Skip to main content

Advertisement

Log in

The Hypothalamus: Specific or Nonspecific Role in the Pathophysiology of Trigeminal Autonomic Cephalalgias?

  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

The clinical features of trigeminal autonomic cephalalgias (TACs), such as trigeminal distribution of pain, circadian/circannual rhythmicity, and ipsilateral cranial autonomic features, suggest a crucial role of the hypothalamus in the underlying pathophysiology of these primary headache disorders. Hypothalamic involvement is supported by several neuroimaging, neuroendocrine, genetic, experimental pain, and animal studies. Unfortunately, these different studies were unable to resolve the paramount question of whether the detected hypothalamic alterations are pathognomonic for TACs or whether they merely represent an epiphenomenon of different pain conditions in general. This review summarizes studies on hypothalamic involvement in TAC pathophysiology, demonstrates hypothalamic activation in other painful diseases, and evaluates the role of the hypothalamus in the pathophysiologic mechanisms associated with these different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been as: • Of importance •• Of major importance

  1. Kiernan J. The Human Nervous System: An Anatomical View Point. New-York: Lippincott-Raven; 1998.

    Google Scholar 

  2. Settle M. The hypothalamus. Neonatal Netw. 2000;19:9–14.

    PubMed  CAS  Google Scholar 

  3. The International Classification of Headache Disorders: 2nd edition. Cephalalgia 2004;24 Suppl 1:9–160.

    Google Scholar 

  4. Millan MJ. The induction of pain: an integrative review. Prog. Neurobiol. 1999; 57:1–164.

    Article  PubMed  CAS  Google Scholar 

  5. Miranda-Cardenas Y, Rojas-Piloni G, Martínez-Lorenzana G, et al. Oxytocin and electrical stimulation of the paraventricular hypothalamic nucleus produce antinociceptive effects that are reversed by an oxytocin antagonist. Pain 2006;122:182–189.

    Article  PubMed  CAS  Google Scholar 

  6. Bartsch T, Levy MJ, Knight YE, Goadsby PJ. Differential modulation of nociceptive dural input to [hypocretin] orexin A and B receptor activation in the posterior hypothalamic area. Pain 2004;109:367–378.

    Article  PubMed  CAS  Google Scholar 

  7. Benjamin L, Levy MJ, Lasalandra MP, Knight YE, et al. Hypothalamic activation after stimulation of the superior sagittal sinus in the cat: a Fos study. Neurobiol. Dis. 2004;16:500–505.

    Article  PubMed  CAS  Google Scholar 

  8. Panda S, Hogenesch JB. It’s all in the timing: many clocks, many outputs. J. Biol. Rhythms. 2004;19:374–387.

    Article  PubMed  CAS  Google Scholar 

  9. Davidson AJ, Yamazaki S, Menaker M. SCN: ringmaster of the circadian circus or conductor of the circadian orchestra? Novartis Found. Symp. 2003; 253:110–121; discussion 121–125, 281–284.

    Article  PubMed  Google Scholar 

  10. Goadsby PJ, Lipton RB. A review of paroxysmal hemicranias, SUNCT syndrome and other short-lasting headaches with autonomic feature, including new cases. Brain 1997;120:193–209.

    Article  PubMed  Google Scholar 

  11. Dodick DW, Eross EJ, Parish JM, Silber M. Clinical, anatomical, and physiologic relationship between sleep and headache. Headache 2003;43:282–292.

    Article  PubMed  Google Scholar 

  12. Leone M, Bussone G. A review of hormonal findings in cluster headache. Evidence for hypothalamic involvement. Cephalalgia 1993;13:309–317.

    Article  PubMed  CAS  Google Scholar 

  13. Micieli G, Cavallini A, Facchinetti F, et al. Chronic paroxysmal hemicrania: a chronobiological study nncase report). Cephalalgia 1989;9:281–286.

    Article  PubMed  CAS  Google Scholar 

  14. Bahra A, May A, Goadsby PJ. Cluster headache: a prospective clinical study with diagnostic implications. Neurology 2002;58:354–361.

    PubMed  Google Scholar 

  15. Russell MB. Epidemiology and genetics of cluster headache. Lancet Neurol. 2004;3:279–283.

    Article  PubMed  Google Scholar 

  16. Rainero I, Gallone S, Valfrè W, et al. A polymorphism of the hypocretin receptor 2 gene is associated with cluster headache. Neurology 2004;63:1286–1288.

    PubMed  CAS  Google Scholar 

  17. Baumber L, Sjöstrand C, Leone M, et al. A genome-wide scan and HCRTR2 candidate gene analysis in a European cluster headache cohort. Neurology 2006; 66:1888–1893.

    Article  PubMed  CAS  Google Scholar 

  18. Pinessi L, Binello E, De Martino P, et al. The 1246G-->A polymorphism of the HCRTR2 gene is not associated with migraine. Cephalalgia 2007; 27:945–949.

    Article  PubMed  CAS  Google Scholar 

  19. May A, Bahra A, Büchel C, et al. Hypothalamic activation in cluster headache attacks. Lancet 1998;352:275–278.

    Article  PubMed  CAS  Google Scholar 

  20. Sprenger T, Boecker H, Tolle TR, et al. Specific hypothalamic activation during a spontaneous cluster headache attack. Neurology 2004;62:516–517.

    PubMed  CAS  Google Scholar 

  21. Morelli N, Pesaresi I, Cafforio G, et al. Functional magnetic resonance imaging in episodic cluster headache. J Headache Pain. 2009;10:11–14.

    Article  PubMed  Google Scholar 

  22. Matharu MS, Cohen AS, Frackowiak RSJ, Goadsby PJ. Posterior hypothalamic activation in paroxysmal hemicrania. Ann. Neurol. 2006;59:535–545.

    Article  PubMed  Google Scholar 

  23. May A, Bahra A, Büchel C, et al. Functional magnetic resonance imaging in spontaneous attacks of SUNCT: short-lasting neuralgiform headache with conjunctival injection and tearing. Ann. Neurol. 1999;46:791–794.

    Article  PubMed  CAS  Google Scholar 

  24. Sprenger T, Valet M, Platzer S, et al. SUNCT: bilateral hypothalamic activation during headache attacks and resolving of symptoms after trigeminal decompression. Pain 2005;113:422–426.

    Article  PubMed  Google Scholar 

  25. Sprenger T, Valet M, Hammes M, et al. Hypothalamic activation in trigeminal autonomic cephalgia: functional imaging of an atypical case. Cephalalgia 2004;24:753–757.

    Article  PubMed  CAS  Google Scholar 

  26. Cohen AS. Short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing. Cephalalgia 2007;27:824–832.

    Article  PubMed  CAS  Google Scholar 

  27. May A, Ashburner J, Büchel C, et al. Correlation between structural and functional changes in brain in an idiopathic headache syndrome. Nat. Med. 1999;5:836–838.

    Article  PubMed  CAS  Google Scholar 

  28. Matharu MS. Functional and structural neuroimaging in primary headache disorders [PhD thesis]. 2006;

  29. Lodi R, Pierangeli G, Tonon C, et al. Study of hypothalamic metabolism in cluster headache by proton MR spectroscopy. Neurology. 2006;66:1264–1266.

    Article  PubMed  CAS  Google Scholar 

  30. Wang S, Lirng J, Fuh J, Chen J. Reduction in hypothalamic 1 H-MRS metabolite ratios in patients with cluster headache. J. Neurol. Neurosurg. Psychiatr. 2006;77:622–625.

    Article  PubMed  Google Scholar 

  31. •• Leone M, Franzini A, Proietti Cecchini A,et al. Deep brain stimulation in trigeminal autonomic cephalalgias. Neurotherapeutics 2010;7:220-228. This is an interesting review on the efficacy as well as side effects of DBS in TAC.

    Article  PubMed  Google Scholar 

  32. Walcott BP, Bamber NI, Anderson DE. Successful treatment of chronic paroxysmal hemicrania with posterior hypothalamic stimulation: technical case report. Neurosurgery. 2009;65:E997; discussion E997.

    Article  PubMed  Google Scholar 

  33. Lyons MK, Dodick DW, Evidente VGH. Responsiveness of short-lasting unilateral neuralgiform headache with conjunctival injection and tearing to hypothalamic deep brain stimulation. J. Neurosurg. 2009;110:279–281.

    Article  PubMed  Google Scholar 

  34. Leone M, Franzini A, D’Andrea G, et al. Deep brain stimulation to relieve drug-resistant SUNCT. Ann. Neurol. 2005;57:924–927.

    Article  PubMed  Google Scholar 

  35. Franzini A, Messina G, Cordella R, et al. Deep brain stimulation of the posteromedial hypothalamus: indications, long-term results, and neurophysiological considerations. Neurosurg Focus. 2010;29:E13.

    Article  PubMed  Google Scholar 

  36. Solomon GD. Circadian rhythms and migraine. Cleve Clin J Med. 1992;59:326–329.

    PubMed  CAS  Google Scholar 

  37. Obermann M, Yoon M, Dommes P, et al. Prevalence of trigeminal autonomic symptoms in migraine: a population-based study. Cephalalgia. 2007;27:504–509.

    Article  PubMed  CAS  Google Scholar 

  38. Denuelle M, Fabre N, Payoux P, et al. Hypothalamic activation in spontaneous migraine attacks. Headache. 2007;47:1418–1426.

    PubMed  Google Scholar 

  39. Weiller C, May A, Limmroth V, et al. Brain stem activation in spontaneous human migraine attacks. Nat. Med. 1995;1:658–660.

    Article  PubMed  CAS  Google Scholar 

  40. Bahra A, Matharu MS, Buchel C, et al. Brainstem activation specific to migraine headache. Lancet 2001;357:1016–1017.

    Article  PubMed  CAS  Google Scholar 

  41. Afridi SK, Giffin NJ, Kaube H, et al. A positron emission tomographic study in spontaneous migraine. Arch. Neurol. 2005;62:1270–1275.

    Article  PubMed  Google Scholar 

  42. Peres MF, Sanchez del Rio M, Seabra ML, et al. Hypothalamic involvement in chronic migraine. J. Neurol. Neurosurg. Psychiatr. 2001;71:747-751

    Article  PubMed  CAS  Google Scholar 

  43. Matharu MS, Cohen AS, McGonigle DJ, et al. Posterior hypothalamic and brainstem activation in hemicrania continua. Headache 2004;44:747–761.

    Article  PubMed  Google Scholar 

  44. Holle D, Naegel S, Krebs S, et al. Hypothalamic gray matter volume loss in hypnic headache. Ann. Neurol. 2010 in press;

  45. Donnet A and Lantéri-Minet M. A consecutive series of 22 cases of hypnic headache in France. Cephalalgia 2009;29:928–934.

    Article  PubMed  CAS  Google Scholar 

  46. Holle D, Naegel S, Krebs S, et al. Clinical characteristics and therapeutic options in Hypnic headache. Cephalalgia. 2010 in press;

  47. Kupers RC, Gybels JM, Gjedde A. Positron emission tomography study of a chronic pain patient successfully treated with somatosensory thalamic stimulation. Pain 2000;87:295–302.

    Article  PubMed  CAS  Google Scholar 

  48. Rosen SD, Paulesu E, Frith CD, et al. Central nervous pathways mediating angina pectoris. Lancet 1994;344:147–150.

    Article  PubMed  CAS  Google Scholar 

  49. • Blankstein U, Chen J, Diamant NE, Davis KD. Altered brain structure in irritable bowel syndrome: potential contributions of pre-existing and disease-driven factors. Gastroenterology 2010;138:1783-1789. This study shows increased gray matter of the hypothalamus in patients with irritable bowel syndrome. These results question a specific hypothalamic alteration in TAC.

    Article  PubMed  Google Scholar 

  50. Sommer C, Häuser W, Gerhold K, et al. Etiology and pathophysiology of fibromylagia syndrme and chronic widespread pain. Schmerz 2008;22:267–282.

    Article  PubMed  CAS  Google Scholar 

  51. •• Dubé A, Duquette M, Roy M, et al. Brain activity associated with the electrodermal reactivity to acute heat pain. Neuroimage 2009;45:169-180. This is an interesting study showing the involvement of the hypothalamus in experimental pain.

    Article  PubMed  Google Scholar 

  52. Hsieh JC, Ståhle-Bäckdahl M, Hägermark O, et al. Traumatic nociceptive pain activates the hypothalamus and the periaqueductal gray: a positron emission tomography study. Pain 1996;64:303–314.

    Article  PubMed  CAS  Google Scholar 

  53. Petrovic P, Petersson KM, Hansson P, Ingvar M. Brainstem involvement in the initial response to pain. Neuroimage 2004;22:995–1005.

    Article  PubMed  Google Scholar 

  54. Sánchez M, Alvarez Linera J. Functional neuroimaging of headaches. Lancet Neurol. 2004;3:645–651.

    Article  PubMed  Google Scholar 

Download references

Disclosures

Dr. D. Holle: none. Dr. Zaza Katsarava has served on the advisory boards of Bayer and Allergan; has received consulting fees from Biogen, Bayer, and Allergan; has received grants or has grants pending with Bundesministerium für Bildung und Forschung (BMBF), Bayer, Merck, and Biogen; and has received payment for development of educational presenatations from Allergan. Dr. M. Olbermann: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagny Holle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holle, D., Katsarava, Z. & Obermann, M. The Hypothalamus: Specific or Nonspecific Role in the Pathophysiology of Trigeminal Autonomic Cephalalgias?. Curr Pain Headache Rep 15, 101–107 (2011). https://doi.org/10.1007/s11916-010-0166-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-010-0166-y

Keywords

Navigation