 consecutive cases at 3T magnetic resonance imaging. World Neurosurg. 2015;83(6):1006–14.

    Article  PubMed  Google Scholar 

  16. Faraji AH, Abhinav K, Jarbo K, Yeh FC, Shin SS, Pathak S, et al. Longitudinal evaluation of corticospinal tract in patients with resected brainstem cavernous malformations using high-definition fiber tractography and diffusion connectometry analysis: preliminary experience. J Neurosurg. 2015;123(5):1133–44.

    Article  PubMed  Google Scholar 

  17. Kovanlikaya I, Firat Z, Kovanlikaya A, Ulug AM, Cihangiroglu MM, John M, et al. Assessment of the corticospinal tract alterations before and after resection of brainstem lesions using diffusion tensor imaging (DTI) and tractography at 3T. Eur J Radiol. 2011;77(3):383–91.

    Article  PubMed  Google Scholar 

  18. • Lin Y, Lin F, Kang D, Jiao Y, Cao Y, Wang S. Supratentorial cavernous malformations adjacent to the corticospinal tract: surgical outcomes and predictive value of diffusion tensor imaging findings. J Neurosurg. 2017;31:1–12. https://doi.org/10.3171/2016.10.JNS161179. In this study, diffusion tensor imaging was utilized for the treatment planning of supratentorial cerebral cavernous malformation lesions.

  19. Lin F, Wu J, Wang L, Zhao B, Tong X, Jin Z, et al. Surgical treatment of cavernous malformations involving the posterior limb of the internal capsule: utility and predictive value of preoperative diffusion tensor imaging. World Neurosurg. 2016;88:538–47.

    Article  PubMed  Google Scholar 

  20. Zheng W, Nichol H, Liu S, Cheng YC, Haacke EM. Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging. NeuroImage. 2013;78:68–74.

    Article  CAS  PubMed  Google Scholar 

  21. Langkammer C, Schweser F, Krebs N, Deistung A, Goessler W, Scheurer E, et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. NeuroImage. 2012;62(3):1593–9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Eskreis-Winkler S, Zhang Y, Zhang J, Liu Z, Dimov A, Gupta A, et al. The clinical utility of QSM: disease diagnosis, medical management, and surgical planning. NMR Biomed. https://doi.org/10.1002/nbm.3668.

  23. Tan H, Liu T, Wu Y, Thacker J, Shenkar R, Mikati AG, et al. Evaluation of iron content in human cerebral cavernous malformation using quantitative susceptibility mapping. Investig Radiol. 2014;49(7):498–504.

    Article  CAS  Google Scholar 

  24. Mikati AG, Tan H, Shenkar R, Li L, Zhang L, Guo X, et al. Dynamic permeability and quantitative susceptibility: related imaging biomarkers in cerebral cavernous malformations. Stroke. 2014;45(2):598–601.

    Article  CAS  PubMed  Google Scholar 

  25. • Tan H, Zhang L, Mikati AG, Girard R, Khanna O, Fam MD, et al. Quantitative susceptibility mapping in cerebral cavernous malformations: clinical correlations. AJNR Am J Neuroradiol. 2016;37(7):1209–15. Experimental work on quantitative susceptibility mapping in 105 patients with cerebral cavernous malformation

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mikati AG, Khanna O, Zhang L, Girard R, Shenkar R, Guo X, et al. Vascular permeability in cerebral cavernous malformations. J Cereb Blood Flow Metab. 2015;35(10):1632–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eisa-Beygi S, Wen XY, Macdonald RL. A call for rigorous study of statins in resolution of cerebral cavernous malformation pathology. Stroke. 2014;45(6):1859–61.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Mokin.

Ethics declarations

Conflict of Interest

Drs. Mokin is a consultant for Claret Medical Inc. and reports personal fees outside of the submitted work.

Dr. Agazzi, Dr. Dawson, and Dr. Primiani declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokin, M., Agazzi, S., Dawson, L. et al. Neuroimaging of Cavernous Malformations. Curr Pain Headache Rep 21, 47 (2017). https://doi.org/10.1007/s11916-017-0649-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11916-017-0649-1

Keywords

Navigation