Review of Recent Advances in Peripheral Nerve Stimulation (PNS)

  • Krishnan Chakravarthy
  • Andrew Nava
  • Paul J. Christo
  • Kayode Williams
Neuromodulation (M Gofeld, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuromodulation

Abstract

Peripheral nerve stimulation (PNS) for the treatment of chronic pain has become an increasingly important field in the arena of neuromodulation, given the ongoing advances in electrical neuromodulation technology since 1999 permitting minimally invasive approaches using an percutaneous approach as opposed to implantable systems. Our review aims to provide clinicians with the recent advances and studies in the field, with specific emphasis on clinical data and indications that have been accumulated over the last several years. In addition, we aim to address key basic science studies to further emphasize the importance of translational research outcomes driving clinical management.

Keywords

Peripheral nerve stimulation Chronic pain Peripheral neuromodulation Clinical indications Pain Neuropathic pain 

Notes

Compliance with Ethical Standards

Conflict of Interest

Krishnan Chakravarthy and Andrew Nava declare that they have no conflict of interest.

Paul J. Christo and Kayode Williams declare grant support from Medtronic, Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest published recently have been highlighted as: •• Of major importance

  1. 1.
    Campbell JN, Long DM. Peripheral nerve stimulation in the treatment of intractable pain. J Neurosurg. 1976;45(6):692–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Weiner RL, Reed KL. Peripheral neurostimulation for control of intractable occipital neuralgia. Neuromodulation Technol Neural Interface. 1999;2:217–21.CrossRefGoogle Scholar
  3. 3.••
    Goroszeniuk T, Pang D. Peripheral neuromodulation: a review. Curr Pain Headache Rep. 2014;18(5):412. This review published in 2014 provides a detailed overview of peripheral nerve stimulation and various clinical indications.CrossRefPubMedGoogle Scholar
  4. 4.
    Althaus J. A treatise on medical electricity, theoretical and practical; and its use in the treatment of paralysis, neuralgia, and other diseases. Philadelphia, Lindsay & Blakiston, 1860.Google Scholar
  5. 5.
    White JC, Sweet WH: Pain and the neurosurgeon: a 40-year experience. Springfield, Thomas, 1969, pp. 894–899Google Scholar
  6. 6.
    Papuc E. The role of neurostimulation in the treatment of neuropathic pain. Ann Agric Environ Med. 2013;1:14–7.Google Scholar
  7. 7.
    Slavin KV. Peripheral nerve stimulation for neuropathic pain. Neurotherapeutics. 2008;5(1):100–6.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schaible HG. Peripheral and central mechanisms of pain generation. Handb Exp Pharmacol. 2007;177:3–28.CrossRefGoogle Scholar
  9. 9.
    Shaparin N, Gritsenko K, Garcia-Roves DF, Shah U, Schultz T, Deleon-Casasola O. Peripheral neuromodulation for the treatment of refractory trigeminal neuralgia. Pain Res Manag. 2015;20(2):63–6.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hanai F. Effect of electrical stimulation of peripheral nerves on neuropathic pain. Spine (Phila Pa 1976). 2000;25(15):1886–92.CrossRefGoogle Scholar
  11. 11.
    Sluka KA, Deacon M, Stibal A, et al. Spinal blockade of opioid receptors prevents the analgesia produced by TENS in arthritic rats. J Pharmacol Exp Ther. 1999;289:840–6.PubMedGoogle Scholar
  12. 12.
    Kalra A, Urban MO, Sluka KA. Blockade of opioid receptors in rostral ventral medulla prevents antihyperalgesia produced by transcutaneous electrical nerve stimulation (TENS). J Pharmacol Exp Ther. 2001;298:257–63.PubMedGoogle Scholar
  13. 13.
    Radhakrishnan R, Sluka KA. Spinal muscarinic receptors are activated during low or high frequency TENS-induced antihyperalgesia in rats. Neuropharmacology. 2003;45:1111–9.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Radhakrishnan R, King EW, Dickman J, et al. Blockade of spinal 5-HT receptor subtypes prevents low, but not high, frequency TENS-induced antihyperalgesia in rats. Pain. 2003;105:205–13.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Maeda Y, Lisi TL, Vance CG, Sluka KA. Release of GABA and activation of GABAA receptors in the spinal cord mediates the effects of TENS in rats. Brain Res. 2007;1136:43–50.Google Scholar
  16. 16.
    Sluka KA, Lisi TL, Westlund KN. Increased release of serotonin in the spinal cord during low, but not high, frequency transcutaneous electric nerve stimulation in rats with joint inflammation. Arch Phys Med Rehabil. 2006;87:1137–40.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chandran P, Sluka KA. Development of opioid tolerance with repeated transcutaneous electrical nerve stimulation administration. Pain. 2003;102:195–2011.CrossRefPubMedGoogle Scholar
  18. 18.
    Han JS, Chen XH, Sun SL, et al. Effect of low and high frequency TENS on met-enkephalin-arg-phe and dynorphin A immunoreactivity in human lumbar CSF. Pain. 1991;47:295–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Salar G, Job I, Mingrino S, et al. Effect of transcutaneous electrotherapy on CSF β-endorphin content in patients without pain problems. Pain. 1981;10:169–72.CrossRefPubMedGoogle Scholar
  20. 20.
    Santuzzi CH, Neto Hde A, Pires JG, Gonçalves WL, Gouvea SA, Abreu GR. High-frequency transcutaneous electrical nerve stimulation reduces pain and cardio-respiratory parameters in an animal model of acute pain: participation of peripheral serotonin. Physiother Theory Pract. 2013;29(8):630–8. doi: 10.3109/09593985.2013.774451. Epub 2013 Mar 11.CrossRefPubMedGoogle Scholar
  21. 21.
    Vera-Portocarrero LP, Cordero T, Billstrom T, et al. Differential effects of subcutaneous electrical stimulation (SQS) and transcutaneous electrical nerve stimulation (TENS) in rodent models of chronic neuropathic or inflammatory pain. Neuromodulation. 2013;16:328–35.CrossRefPubMedGoogle Scholar
  22. 22.
    Koopmeiners AS, Mueller S, Kramer J, Hogan QH. Effect of electrical field stimulation on dorsal root ganglion neuronal function. Neuromodulation. 2013;16(4):304–11.CrossRefPubMedGoogle Scholar
  23. 23.
    Gemes G1, Koopmeiners A, Rigaud M, Lirk P, Sapunar D, Bangaru ML, Vilceanu D, Garrison SR, Ljubkovic M, Mueller SJ, Stucky CL, Hogan QH. Failure of action potential propagation in sensory neurons: mechanisms and loss of afferent filtering in C-type units after painful nerve injury. J Physiol. 2013, 591.4: 1111–1131.Google Scholar
  24. 24.
    Guo JS, Jing PB, Wang JA, Zhang R, Jiang BC, Gao YJ, et al. Increased autophagic activity in dorsal root ganglion attenuates neuropathic pain following peripheral nerve injury. Neurosci Lett. 2015;599:158–63.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang Y, Laumet G, Chen SR, Hittelman WN, Pan HL. Pannexin-1 up-regulation in the dorsal root ganglion contributes to neuropathic pain development. J Biol Chem. 2015;290(23):14647–55.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Schlösser L, Barthel F, Brandenburger T, Neumann E, Bauer I, Eulenburg V, et al. Glycine transporter GlyT1, but not GlyT2, is expressed in rat dorsal root ganglion—possible implications for neuropathic pain. Neurosci Lett. 2015;600:213–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Gordon T. Electrical stimulation to enhance axon regeneration after peripheral nerve injuries in animal models and humans. Neurotherapeutics. 2016;13(2):295–310. doi: 10.1007/s13311-015-0415-1.CrossRefPubMedGoogle Scholar
  28. 28.
    Lin YC, Kao CH, Chen CC, Ke CJ, Yao CH, Chen YS. Time-course effect of electrical stimulation on nerve regeneration of diabetic rats. PLoS One. 2015;10(2):e0116711. doi: 10.1371/journal.pone.0116711. eCollection 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    De La Cruz P, Gee L, Walling I, Morris B, Chen N, Kumar V, et al. Treatment of allodynia by occipital nerve stimulation in chronic migraine rodent. Neurosurgery. 2015;77(3):479–85. doi: 10.1227/NEU.0000000000000846. discussion 485.CrossRefGoogle Scholar
  30. 30.
    Stinson LW, Roderer GT, Cross NE, David BE. Peripheral subcutaneous neurostiomulation for control of intractable postoperative inguinal pain: a case report series. Neuromodulation. 2001;4(3):99–104.CrossRefPubMedGoogle Scholar
  31. 31.
    Kothari S, Goroszeniuk T. Percutaneous permanent electrode implantation to ulnar nerves for upper extremity chronic pain: 6 year follow up. Reg Anesth Pain Med. 2006;31(5 Supp):16.CrossRefGoogle Scholar
  32. 32.
    Siddalingaiah V, Goroszeniuk T, Palmisani S, et al. Permanent percutaneous sciatic nerve stimulation for treatment of severe neuropathic pain. [Abstract PH 367] Presented at the Proceedings of the 13th World Congress on Pain, Montreal, Canada, 29 August–2 September 2010.Google Scholar
  33. 33.
    Shetty A, Pang D, Mendis V, et al. Median nerve stimulation in forearm for treatment of neuropathic pain post re-implantation of fingers: a case report. Pain Pract. 2012;12(1 Supp):92.Google Scholar
  34. 34.
    Bouche B, Eisenberg E, Meignier M, et al. Facilitation of diagnostic and percutaneous trial lead placement with ultrasound guidance for peripheral nerve stimulation ilioinguinal neuralgia. Abstracts from the 10th World Congress of the International Neuromodulation Society. Neuromodulation. 2011;14:563.Google Scholar
  35. 35.
    Goroszeniuk T, Kothari SC, Hamann WC. Percutaneous implantation of a brachial plexus electrode for management of pain syndrome caused by a traction injury. Neuromodulation. 2007;10:148–55.CrossRefPubMedGoogle Scholar
  36. 36.
    Petrovic Z, Goroszeniuk T, Kothari S. Percutaneous lumbar plexus stimulation in the treatment of intractable pain. Reg Anesth Pain Med. 2007;32(5 Supp 1):11.Google Scholar
  37. 37.
    Rauck RL, Cohen SP, Gilmore CA, North JM, Kapural L, Zang RH, et al. Treatment of post-amputation pain with peripheral nerve stimulation. Neuromodulation. 2014;17(2):188–97.CrossRefPubMedGoogle Scholar
  38. 38.
    Mørch CD, Nguyen GP, Wacnik PW, Andersen OK. Mathematical model of nerve fiber activation during low back peripheral nerve field stimulation: analysis of electrode implant depth. Neuromodulation. 2014;17(3):218–25.CrossRefPubMedGoogle Scholar
  39. 39.
    Frahm KS, Hennings K, Vera-Portocarrero L, Wacnik PW, Mørch CD. Nerve fiber activation during peripheral nerve field stimulation: importance of electrode orientation and estimation of area of paresthesia. Neuromodulation. 2016;19(3):311–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Frahm KS, Hennings K, Vera-Portocarrero L, Wacnik PW, Mørch CD. Muscle activation during peripheral nerve field stimulation occurs due to recruitment of efferent nerve fibers, not direct muscle activation. Neuromodulation. 2016;19(6):587–96.Google Scholar
  41. 41.
    Kloimstein H, Likar R, Kern M, Neuhold J, Cada M, Loinig N, et al. Peripheral nerve field stimulation (PNFS) in chronic low back pain: a prospective multicenter study. Neuromodulation. 2014;17(2):180–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Guentchev M, Preuss C, Rink R, Peter L, Wocker EL, Tuettenberg J. Technical note: Treatment of sacroiliac joint pain with peripheral nerve stimulation. Neuromodulation. 2015;18(5):392–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Dodick DW, Silberstein SD, Reed KL, Deer TR, Slavin KV, Huh B, et al. Safety and efficacy of peripheral nerve stimulation of the occipital nerves for the management of chronic migraine: long-term results from a randomized, multicenter, double-blinded, controlled study. Cephalalgia. 2015;35(4):344–58.CrossRefPubMedGoogle Scholar
  44. 44.
    Wilson RD, Harris MA, Gunzler DD, Bennett ME, Chae J. Percutaneous peripheral nerve stimulation for chronic pain in subacromial impingement syndrome: a case series. Neuromodulation. 2014;17(8):771–6. discussion 776.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wilson RD, Gunzler DD, Bennett ME, Chae J. Peripheral nerve stimulation compared with usual care for pain relief of hemiplegic shoulder pain: a randomized controlled trial. Am J Phys Med Rehabil. 2014;93(1):17–28.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Stevanato G, Devigili G, Eleopra R, Fontana P, Lettieri C, Baracco C, et al. Chronic post-traumatic neuropathic pain of brachial plexus and upper limb: a new technique of peripheral nerve stimulation. Neurosurg Rev. 2014;37(3):473–9. discussion 479–80.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Deer TR1, Mekhail N, Provenzano D, Pope J, Krames E, Thomson S, Raso L, Burton A, DeAndres J, Buchser E, Buvanendran A, Liem L, Kumar K, Rizvi S, Feler C, Abejon D, Anderson J, Eldabe S, Kim P, Leong M, Hayek S, McDowell G 2nd, Poree L, Brooks ES, McJunkin T, Lynch P, Kapural L, Foreman RD, Caraway D, Alo K, Narouze S, Levy RM, North R; Neuromodulation Appropriateness Consensus Committee. The appropriate use of neurostimulation: avoidance and treatment of complications of neurostimulation therapies for the treatment of chronic pain. Neuromodulation Appropriateness Consensus Committee. Neuromodulation. 2014 Aug. 17(6):571–97Google Scholar
  48. 48.
    Lee PB1, Horazeck C2, Nahm FS3, Huh BK. Peripheral nerve stimulation for the treatment of chronic intractable headaches: long-term efficacy and safety study. Pain Physician. 2015 Sep-Oct. 18(5):505–16.Google Scholar
  49. 49.
    Deer TR, Levy RM, Rosenfeld EL. Prospective clinical study of a new implantable peripheral nerve stimulation device to treat chronic pain. Clin J Pain. 2010;26(5):359–72.CrossRefPubMedGoogle Scholar
  50. 50.
    Deer T, Pope J, Benyamin R, Vallejo R, Friedman A, Caraway D, et al. Prospective, multicenter, randomized, double-blinded, partial crossover study to assess the safety and efficacy of the novel neuromodulation system in the treatment of patients with chronic pain of peripheral nerve origin. Neuromodulation. 2016;19(1):91–100.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Krishnan Chakravarthy
    • 1
  • Andrew Nava
    • 2
    • 3
  • Paul J. Christo
    • 2
  • Kayode Williams
    • 2
  1. 1.Department of Anesthesia, Critical Care, and Pain MedicineMassachusetts General Hospital/Harvard Medical SchoolBostonUSA
  2. 2.Department of Anesthesiology and Critical Care Medicine, Division of Pain MedicineThe Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of Physical Medicine and RehabilitationJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations