Skip to main content

Advertisement

Log in

Peripheral Neuromodulation: A Review

  • Neuromodulation (M Gofeld, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Peripheral nerve stimulation (PNS) is likely the most diverse and rapidly expanding area of neuromodulation. Its expansion has become possible due to both technological and clinical advances in pain medicine. The first implantable systems were surgically placed. However, it is currently commonplace to use percutaneous leads, as this approach has become instrumental in its expansion. The first percutaneous peripheral nerve stimulators were reported in 1999. Cylindrical leads were implanted to stimulate the greater occipital nerve to manage intractable headache. It has been expanded into other individual nerves or nerve plexuses to treat neuropathic, visceral, cardiac, abdominal, low back and facial pain. The use of PNS in modulating organ function in treatment of syndromes such as epilepsy, incontinence and obesity with vagal, tibial and gastric stimulation is under extensive investigation. New technologies that allow easier and safer electrode placement are expected to further expand the uses of PNS. A noninvasive stimulation will open this treatment modality to more clinicians of varying backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of outstanding importance

  1. Melzack R, Wall P. Pain mechanisms: a new theory. Science. 1965;150:971–8.

    CAS  PubMed  Google Scholar 

  2. Wall P, Sweet WH. Temporary abolition of pain in man. Science. 1967;155:108–9.

    CAS  PubMed  Google Scholar 

  3. Weiner RL, Reed KL. Peripheral neurostimulation for control of intractable occipital neuralgia. Neuromodulation Technol Neural Interface. 1999;2:217–21.

    CAS  Google Scholar 

  4. Linderoth B, Meyerson B. Spinal cord stimulation: exploration of the physiological basis of a widely used therapy. Anesthesiology. 2010;113(6):1265–7.

    PubMed  Google Scholar 

  5. Linderoth B. Spinal cord stimulation: a brief update on mechanism of action. Eur J Pain Supp. 2009;3:89–93.

    Google Scholar 

  6. Ignelzi RJ, Nyquist JK. Direct effect of electrical stimulation on peripheral nerve evoked activity: Implications in pain relief. J Neurosurg. 1976;45:159–65.

    CAS  PubMed  Google Scholar 

  7. Sandkühler J, Chen JG, Cheng G, Randić M. Low-frequency stimulation of afferent Adelta-fibers induces long-term depression at primary afferent synapses with substantia gelatinosa neurons in the rat. J Neurosci. 1997;17(16):6483–91.

    PubMed  Google Scholar 

  8. Randić M, Jiang MC, Cerne R. Long-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord. J Neurosci. 1993;13(12):5228–41.

    PubMed  Google Scholar 

  9. Hanai F. Effect of electrical stimulation of peripheral nerves on neuropathic pain. Spine (Phila Pa 1976). 2000;25(15):1886–92.

    CAS  Google Scholar 

  10. Sluka KA, Deacon M, Stibal A, et al. Spinal blockade of opioid receptors prevents the analgesia produced by TENS in arthritic rats. J Pharmacol Exp Ther. 1999;289:840–6.

    CAS  PubMed  Google Scholar 

  11. Kalra A, Urban MO, Sluka KA. Blockade of opioid receptors in rostral ventral medulla prevents antihyperalgesia produced by transcutaneous electrical nerve stimulation (TENS). J Pharmacol Exp Ther. 2001;298:257–63.

    CAS  PubMed  Google Scholar 

  12. Radhakrishnan R, Sluka KA. Spinal muscarinic receptors are activated during low or high frequency TENS-induced antihyperalgesia in rats. Neuropharmacology. 2003;45:1111–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Radhakrishnan R, King EW, Dickman J, et al. Blockade of spinal 5-HT receptor subtypes prevents low, but not high, frequency TENS-induced antihyperalgesia in rats. Pain. 2003;105:205–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Maeda Y, Lisi TL, Vance CG, Sluka KA. Release of GABA and activation of GABAA receptors in the spinal cord mediates the effects of TENS in rats. Brain Res. 2007;1136:43–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Sluka KA, Lisi TL, Westlund KN. Increased release of serotonin in the spinal cord during low, but not high, frequency transcutaneous electric nerve stimulation in rats with joint inflammation. Arch Phys Med Rehabil. 2006;87:1137–40.

    PubMed Central  PubMed  Google Scholar 

  16. Chandran P, Sluka KA. Development of opioid tolerance with repeated transcutaneous electrical nerve stimulation administration. Pain. 2003;102:195–2011.

    CAS  PubMed  Google Scholar 

  17. Han JS, Chen XH, Sun SL, et al. Effect of low and high frequency TENS on met-enkephalin-arg-phe and dynorphin A immunoreactivity in human lumbar CSF. Pain. 1991;47:295–8.

    CAS  PubMed  Google Scholar 

  18. Salar G, Job I, Mingrino S, et al. Effect of transcutaneous electrotherapy on CSF β-endorphin content in patients without pain problems. Pain. 1981;10:169–72.

    CAS  PubMed  Google Scholar 

  19. Vera-Portocarrero LP, Cordero T, Billstrom T, et al. Differential Effects of Subcutaneous Electrical Stimulation (SQS) and Transcutaneous Electrical Nerve Stimulation (TENS) in Rodent Models of Chronic Neuropathic or Inflammatory Pain. Neuromodulation. 2013;16:328–35. This important study demonstrates that the mechanism of action in peripheral nerve stimulation with subcutaneous leads differs from and may be more effective than TENS.

    PubMed  Google Scholar 

  20. Ellrich J, Lamp S. Peripheral nerve stimulation inhibits nociceptive processing: an electrophysiological study in healthy volunteers. Neuromodulation. 2005;8(4):225–32.

    PubMed  Google Scholar 

  21. Matharu MS, Bartsch T, Ward N, et al. Central neuromodulation in chronic migraine patients with suboccipital stimulators: a PET study. Brain. 2004;127:220–30.

    PubMed  Google Scholar 

  22. Busch V, Jakob W, Juergens T, et al. Functional connectivity between trigeminal and occipital nerves revealed by occipital nerve blockade and nociceptive blink reflexes. Cephalalgia. 2006;26:50–5.

    CAS  PubMed  Google Scholar 

  23. Mueller O, Hagel V, Wrede K, et al. Stimulation of the greater occipital nerve: anatomical considerations and clinical implications. Pain Phys. 2013;16(3):E181–9.

    Google Scholar 

  24. Saper JR, Dodick DW, Silberstein SD, et al. ONSTIM Investigators. Occipital nerve stimulation for the treatment of intractable chronic migraine headache: ONSTIM feasibility study. Cephalalgia. 2011;31(3):271–85. This is the first published randomised study on the use of occipital stimulation in migraine.

    PubMed Central  PubMed  Google Scholar 

  25. Lipton RB, Goadsby PJ, Cady RK, et al. PRISM study: occipital nerve stimulation for treatment-refractory migraine [abstract PO47]. Cephalalgia. 2009;29(1 Suppl 1):30.

    Google Scholar 

  26. Silberstein SD, Dodick DW, Saper J, et al. Safety and efficacy of peripheral nerve stimulation of the occipital nerves for the management of chronic migraine: results from a randomised, multicenter, double blinded, control study. Cephalalgia. 2012;32(16):1165–79.

    PubMed  Google Scholar 

  27. May A, Bahra A, Büchel C, et al. Hypothalamic activation in cluster headache attacks. Lancet. 1998;352:275–8.

    CAS  PubMed  Google Scholar 

  28. Leone M, Franzini A, Cecchini AP, et al. Hypothalamic deep brain stimulation in the treatment of chronic cluster headache. Ther Adv Neurol Disord. 2010;3:187–95.

    PubMed Central  PubMed  Google Scholar 

  29. Leone M, Franzini A, Cecchini AP, et al. Deep brain stimulation in trigeminal autonomic cephalalgias. Neurotherapeutics. 2010;7:220–8.

    PubMed  Google Scholar 

  30. Magis D, Bruno MA, Fumal A, et al. Central modulation in cluster headache patients treated with occipital nerve stimulation: an FDG-PET study. BMC Neurol. 2011;11:25.

    PubMed Central  PubMed  Google Scholar 

  31. Magis D, Allena M, Bolla M, et al. Occipital nerve stimulation for drug-resistant chronic cluster headache: a prospective pilot study. Lancet Neurol. 2007;6(4):314–21.

    PubMed  Google Scholar 

  32. Burns B, Watkins L, Goadsby PJ. Treatment of medically intractable cluster headache by occipital nerve stimulation: long-term follow-up of eight patients. Lancet. 2007;369:1099–106.

    PubMed  Google Scholar 

  33. Schwedt TJ, Dodick DW, Hentz J, Trentman TL, Zimmerman RS. Occipital nerve stimulation for chronic headache – long-term safety and efficacy. Cephalalgia. 2007;27:153–7.

    CAS  PubMed  Google Scholar 

  34. Wilbrink LA, Teernstra OP, Haan J, et al. Occipital nerve stimulation in medically intractable, chronic cluster headache. The ICON study: rationale and protocol of a randomised trial. Cephalalgia. 2013;33(15):1238–47.

    Google Scholar 

  35. Narouze S, Kapural L, Casanova J, et al. Sphenopalatine ganglion radiofrequency ablation for the management of chronic cluster headache. Headache. 2009;49:571–7.

    PubMed  Google Scholar 

  36. Ansarinia M, Rezai A, Tepper S, et al. Electrical stimulation of sphenopalatine ganglion for acute treatment of cluster headaches. Headache. 2010;50:1164–74.

    PubMed  Google Scholar 

  37. Seylaz J, Hara H, Pinard E, et al. Effect of stimulation of the sphenopalatine ganglion on cortical blood flow in the rat. J Cereb Blood Flow Metab. 1988;8:875–8.

    CAS  PubMed  Google Scholar 

  38. Schoenen J, Jensen RH, Lanteri-Minet M, et al. Stimulation of the sphenopalatine ganglion (SPG) for cluster headache treatment. Pathway CH-1: a randomized, sham-controlled study. Cephalalgia. 2013;33(10):816–30.

    PubMed Central  PubMed  Google Scholar 

  39. Young RF. Electrical stimulation of the trigeminal nerve root for the treatment of chronic facial pain. J Neurosurg. 1995;83(1):72–8.

    CAS  PubMed  Google Scholar 

  40. Holsheimer J. Electrical stimulation of the trigeminal tract in chronic, intractable facial neuralgia. Arch Physiol Biochem. 2001;109(4):304–8.

    CAS  PubMed  Google Scholar 

  41. Taub E, Munz M, Tasker RR. Chronic electrical stimulation of the gasserian ganglion for the relief of pain in a series of 34 patients. J Neurosurg. 1997;86(2):197–202.

    CAS  PubMed  Google Scholar 

  42. Slavin KV, Colpan ME, Munawar N, et al. Trigeminal and occipital peripheral nerve stimulation for craniofacial pain: a single-institution experience and review of the literature. Neurosurg Focus. 2006;21(6):E5.

    PubMed  Google Scholar 

  43. Goroszeniuk T, Kothari S, Hamann W. Subcutaneous neuromodulating implant targeted at the site of pain. Reg Anesth Pain Med. 2006;31(2):168–71.

    PubMed  Google Scholar 

  44. Kent M, Upp J, Spevak C, et al. Ultrasound-guided peripheral nerve stimulator placement in two soldiers with acute battlefield neuropathic pain. Anesth Analg. 2012;114(4):875–8.

    PubMed  Google Scholar 

  45. Narouze SN, Zakari A, Vydyanathan A. Ultrasound-guided placement of a permanent percutaneous femoral nerve stimulator leads for the treatment of intractable femoral neuropathy. Pain Phys. 2009;12(4):E305–8.

    Google Scholar 

  46. Huntoon MA, Burgher AH. Ultrasound-guided permanent implantation of peripheral nerve stimulation (PNS) system for neuropathic pain of the extremities: original cases and outcomes. Pain Med. 2009;10(8):1369–77.

    PubMed  Google Scholar 

  47. Dunteman E. Peripheral nerve stimulation for unremitting ophthalmic post-herpetic neuralgia. Neuromodulation. 2002;5(1):32–7.

    PubMed  Google Scholar 

  48. Stinson LW, Roderer GT, Cross NE, David BE. Peripheral subcutaneous neurostiomulation for Control of Intractable Post-operative inguinal pain: a case report series. Neuromodulation. 2001;4(3):99–104.

    PubMed  Google Scholar 

  49. Kothari S, Goroszeniuk T. Percutaneous permanent electrode implantation to ulnar nerves for upper extremity chronic pain: 6 year follow up. Reg Anesth Pain Med. 2006;31(5 Supp):16.

    Google Scholar 

  50. Siddalingaiah V, Goroszeniuk T, Palmisani S, et al. Permanent percutaneous sciatic nerve stimulation for treatment of severe neuropathic Pain. [Abstract PH 367] Presented at the Proceedings of the 13th World Congress on Pain, Montreal, Canada, 29 August–2 September 2010.

  51. Shetty A, Pang D, Mendis V, et al. Median nerve stimulation in forearm for treatment of neuropathic pain post re-implantation of fingers: A case report. Pain Practice. 2012;12(1 Supp):92.

    Google Scholar 

  52. Bouche B, Eisenberg E, Meignier M, et al. Facilitation of diagnostic and percutaneous trial lead placement with ultrasound guidance for peripheral nerve stimulation ilioinguinal neuralgia. Abstracts from the 10th World Congress of the International Neuromodulation Society. Neuromodulation. 2011;14:563.

    Google Scholar 

  53. Kemler MA, Barendse GA, van Kleef M, de Vet HC, Rijks CP, Furnee CA, et al. Spinal cord stimulation in patients with chronic reflex sympathetic dystrophy. N Engl J Med. 2000;343:618–24.

    CAS  PubMed  Google Scholar 

  54. Goroszeniuk T, Kothari SC, Hamann WC. Percutaneous implantation of a brachial plexus electrode for management of pain syndrome caused by a traction injury. Neuromodulation. 2007;10:148–55.

    PubMed  Google Scholar 

  55. Goroszeniuk T, Pang D, Krol A, Kothari S. A novel technique of percutaneous brachial plexus stimulation for chronic neuropathic pain. Eur J Pain Supp. 2011;5:95.

    Google Scholar 

  56. Petrovic Z, Goroszeniuk T, Kothari S. Percutaneous lumbar plexus Stimulation in the treatment of intractable pain. Reg Anesth Pain Med. 2007;32(5 Supp 1):11.

    Google Scholar 

  57. Hegharty D, Goroszeniuk T. Peripheral nerve stimulation of the thoracic paravertebral plexus for chronic neuropathic pain. Pain Physician. 2011;14(3):295–300.

    Google Scholar 

  58. Goroszeniuk T. Short neuromodulation trial in neuropathic pain produces varying duration but reproducible pain relief. [Abstract 494 T]. Presented at Pain in Europe IV Congress of EFIC, Prague, Czech Republic, 2–6 September 2003.

  59. Goroszeniuk T, Kothari S. Subcutaneous targeted stimulation. In: Krames ES, Peckham PH, Rezai AR, Elsevier BV, editors. Textbook of neuromodulation. San Diego: Academic Press; 2009. p. 417–27.

    Google Scholar 

  60. O’Keeffe JD, O’Donnell BD, Tan T, Roets M. Subcutaneous electrical nerve stimulation (SENS one shot) in the treatment of neuropathic pain. Proceeding of the 9th Meeting of the NANS. Neuromodulation. 2006;9(1):8–20.

    Google Scholar 

  61. Abejón D, Krames ES. Peripheral nerve stimulation or is it peripheral subcutaneous field stimulation; what is in a moniker? Neuromodulation. 2009;12(1):1–4.

    PubMed  Google Scholar 

  62. Levy RM. Differentiating the leaves from the branches in the tree of neuromodulation: the state of peripheral nerve field stimulation. Neuromodulation. 2011;14:201–5.

    PubMed  Google Scholar 

  63. Paicius RM, Bernstein CA, Lempert-Cohen C. Peripheral nerve field stimulation in chronic abdominal pain. Pain Physician. 2006;9:261–6.

    PubMed  Google Scholar 

  64. Burgher AH, Huntoon MA, Turley TW, et al. Subcutaneous peripheral nerve stimulation with inter-lead stimulation for axial neck and low back pain: case series and review of the literature. Neuromodulation. 2012;15(2):100–6.

    PubMed  Google Scholar 

  65. Goroszeniuk T, Kothari S, Ready R, et al. Sacroiliac joint chronic pain managament: targeted neuromodulation implantation, a novel approach. Reg Anesth Pain Med. 2008;33(5):221.

    Google Scholar 

  66. Paicius RM, Bernstein CA, Lempert-Cohen C. Peripheral nerve field stimulation for the treatment of chronic low back pain: preliminary results of long-term follow-up: a case series. Neuromodulation. 2007;10(3):279–90.

    PubMed  Google Scholar 

  67. McRoberts WP, Roche M. Novel approach for peripheral subcutaneous field stimulation for the treatment of severe, chronic knee joint pain after total knee arthroplasty. Neuromodulation. 2010;13:131–6.

    PubMed  Google Scholar 

  68. Theodosiadis P, Samoladas E, Grosomanidis V, et al. A case of successful treatment of neuropathic pain after a scapular fracture with subcutaneous targeted neuromodulation. Neuromodulation. 2008;11(1):62–5.

    PubMed  Google Scholar 

  69. Sator-Katzenschlager S, Fiala K, Kress HG, et al. Subcutaneous Target Stimulation (STS) in chronic noncancer pain: a nationwide retrospective study. Pain Pract. 2010;10:279–86. This important study is the first large case series on the successful use of peripheral subcutaneous stimulation for low back pain.

    PubMed  Google Scholar 

  70. Verrills P, Vivian D, Mitchell B, Barnard A. Peripheral nerve field stimulation for chronic pain: 100 cases and review of the literature. Pain Med. 2011;12:1395–405.

    PubMed  Google Scholar 

  71. Abejón D, Deer T, Verrills P. Subcutaneous stimulation: how to assess optimal implantation depth. Neuromodulation. 2011;14:343–8.

    PubMed  Google Scholar 

  72. Ekre O, Eliasson T, Norrsell H, Warhrborg P, Mannheimer C. Long-term effects of spinal cord stimulation and coronary artery bypass grafting on quality of life and survival in the ESBY study. Eur Heart J. 2002;23:1938–45.

    CAS  PubMed  Google Scholar 

  73. Goroszeniuk T, Pang D, Al-Kaisy A, Sanderson K. Subcutaneous target stimulation–peripheral subcutaneous field stimulation in the treatment of refractory angina: preliminary case reports. Pain Pract. 2012;12:71–9. This describes the use of subcutaneous stimulation in refractory angina in patients with previous spinal cord stimulation failure.

    PubMed  Google Scholar 

  74. Buiten MS, DeJongste MJL, Beese U, et al. Subcutaneous electrical nerve stimulation: a feasible and new method for the treatment of patients with refractory angina. Neuromodulation. 2011;14:258–65.

    PubMed  Google Scholar 

  75. Davies DD. Incidence of major complications of neurolytic coeliac plexus block. J R Soc Med. 1993;86:264–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Goroszeniuk T, Khan R, Kothari S. Lumbar sympathetic chain neuromodulation with implanted electrodes for long term pain relief in loin pain Haematuria Syndrome. Neuromodulation. 2009;12(4):284–91.

    PubMed  Google Scholar 

  77. Goroszeniuk T, Khan R. Permanent percutaneous splanchnic nerve neuromodulation for management of pain due to chronic pancreatitis—a case report. Neuromodulation. 2011;14(3):253–7. This is the first description of implanted leads in the treatment of pancreatic pain at the splanchnic nerves.

    PubMed  Google Scholar 

  78. Mironer YE, Hutcheson JK, Satterthwaite JR, LaTourette PC. Prospective, two-part study of the interaction between spinal cord stimulation and peripheral nerve field stimulation in patients with low back pain: development of a new spinal-peripheral neurostimulation method. Neuromodulation Technol Neural Interface. 2011;14(2):151–4. This study shows that SCS and PNS may be combined and that they are not mutually exclusive.

    Google Scholar 

  79. Navarro RM, Vercimak DC. Triangular stimulation method utilizing combination spinal cord stimulation with peripheral subcutaneous field stimulation for chronic pain patients: a retrospective study. Neuromodulation. 2012;15:124–31.

    PubMed  Google Scholar 

  80. Shetty A, Pang D, Azzopardi J, Goroszeniuk T. Long term follow up of combined coeliac plexus and spinal cord stimulatior implant for pain duet o chronic pancreatitis: a novel approach. Reg Anesth Pain Med. 2012;37(Supp 1, 5):E198.

    Google Scholar 

  81. Hamm-Faber TE, Aukes HA, de Loos F, Gültuna I. Subcutaneous stimulation as an additional therapy to spinal cord stimulation for the treatment of lower limb pain and/or back pain: a feasibility study. Neuromodulation. 2012;15(2):108–16.

    PubMed  Google Scholar 

  82. Connor Jr DE, Nixon M, Nanda A, Guthikonda B. Vagal nerve stimulation for the treatment of medically refractory epilepsy: a review of the current literature. Neurosurg Focus. 2012;32(3):E12.

    PubMed  Google Scholar 

  83. Ogbonnaya S, Kaliaperumal C. Vagal nerve stimulator: evolving trends. J Nat Sci Biol Med. 2013;4(1):8–13.

    PubMed Central  PubMed  Google Scholar 

  84. Zabara J. Peripheral control of hypersynchronous discharge in epilepsy. Electroencephalography. 1985;61:S162.

    Google Scholar 

  85. Müller K, Fabó D, Entz L, Kelemen A, Halász P, Rásonyi G, et al. Outcome of Vagus nerve stimulation for epilepsy in Budapest. Epilepsia. 2010;51(Suppl S3):98–101.

    PubMed  Google Scholar 

  86. Englot DJ, Chang EF, Auguste KI. Vagus nerve stimulation for epilepsy: a meta-analysis of efficacy, and predictors of response. J Neurosurg. 2011;115:1248–55.

    PubMed  Google Scholar 

  87. Rush AJ, George MS, Sackeim HA, et al. Vagus nerve stimulation for treatment resistant depressions: a multicenter study. Biol Psychiatry. 2000;47:276–86.

    CAS  PubMed  Google Scholar 

  88. Bajbouj M, Merkl A, Schlaepfer TE, et al. Two-year outcome of Vagus nerve stimulation in treatment-resistant depression. Clin Psychopharmacol. 2010;30:273–81.

    Google Scholar 

  89. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in Adult rat Hippocampus. J Neurosci. 2000;20:9104–10.

    CAS  PubMed  Google Scholar 

  90. Bodenlos JS, Kose S, Borckardt JJ, et al. Vagus nerve stimulation acutely alters food craving in adults with depression. Appetite. 2007;48:145–53.

    PubMed  Google Scholar 

  91. Nesbitt A, Marin J, Tomkins E, Ruttledge M, Goadsby P. Non-invasive vagus nerve stimulation for the treatment of cluster headache: A cohort series with extended follow-up. [Abstract .12 June – 025] Presented at the 11th International Neuromodulation Society World Congress, Berlin, Germany, 10-13 June 2013.

  92. Rutkowski B, Niedzialkowska T, Otto J. Electrical stimulation in chronic low-back pain. Br J Anaesth. 1977;49(6):629–32.

    CAS  PubMed  Google Scholar 

  93. Rutkowski B, Niedzialkowska T, Otto J. Electrostimulation in the management of chronic pain. Anaesthetist. 1975;24(10):457–60.

    CAS  Google Scholar 

  94. Ghoname EA, White PF, Ahmed HE, et al. Percutaneous electrical nerve stimulation: an alternative to TENS in the management of sciatica. Pain. 1999;83(2):193–9.

    CAS  PubMed  Google Scholar 

  95. Hamza MA, White PF, Craig WF, Ghoname ES, Ahmed HE, Proctor TJ, et al. Percutaneous electrical nerve stimulation: a novel analgesic therapy for diabetic neuropathic pain. Diabetes Care. 2000;23:365–70.

    CAS  PubMed  Google Scholar 

  96. Raphael J, Raheem T, Southall J, Bennett A, Ashford R, Williams S. Randomized double-blind sham-controlled crossover study of short-term effect of percutaneous electrical nerve stimulation in neuropathic pain. Pain Med. 2011;12(10):1515–22.

    PubMed  Google Scholar 

  97. Ghoname EA, Craig WF, White PF, Ahmed HE, Hamza MA, Henderson BN, et al. Percutaneous electrical nerve stimulation for low back pain: a randomized crossover study. JAMA J Am Med Assoc. 1999;281:818–23.

    CAS  Google Scholar 

  98. Goroszeniuk T. Percutaneous insertion of permanent peripheral stimulating electrode in patients with neuropathic pain [Abstract 59]. Presented at the 6th International Neuromodulation Society World Congress; 2003 June 25–26; Madrid, Spain.

  99. Goroszeniuk T, Kothari S. Targeted external area stimulation. Reg Anesth Pain Med. 2004;29(4 Suppl 5):98.

    Google Scholar 

  100. Kothari S, Goroszeniuk T. External neuromodulation as a diagnostic and therapeutic procedure. Eur J Pain. 2006;10 Suppl 1:S158.

    Google Scholar 

  101. Goroszeniuk T, Pratap N, Kothari S, Sanderson K. An algorithm for peripheral neuromodulation in neuropathic pain. [Abstract 4, December 9] . Presented at the 8th World Congress of International Neuromodulation Society and 11th Annual Meeting of North American Neuromodulation Society. 9–12 December 2007, Acapulco, Mexico.

  102. Shetty A, Goroszeniuk T, Pang D, et al. A novel stimulating probe for external neuromodulation in body cavities. [Abstract 043 June 11]. Presented at the 11th International Neuromodulation Society World Congress, Berlin, Germany, 10-13 June 2013.

  103. Biemans JM, van Balken MR. Efficacy and effectiveness of percutaneous tibial nerve stimulation in the treatment of pelvic organ disorders: a systematic review. Neuromodulation. 2013;16(1):25–33. discussion 33.

    PubMed  Google Scholar 

  104. Moossdorff-Steinhauser HF, Berghmans B. Effects of percutaneous tibial nerve stimulation on adult patients with overactive bladder syndrome: a systematic review. Neurourol Urodyn. 2013;32(3):206–14.

    PubMed  Google Scholar 

  105. Peters KM, Carrico DJ, Wooldridge LS, et al. Percutaneous tibial nerve stimulation for the long-term treatment of overactive bladder: 3-year results of the STEP study. J Urol. 2013;189(6):2194–201.

    PubMed  Google Scholar 

  106. Nashold BS, Goldner JL, Mullen JB, Bright DS. Long-term pain control by direct peripheral nerve stimulation. J Bone Joint Surg Am. 1982;64:1–10.

    PubMed  Google Scholar 

  107. Picaza JA, Hunter SE, Cannon BW. Pain suppression by peripheral nerve stimulation. Appl Neurophysiol. 1977;40:223–34.

    PubMed  Google Scholar 

  108. Waisbrod G, Panhans C, Hansen D, Gerbershagen HU. Direct nerve stimulation for painful peripiheral neuropathies. J Bone Joint Surg Am. 1985;67-B:470–2.

    Google Scholar 

  109. Nielson KD, Watts C, Clark WK. Peripheral nerve injury from implantation of chronic stimulating electrodes for pain control. Surg Neurol. 1976;5:51–3.

    CAS  PubMed  Google Scholar 

  110. Goroszeniuk T, Pang D, Shetty A, et al. Peripheral nerve and subcutaneous targeted stimulation using a stimulating coude needle. Neuromodulation. 2014. doi:10.1111/ner.12126.

  111. Shellock F G, Audet-Griffin A J. Evaluation of magnetic resonance imaging issues for a wirelessly powered lead used for epidural, spinal cord stimulation. Neuromodulation Technol Neural Interface. 5th Aug 2013. doi:10.1111/ner.12094.

  112. Soin A, Fang ZP, Shah NS. Pilot Study on High-Frequency Nerve Block for Amputation Pain: Initial Results. [Abstract 010 June 11]. Presented at the 11th International Neuromodulation Society World Congress, Berlin, Germany, 10–13 June 2013.

  113. Aló KM, Abramova MV, Richter EO. Percutaneous peripheral nerve stimulation. Prog Neurol Surg. 2011;24:41–57.

    PubMed  Google Scholar 

  114. Rasskazoff SY, Slavin KV. An update on peripheral nerve stimulation. J Neurosurg Sci. 2012;56(4):279–85.

    CAS  PubMed  Google Scholar 

  115. Stanton-Hicks M, Panourias IG, Sakas DE, Slavin KV. The future of peripheral nerve stimulation. Prog Neurol Surg. 2011;24:210–7.

    PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Teodor Goroszeniuk serves as a board member for Remedius. Dr. Goroszeniuk has patents granted and pending for PNS and EX Stim. Dr. Goroszeniuk has had travel/accommodation expenses covered or reimbursed.

Dr. David Pang declares no potential conflicts of interest relevant to this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodor Goroszeniuk.

Additional information

This article is part of the Topical Collection on Neuromodulation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goroszeniuk, T., Pang, D. Peripheral Neuromodulation: A Review. Curr Pain Headache Rep 18, 412 (2014). https://doi.org/10.1007/s11916-014-0412-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11916-014-0412-9

Keywords

Navigation