Skip to main content

How Does Fasting Trigger Migraine? A Hypothesis

Abstract

Fasting or skipping meals are well-characterized migraine triggers. However, mechanisms of the fasting-induced migraine headache are unclear. Here, we review the recent developments on brain glycogen metabolism and its modulation by sympathetic activity and propose that insufficient supply of glycogen-derived glucose at the onset of intense synaptic activity may lead to an imbalance between the excitatory and inhibitory terminals, causing collective depolarization of neurons and astrocytes in a network. This may activate perivascular trigeminal afferents by opening neuronal pannexin1 channels and initiating parenchymal inflammatory pathways. Depending on whether or not network depolarization spreads or remains local, fasting may trigger migraine headache with or without aura.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rasmussen BK, Olesen J. Symptomatic and nonsymptomatic headaches in a general population. Neurology. 1992;42(6):1225–31.

    PubMed  Article  CAS  Google Scholar 

  2. The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia Int J Headache. 2013;33(9):629–808.

    Google Scholar 

  3. •• Hufnagl KN, Peroutka SJ. Glucose regulation in headache: implications for dietary management. Expert Rev Neurother. 2002;2(3):311–7. An excellent in-depth review.

    PubMed  Article  CAS  Google Scholar 

  4. •• Torelli P, Manzoni GC. Fasting headache. Curr Pain Headache Rep. 2010;14(4):284–91. An excellent in-depth review.

    PubMed  Article  Google Scholar 

  5. Mosek A, Korczyn AD. Yom Kippur headache. Neurology. 1995;45(11):1953–5.

    PubMed  Article  CAS  Google Scholar 

  6. Mosek A, Korczyn AD. Fasting headache, weight loss, and dehydration. Headache. 1999;39(3):225–7.

    PubMed  Article  CAS  Google Scholar 

  7. Awada A, al Jumah M. The first-of-Ramadan headache. Headache. 1999;39(7):490–3.

    PubMed  Article  CAS  Google Scholar 

  8. Shah PA, Nafee A. Clinical profile of headache and cranial neuralgias. J Assoc Physicians India. 1999;47(11):1072–5.

    PubMed  CAS  Google Scholar 

  9. Topacoglu H et al. Impact of Ramadan on demographics and frequencies of disease-related visits in the emergency department. Int J Clin Pract. 2005;59(8):900–5.

    PubMed  Article  CAS  Google Scholar 

  10. Abu-Salameh I, Plakht Y, Ifergane G. Migraine exacerbation during Ramadan fasting. J Headache Pain. 2010;11(6):513–7.

    PubMed  Article  Google Scholar 

  11. Mitsikostas DD et al. An epidemiological study of headache among the Monks of Athos (Greece). Headache. 1994;34(9):539–41.

    PubMed  Article  CAS  Google Scholar 

  12. Martin VT, Behbehani MM. Toward a rational understanding of migraine trigger factors. Med Clin N Am. 2001;85(4):911–41.

    PubMed  Article  CAS  Google Scholar 

  13. Andress-Rothrock D, King W, Rothrock J. An analysis of migraine triggers in a clinic-based population. Headache. 2010;50(8):1366–70.

    PubMed  Article  Google Scholar 

  14. Dalton K. Food intake prior to a migraine attack–study of 2,313 spontaneous attacks. Headache. 1975;15(3):188–93.

    PubMed  Article  CAS  Google Scholar 

  15. Malouf R, Brust JC. Hypoglycemia: causes, neurological manifestations, and outcome. Ann Neurol. 1985;17(5):421–30.

    PubMed  Article  CAS  Google Scholar 

  16. • Pearce J. Insulin induced hypoglycaemia in migraine. J Neurol Neurosurg Psychiatry. 1971;34(2):154–6. A landmark article on this subject.

    PubMed  Article  CAS  Google Scholar 

  17. Blau JN, Pyke DA. Effect of diabetes on migraine. Lancet. 1970;2(7666):241–3.

    PubMed  Article  CAS  Google Scholar 

  18. Jacome DE. Hypoglycemia rebound migraine. Headache. 2001;41(9):895–8.

    PubMed  Article  CAS  Google Scholar 

  19. Gray PA, Burtness HI. Hypoglycemic headache. Endocrinology. 1935;19:549–60.

    Article  Google Scholar 

  20. Auer RN. Hypoglycemic brain damage. Metab Brain Dis. 2004;19(3–4):169–75.

    PubMed  Article  Google Scholar 

  21. • Tesfaye N, Seaquist ER. Neuroendocrine responses to hypoglycemia. Ann N Y Acad Sci. 2010;1212:12–28. An excellent in-depth review.

    PubMed  Article  CAS  Google Scholar 

  22. Hockaday JM, Williamson DH, Whitty CW. Blood-glucose levels and fatty-acid metabolism in migraine related to fasting. Lancet. 1971;1(7710):1153–6.

    PubMed  Article  CAS  Google Scholar 

  23. De Silva KL, Ron MA, Pearce J. Blood sugar response to glucagon in migraine. J Neurol Neurosurg Psychiatry. 1974;37(1):105–7.

    PubMed  Article  Google Scholar 

  24. Cahill Jr GF. Fuel metabolism in starvation. Annu Rev Nutr. 2006;26:1–22.

    PubMed  Article  CAS  Google Scholar 

  25. Hoffmann U et al. Glucose modulation of spreading depression susceptibility. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2013;33(2):191–5.

    Article  CAS  Google Scholar 

  26. Bolay H et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med. 2002;8(2):136–42.

    PubMed  Article  CAS  Google Scholar 

  27. Karatas H et al. Spreading depression triggers headache by activating neuronal Panx1 channels. Science. 2013;339(6123):1092–5.

    PubMed  Article  CAS  Google Scholar 

  28. Vannucci SJ, Maher F, Simpson IA. Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia. 1997;21(1):2–21.

    PubMed  Article  CAS  Google Scholar 

  29. Brockmann K. The expanding phenotype of GLUT1-deficiency syndrome. Brain Dev. 2009;31(7):545–52.

    PubMed  Article  Google Scholar 

  30. Klepper J et al. Autosomal dominant transmission of GLUT1 deficiency. Hum Mol Genet. 2001;10(1):63–8.

    PubMed  Article  CAS  Google Scholar 

  31. Weber YG et al. Paroxysmal choreoathetosis/spasticity (DYT9) is caused by a GLUT1 defect. Neurology. 2011;77(10):959–64.

    PubMed  Article  CAS  Google Scholar 

  32. Schneider SA et al. GLUT1 gene mutations cause sporadic paroxysmal exercise-induced dyskinesias. Mov Disord Off J Mov Disord Soc. 2009;24(11):1684–8.

    Article  Google Scholar 

  33. Urbizu A et al. Paroxysmal exercise-induced dyskinesia, writer's cramp, migraine with aura and absence epilepsy in twin brothers with a novel SLC2A1 missense mutation. J Neurol Sci. 2010;295(1–2):110–3.

    PubMed  Article  CAS  Google Scholar 

  34. Weber YG et al. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Investig. 2008;118(6):2157–68.

    PubMed  CAS  Google Scholar 

  35. Brown AM. Brain glycogen re-awakened. J Neurochem. 2004;89(3):537–52.

    PubMed  Article  CAS  Google Scholar 

  36. Choi IY, Seaquist ER, Gruetter R. Effect of hypoglycemia on brain glycogen metabolism in vivo. J Neurosci Res. 2003;72(1):25–32.

    PubMed  Article  CAS  Google Scholar 

  37. Oz G et al. Human brain glycogen metabolism during and after hypoglycemia. Diabetes. 2009;58(9):1978–85.

    PubMed  Article  CAS  Google Scholar 

  38. Morgenthaler FD et al. Alteration of brain glycogen turnover in the conscious rat after 5h of prolonged wakefulness. Neurochem Int. 2009;55(1–3):45–51.

    PubMed  Article  CAS  Google Scholar 

  39. Maxwell DS, Kruger L. The fine structure of astrocytes in the cerebral cortex and their response to focal injury produced by heavy ionizing particles. J Cell Biol. 1965;25(2):141–57.

    PubMed  Article  CAS  Google Scholar 

  40. Obel LF et al. Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenerg. 2012;4:3.

    Article  CAS  Google Scholar 

  41. •• Brown AM, Ransom BR. Astrocyte glycogen and brain energy metabolism. Glia. 2007;55(12):1263–71. An excellent in-depth review.

    PubMed  Article  Google Scholar 

  42. •• Dinuzzo M et al. The role of astrocytic glycogen in supporting the energetics of neuronal activity. Neurochem Res. 2012;37(11):2432–8. An excellent in-depth review.

    PubMed  Article  CAS  Google Scholar 

  43. •• Pellerin L, Magistretti PJ. Sweet sixteen for ANLS. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2012;32(7):1152–66. An excellent in-depth review.

    Article  CAS  Google Scholar 

  44. Swanson RA et al. Sensory stimulation induces local cerebral glycogenolysis: demonstration by autoradiography. Neuroscience. 1992;51(2):451–61.

    PubMed  Article  CAS  Google Scholar 

  45. Matsui T et al. Brain glycogen decreases during prolonged exercise. J Physiol. 2011;589(Pt 13):3383–93.

    PubMed  Article  CAS  Google Scholar 

  46. Sickmann HM et al. Functional significance of brain glycogen in sustaining glutamatergic neurotransmission. J Neurochem. 2009;109 Suppl 1:80–6.

    PubMed  Article  CAS  Google Scholar 

  47. Schousboe A et al. Functional importance of the astrocytic glycogen-shunt and glycolysis for maintenance of an intact intra/extracellular glutamate gradient. Neurotox Res. 2010;18(1):94–9.

    PubMed  Article  Google Scholar 

  48. Schousboe A et al. Neuron-glia interactions in glutamatergic neurotransmission: roles of oxidative and glycolytic adenosine triphosphate as energy source. J Neurosci Res. 2011;89(12):1926–34.

    PubMed  Article  CAS  Google Scholar 

  49. Stobart JL, Anderson CM. Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front Cell Neurosci. 2013;7:38.

    PubMed  Article  CAS  Google Scholar 

  50. Barros LF et al. A quantitative overview of glucose dynamics in the gliovascular unit. Glia. 2007;55(12):1222–37.

    PubMed  Article  CAS  Google Scholar 

  51. Allaman I, Belanger M, Magistretti PJ. Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci. 2011;34(2):76–87.

    PubMed  Article  CAS  Google Scholar 

  52. Petit JM et al. Sleep deprivation modulates brain mRNAs encoding genes of glycogen metabolism. Eur J Neurosci. 2002;16(6):1163–7.

    PubMed  Article  Google Scholar 

  53. Magistretti PJ. Neuron-glia metabolic coupling and plasticity. J Exp Biol. 2006;209(Pt 12):2304–11.

    PubMed  Article  CAS  Google Scholar 

  54. Vecchia D, Pietrobon D. Migraine: a disorder of brain excitatory-inhibitory balance? Trends Neurosci. 2012;35(8):507–20.

    PubMed  Article  CAS  Google Scholar 

  55. Kılıç K et al. Insufficient astrocytic glycogen turnover may predispose to spreading depression and migraine attacks. Poster presented at: Society for Neuroscience (SfN) Annual Meeting, 2011 Nov 12–16; Washington, DC.

  56. Seidel JL, Shuttleworth CW. Contribution of astrocyte glycogen stores to progression of spreading depression and related events in hippocampal slices. Neuroscience. 2011;192:295–303.

    PubMed  Article  CAS  Google Scholar 

  57. Sandilos JK, Bayliss DA. Physiological mechanisms for the modulation of pannexin 1 channel activity. J Physiol. 2012;590(Pt 24):6257–66.

    PubMed  Article  CAS  Google Scholar 

  58. MacVicar BA, Thompson RJ. Non-junction functions of pannexin-1 channels. Trends Neurosci. 2010;33(2):93–102.

    PubMed  Article  CAS  Google Scholar 

  59. Dahlem MA. Migraine generator network and spreading depression dynamics as neuromodulation targets in episodic migraine. ArXiv, 2013. Quantitative Biology.

  60. O'Donnell J et al. Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem Res. 2012;37(11):2496–512.

    PubMed  Article  Google Scholar 

  61. •• Peroutka SJ. Migraine: a chronic sympathetic nervous system disorder. Headache. 2004;44(1):53–64. An excellent in-depth review.

    PubMed  Article  Google Scholar 

  62. Gotoh F et al. Noradrenergic nervous activity in migraine. Arch Neurol. 1984;41(9):951–5.

    PubMed  Article  CAS  Google Scholar 

  63. Havanka-Kannianinen H et al. Cardiovascular reflexes and plasma noradrenaline levels in migraine patients before and during nimodipine medication. Headache. 1987;27(1):39–44.

    PubMed  Article  CAS  Google Scholar 

  64. Mikamo K, Takeshima T, Takahashi K. Cardiovascular sympathetic hypofunction in muscle contraction headache and migraine. Headache. 1989;29(2):86–9.

    PubMed  Article  CAS  Google Scholar 

  65. Takeshima T et al. Muscle contraction headache and migraine. Platelet activation and plasma norepinephrine during the cold pressor test. Cephalalgia Int J Headache. 1989;9(1):7–13.

    CAS  Google Scholar 

  66. Nagel-Leiby S et al. Event-related slow potentials and associated catecholamine function in migraine. Cephalalgia Int J Headache. 1990;10(6):317–29.

    Article  CAS  Google Scholar 

  67. Martinez F et al. Catecholamine levels in plasma and CSF in migraine. J Neurol Neurosurg Psychiatry. 1993;56(10):1119–21.

    PubMed  Article  CAS  Google Scholar 

  68. Boccuni M et al. The pressor hyperresponsiveness to phenylephrine unmasks sympathetic hypofunction in migraine. Cephalalgia Int J Headache. 1989;9(4):239–45.

    CAS  Google Scholar 

  69. Drummond PD. Cervical sympathetic deficit in unilateral migraine headache. Headache. 1991;31(10):669–72.

    PubMed  Article  CAS  Google Scholar 

  70. Gip P et al. Glucocorticoids influence brain glycogen levels during sleep deprivation. Am J Physiol Regul Integr Comp Physiol. 2004;286(6):R1057–62.

    PubMed  Article  CAS  Google Scholar 

  71. Allaman I, Pellerin L, Magistretti PJ. Glucocorticoids modulate neurotransmitter-induced glycogen metabolism in cultured cortical astrocytes. J Neurochem. 2004;88(4):900–8.

    PubMed  Article  CAS  Google Scholar 

  72. Ziegler DK et al. Circadian rhythms of plasma cortisol in migraine. J Neurol Neurosurg Psychiatry. 1979;42(8):741–8.

    PubMed  Article  CAS  Google Scholar 

  73. Cataldo AM, Broadwell RD. Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes. J Neurocytol. 1986;15(4):511–24.

    PubMed  Article  CAS  Google Scholar 

  74. Sorg O, Magistretti PJ. Vasoactive intestinal peptide and noradrenaline exert long-term control on glycogen levels in astrocytes: blockade by protein synthesis inhibition. J Neurosci Off J Soc Neurosci. 1992;12(12):4923–31.

    CAS  Google Scholar 

  75. Brown AM, Tekkok SB, Ransom BR. Glycogen regulation and functional role in mouse white matter. J Physiol. 2003;549(Pt 2):501–12.

    PubMed  Article  CAS  Google Scholar 

  76. Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2007;27(11):1766–91.

    Article  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Turgay Dalkara and Dr. Kıvılcım Kılıç reported no potential conflicts of interest relevant to this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgay Dalkara.

Additional information

This article is part of the Topical Collection on Migraine

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dalkara, T., Kılıç, K. How Does Fasting Trigger Migraine? A Hypothesis. Curr Pain Headache Rep 17, 368 (2013). https://doi.org/10.1007/s11916-013-0368-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11916-013-0368-1

Keywords

  • Migraine
  • Headache
  • Fasting
  • Hunger
  • Glucose
  • Hypoglycemia
  • Adrenaline
  • Noradrenaline
  • Sympathetic nervous system
  • Insulin
  • Glucagon
  • Cortisol
  • Growth hormone
  • Glycogen
  • Glucose transporter
  • Astrocyte
  • Brain metabolism