Current Pain and Headache Reports

, Volume 12, Issue 6, pp 453–462 | Cite as

New Theories in the pathogenesis of menstrual migraine

Article

Abstract

Hormonal and nonhormonal factors play a role in the pathophysiology of menstrual migraine, but estrogen withdrawal appears to be the most potent of these factors. It is postulated that estrogen withdrawal directly enhances excitability of trigeminal afferents, modulates the synthesis of neuropeptides, activates/deactivates specific neurotransmitter systems, and influences the function of microglia. These changes could activate and/or sensitize the trigeminal system and increase the likelihood of migraine headache during perimenstrual time periods. Three new theories are advanced in this article to explain the pathophysiology of menstrual migraine. Only through an understanding of the mechanisms involved in menstrual migraine can we gain insight into the management of this severe and debilitating form of migraine headache.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Martin VT: Menstrual migraine: a review of prophylactic therapies. Curr Pain Headache Rep 2004, 8:229–237.PubMedCrossRefGoogle Scholar
  2. 2.
    Martin V, Wernke S, Mandell K, et al.: Defining the relationship between ovarian hormones and migraine headache. Headache 2005, 45:1190–1201.PubMedCrossRefGoogle Scholar
  3. 3.
    Martin VT, Behbehani M: Ovarian hormones and migraine headache: understanding mechanisms and pathogenesis—part 2. Headache 2006, 46:365–386.PubMedCrossRefGoogle Scholar
  4. 4.
    Shughrue PJ, Lane MV, Merchenthaler I: Comparative distribution of estrogen receptor-alpha and-beta mRNA in the rat central nervous system. J Comp Neurol 1997, 388:507–525.PubMedCrossRefGoogle Scholar
  5. 5.
    McEwen BS: Invited review: estrogens effects on the brain: multiple sites and molecular mechanisms. J Appl Physiol 2001, 91:2785–2801.PubMedGoogle Scholar
  6. 6.
    Filardo EJ, Thomas P: GPR30: a seven-transmembrane-spanning estrogen receptor that triggers EGF release. Trends Endocrinol Metab 2005, 16:362–367.PubMedCrossRefGoogle Scholar
  7. 7.
    Brown TJ, MacLusky NJ: Progesterone modulation of estrogen receptors in microdissected regions of the rat hypothalamus. Mol Cell Neurosci 1994, 5:283–290.PubMedCrossRefGoogle Scholar
  8. 8.
    Guerra-Araiza C, Cerbon MA, Morimoto S, Camacho-Arroyo I: Progesterone receptor isoforms expression pattern in the rat brain during the estrous cycle. Life Sci 2000, 66:1743–1752.PubMedCrossRefGoogle Scholar
  9. 9.
    Fernandez-Ruiz JJ, de Miguel R, Hernandez ML, Ramos JA: Time-course of the effects of ovarian steroids on the activity of limbic and striatal dopaminergic neurons in female rat brain. Pharmacol Biochem Behav 1990, 36:603–606.PubMedCrossRefGoogle Scholar
  10. 10.
    Colson NJ, Lea RA, Quinlan S, et al.: The estrogen receptor 1 G594A polymorphism is associated with migraine susceptibility in two independent case/control groups. Neurogenetics 2004, 5:129–133.PubMedCrossRefGoogle Scholar
  11. 11.
    Colson NJ, Lea RA, Quinlan S, et al.: Investigation of hormone receptor genes in migraine. Neurogenetics 2005, 6:17–23.PubMedCrossRefGoogle Scholar
  12. 12.
    Lee H, Sininger L, Jen JC, et al.: Association of progesterone receptor with migraine-associated vertigo. Neurogenetics 2007, 8:195–200.PubMedCrossRefGoogle Scholar
  13. 13.
    Somerville BW: The role of estradiol withdrawal in the etiology of menstrual migraine. Neurology 1972, 22:355–365.PubMedGoogle Scholar
  14. 14.
    Somerville BW: Plasma estradiol level linked to migraine during menstrual period. JAMA 1972, 221:845–846.Google Scholar
  15. 15.
    Somerville BW: The role of progesterone in menstrual migraine. Neurology 1971, 21:853–859.PubMedGoogle Scholar
  16. 16.
    Jabbour HN, Kelly RW, Fraser HM, Critchley HO: Endocrine regulation of menstruation. Endocr Rev 2006, 27:17–46.PubMedCrossRefGoogle Scholar
  17. 17.
    Dawood MY: Primary dysmenorrhea: advances in pathogenesis and management. Obstet Gynecol 2006, 108:428–441.PubMedGoogle Scholar
  18. 18.
    Irwin J, Morse E, Riddick D: Dysmenorrhea induced by autologous transfusion. Obstet Gynecol 1981, 58:286–290.PubMedGoogle Scholar
  19. 19.
    Silberstein S, Merriam G: Sex hormones and headache 1999 (menstrual migraine). Neurology 1999, 53(Suppl 1):S3–S13.PubMedGoogle Scholar
  20. 20.
    Mauskop A, Altura BT, Altura BM: Serum ionized magnesium levels and serum ionized calcium/ionized magnesium ratios in women with menstrual migraine. Headache 2002, 42:242–248.PubMedCrossRefGoogle Scholar
  21. 21.
    Mauskop A, Altura BT, Cracco RQ, Altura BM: Intravenous magnesium sulphate relieves migraine attacks in patients with low serum ionized magnesium levels: a pilot study. Clin Sci (Lond) 1995, 89:633–636.Google Scholar
  22. 22.
    Gazerani P, Andersen OK, Arendt-Nielsen L: A human experimental capsaicin model for trigeminal sensitization. Gender-specific differences. Pain 2005, 118:155–163.PubMedCrossRefGoogle Scholar
  23. 23.
    Isselee H, De Laat A, Bogaerts K, Lysens R: Long-term fluctuations of pressure pain thresholds in healthy men, normally menstruating women and oral contraceptive users. Eur J Pain 2001, 5:27–37.PubMedCrossRefGoogle Scholar
  24. 24.
    Martin VT, Lee J, Behbehani MM: Sensitization of the trigeminal sensory system during different stages of the rat estrous cycle: implications for menstrual migraine. Headache 2007, 47:552–563.PubMedCrossRefGoogle Scholar
  25. 25.
    Bereiter DA, Barker DJ: Hormone-induced enlargement of receptive fields in trigeminal mechanoreceptive neurons. I. Time course, hormone, sex and modality specificity. Brain Res 1980, 184:395–410.PubMedCrossRefGoogle Scholar
  26. 26.
    Flake NM, Bonebreak DB, Gold MS: Estrogen and inflammation increase the excitability of rat temporomandibular joint afferent neurons. J Neurophysiol 2005, 93:1585–1597.PubMedCrossRefGoogle Scholar
  27. 27.
    Puri V, Puri S, Svojanovsky SR, et al.: Effects of oestrogen on trigeminal ganglia in culture: implications for hormonal effects on migraine. Cephalalgia 2006, 26:33–42.PubMedCrossRefGoogle Scholar
  28. 28.
    Puri V, Cui L, Liverman CS, et al.: Ovarian steroids regulate neuropeptides in the trigeminal ganglion. Neuropeptides 2005, 39:409–417.PubMedCrossRefGoogle Scholar
  29. 29.
    Puri V, Chandrala S, Puri S, et al.: Ghrelin is expressed in trigeminal neurons of female mice in phase with the estrous cycle. Neuropeptides 2006, 40:35–46.PubMedCrossRefGoogle Scholar
  30. 30.
    Goadsby PJ, Edvinsson L, Ekman R: Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol 1988, 23:193–196.PubMedCrossRefGoogle Scholar
  31. 31.
    Moussaoul S, Duval P, Lenoir V, et al.: CGRP in the trigeminal nucleus, spinal cord and hypothalamus: effect of gonadal steroids. Neuropeptides 1996, 30:546–550.PubMedCrossRefGoogle Scholar
  32. 32.
    Taylor-Clark TE, Undem BJ, Macglashan DW Jr, et al.: Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol Pharmacol 2008, 73:274–281.PubMedCrossRefGoogle Scholar
  33. 33.
    Pezet S, McMahon SB: Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 2006, 29:507–538.PubMedCrossRefGoogle Scholar
  34. 34.
    Buldyrev I, Tanner NM, Hsieh HY, et al.: Calcitonin generelated peptide enhances release of native brain-derived neurotrophic factor from trigeminal ganglion neurons. J Neurochem 2006, 99:1338–1350.PubMedCrossRefGoogle Scholar
  35. 35.
    Fjell J, Cummins TR, Fried K, et al.: In vivo NGF deprivation reduces SNS expression and TTX-R sodium currents in IB4-negative DRG neurons. J Neurophysiol 1999, 81:803–810.PubMedGoogle Scholar
  36. 36.
    Brenner E, Kondziella D, Haberg A, Sonnewald U: Impaired glutamine metabolism in NMDA receptor hypofunction induced by MK801. J Neurochem 2005, 94:1594–1603.PubMedCrossRefGoogle Scholar
  37. 37.
    Kerr BJ, Bradbury EJ, Bennett DL, et al.: Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-evoked responses in the rat spinal cord. J Neurosci 1999, 19:5138–5148.PubMedGoogle Scholar
  38. 38.
    Garraway SM, Petruska JC, Mendell LM: BDNF sensitizes the response of lamina II neurons to high threshold primary afferent inputs. Eur J Neurosci 2003, 18:2467–2476.PubMedCrossRefGoogle Scholar
  39. 39.
    Gibbs RB: Treatment with estrogen and progesterone affects relative levels of brain-derived neurotrophic factor mRNA and protein in different regions of the adult rat brain. Brain Res 1999, 844:20–27.PubMedCrossRefGoogle Scholar
  40. 40.
    Allen AL, McCarson KE: Estrogen increases nociception-evoked brain-derived neurotrophic factor gene expression in the female rat. Neuroendocrinology 2005, 81:193–199.PubMedCrossRefGoogle Scholar
  41. 41.
    Scharfman HE, Mercurio TC, Goodman JH, et al.: Hippocampal excitability increases during the estrous cycle in the rat: a potential role for brain-derived neurotrophic factor. J Neurosci 2003, 23:11641–11652.PubMedGoogle Scholar
  42. 42.
    Murphy DD, Cole NB, Segal M: Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons. Proc Natl Acad Sci U S A 1998, 95:11412–11417.PubMedCrossRefGoogle Scholar
  43. 43.
    Smith SS, Waterhouse BD, Woodward DJ: Sex steroid effects on extrahypothalamic CNS. I. Estrogen augments neuronal responsiveness to iontophoretically applied glutamate in the cerebellum. Brain Res 1987, 422:40–51.PubMedCrossRefGoogle Scholar
  44. 44.
    Cairns BE, Sim Y, Bereiter DA, et al.: Influence of sex on reflex jaw muscle activity evoked from the rat temporomandibular joint. Brain Res 2002, 957:338–344.PubMedCrossRefGoogle Scholar
  45. 45.
    McRoberts JA, Li J, Ennes HS, Mayer EA: Sex-dependent differences in the activity and modulation of N-methyl-d-aspartic acid receptors in rat dorsal root ganglia neurons. Neuroscience 2007, 148:1015–1020.PubMedCrossRefGoogle Scholar
  46. 46.
    Dong XD, Mann MK, Kumar U, et al.: Sex-related differences in NMDA-evoked rat masseter muscle afferent discharge result from estrogen-mediated modulation of peripheral NMDA receptor activity. Neuroscience 2007, 146:822–832.PubMedCrossRefGoogle Scholar
  47. 47.
    Martin V, Lee J, Behbehani M: Enhanced sensitivity of the trigeminal system to glutamic acid during the proestrous stage of the rat estrous cycle [abstract]. Cephalalgia 2007, 27:602.Google Scholar
  48. 48.
    Bereiter DA, Benetti AP: Amino acid release at the spinomedullary junction after inflammation of the TMJ region in male and female rats. Pain 2006, 126:175–183.PubMedCrossRefGoogle Scholar
  49. 49.
    Pawlak J, Brito V, Kuppers E, Beyer C: Regulation of glutamate transporter GLAST and GLT-1 expression in astrocytes by estrogen. Brain Res Mol Brain Res 2005, 138:1–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Smith SS, Shen H, Gong QH, Zhou X: Neurosteroid regulation of GABA(A) receptors: focus on the alpha4 and delta subunits. Pharmacol Ther 2007, 116:58–76.PubMedCrossRefGoogle Scholar
  51. 51.
    Twyman RE, Macdonald RL: Neurosteroid regulation of GABAA receptor single-channel kinetic properties of mouse spinal cord neurons in culture. J Physiol 1992, 456:215–245.PubMedGoogle Scholar
  52. 52.
    Gulinello M, Gong QH, Smith SS: Progesterone withdrawal increases the anxiolytic actions of gaboxadol: role of alpha4betadelta GABA(A) receptors. Neuroreport 2003, 14:43–46.PubMedCrossRefGoogle Scholar
  53. 53.
    Wisden W, Herb A, Wieland H, et al.: Cloning, pharmacological characteristics and expression pattern of the rat GABAA receptor alpha 4 subunit. FEBS Lett 1991, 289:227–230.PubMedCrossRefGoogle Scholar
  54. 54.
    Benke D, Michel C, Mohler H: GABA(A) receptors containing the alpha4-subunit: prevalence, distribution, pharmacology, and subunit architecture in situ. J Neurochem 1997, 69:806–814.PubMedCrossRefGoogle Scholar
  55. 55.
    Beckham JC, Krug LM, Penzien DB, et al.: The relationship of ovarian steroids, headache activity and menstrual distress: a pilot study with female migraineurs. Headache 1992, 32:292–297.PubMedCrossRefGoogle Scholar
  56. 56.
    Herzog AG: Catamenial epilepsy: definition, prevalence pathophysiology and treatment. Seizure 2008, 17:151–159.PubMedCrossRefGoogle Scholar
  57. 57.
    Maguire JL, Stell BM, Rafizadeh M, Mody I: Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci 2005, 8:797–804.PubMedCrossRefGoogle Scholar
  58. 58.
    Cutrer FM, Moskowitz MA: Wolff Award 1996. The actions of valproate and neurosteroids in a model of trigeminal pain. Headache 1996, 36:579–585.PubMedCrossRefGoogle Scholar
  59. 59.
    Limmroth V, Lee WS, Moskowitz MA: GABAA-receptor-mediated effects of progesterone, its ring-A-reduced metabolites and synthetic neuroactive steroids on neurogenic oedema in the rat meninges. Br J Pharmacol 1996, 117:99–104.PubMedGoogle Scholar
  60. 60.
    Epperson CN, Haga K, Mason GF, et al.: Cortical gamma-aminobutyric acid levels across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry 2002, 59:851–858.PubMedCrossRefGoogle Scholar
  61. 61.
    Smith MJ, Keel JC, Greenberg BD, et al.: Menstrual cycle effects on cortical excitability. Neurology 1999, 53:2069–2072.PubMedGoogle Scholar
  62. 62.
    Goldstein A, Naidu A: Multiple opioid receptors: ligand selectivity profiles and binding site signatures. Mol Pharmacol 1989, 36:265–272.PubMedGoogle Scholar
  63. 63.
    Smith YR, Stohler CS, Nichols TE, et al.: Pronociceptive and antinociceptive effects of estradiol through endogenous opioid neurotransmission in women. J Neurosci 2006, 26:5777–5785.PubMedCrossRefGoogle Scholar
  64. 64.
    Craft RM, Mogil JS, Aloisi AM: Sex differences in pain and analgesia: the role of gonadal hormones. Eur J Pain 2004, 8:397–411.PubMedCrossRefGoogle Scholar
  65. 65.
    Stoffel-Wagner B: Neurosteroid biosynthesis in the human brain and its clinical implications. Ann N Y Acad Sci 2003, 1007:64–78.PubMedCrossRefGoogle Scholar
  66. 66.
    Terner JM, Lomas LM, Picker MJ: Influence of estrous cycle and gonadal hormone depletion on nociception and opioid antinociception in female rats of four strains. J Pain 2005, 6:372–383.PubMedCrossRefGoogle Scholar
  67. 67.
    Bernal SA, Morgan MM, Craft RM: PAG mu opioid receptor activation underlies sex differences in morphine antinociception. Behav Brain Res 2007, 177:126–133.PubMedCrossRefGoogle Scholar
  68. 68.
    Negus SS, Mello NK: Effects of gonadal steroid hormone treatments on opioid antinociception in ovariectomized rhesus monkeys. Psychopharmacology (Berl) 2002, 159:275–283.CrossRefGoogle Scholar
  69. 69.
    Negus SS, Mello NK: Opioid antinociception in ovariectomized monkeys: comparison with antinociception in males and effects of estradiol replacement. J Pharmacol Exp Ther 1999, 290:1132–1140.PubMedGoogle Scholar
  70. 70.
    Berman NE, Puri V, Chandrala S, et al.: Serotonin in trigeminal ganglia of female rodents: relevance to menstrual migraine. Headache 2006, 46:1230–1245.PubMedCrossRefGoogle Scholar
  71. 71.
    Watling K: Sigma-RBI Handbook of Receptor Classification and Signal Transduction. Natick, MA: Sigma; 2001.Google Scholar
  72. 72.
    Kandel E, Schwartz JH, Jessell T: Principles of Neural Science, edn 4. New York: McGraw Hill Medical; 2000.Google Scholar
  73. 73.
    Chiang CY, Sessle BJ, Hu JW: Parabrachial area and nucleus raphe magnus-induced modulation of electrically evoked trigeminal subnucleus caudalis neuronal responses to cutaneous or deep A-fiber and C-fiber inputs in rats. Pain 1995, 62:61–68.PubMedCrossRefGoogle Scholar
  74. 74.
    Supornsilpchai W, Sanguanrangsirikul S, Maneesri S, Srikiatkhachorn A: Serotonin depletion, cortical spreading depression, and trigeminal nociception. Headache 2006, 46:34–39.PubMedCrossRefGoogle Scholar
  75. 75.
    Srikiatkhachorn A, Suwattanasophon C, Ruangpattanatawee U, Phansuwan-Pujito P: 2002 Wolff Award. 5-HT2A receptor activation and nitric oxide synthesis: a possible mechanism determining migraine attacks. Headache 2002, 42:566–574.PubMedCrossRefGoogle Scholar
  76. 76.
    Kishi Y, Takahashi J, Koyanagi M, et al.: Estrogen promotes differentiation and survival of dopaminergic neurons derived from human neural stem cells. J Neurosci Res 2005, 79:279–286.PubMedCrossRefGoogle Scholar
  77. 77.
    Martin V, Cady R, Mauskop A, et al.: Efficacy of rizatriptan for menstrual migraine in an early intervention model: a prospective subgroup analysis of the rizatriptan TAME (Treat A Migraine Early) studies. Headache 2008, 48:226–235.PubMedCrossRefGoogle Scholar
  78. 78.
    Silberstein SD, Elkind AH, Schreiber C, Keywood C: A randomized trial of frovatriptan for the intermittent prevention of menstrual migraine. Neurology 2004, 63:261–269.PubMedGoogle Scholar
  79. 79.
    Nett R, Landy S, Shackelford S, et al.: Pain-free efficacy after treatment with sumatriptan in the mild pain phase of menstrually associated migraine. Obstet Gynecol 2003, 102:835–842.PubMedCrossRefGoogle Scholar
  80. 80.
    Newman L, Mannix LK, Landy S, et al.: Naratriptan as short-term prophylaxis of menstrually associated migraine: a randomized, double-blind, placebo-controlled study. Headache 2001, 41:248–256.PubMedCrossRefGoogle Scholar
  81. 81.
    Loder E, Silberstein S: Clinical efficacy of 2.5 and 5 mg zolmitriptan in migraine associated with menses or in patients using non-progestogen contraceptives [abstract]. Neurology 1998, 50(Suppl 4):A341.Google Scholar
  82. 82.
    Pecins-Thompson M, Brown NA, Kohama SG, Bethea CL: Ovarian steroid regulation of tryptophan hydroxylase mRNA expression in rhesus macaques. J Neurosci 1996, 16:7021–7029.PubMedGoogle Scholar
  83. 83.
    Pecins-Thompson M, Brown NA, Bethea CL: Regulation of serotonin re-uptake transporter mRNA expression by ovarian steroids in rhesus macaques. Brain Res Mol Brain Res 1998, 53:120–129.PubMedCrossRefGoogle Scholar
  84. 84.
    Bethea CL, Lu NZ, Gundlah C, Streicher JM: Diverse actions of ovarian steroids in the serotonin neural system. Front Neuroendocrinol 2002, 23:41–100.PubMedCrossRefGoogle Scholar
  85. 85.
    Pardutz A, Multon S, Malgrange B, et al.: Effect of systemic nitroglycerin on CGRP and 5-HT afferents to rat caudal spinal trigeminal nucleus and its modulation by estrogen. Eur J Neurosci 2002, 15:1803–1809.PubMedCrossRefGoogle Scholar
  86. 86.
    Pecins-Thompson M, Bethea CL: Ovarian steroid regulation of serotonin-1A autoreceptor messenger RNA expression in the dorsal raphe of rhesus macaques. Neuroscience 1999, 89:267–277.PubMedCrossRefGoogle Scholar
  87. 87.
    Nappi RE, Sances G, Brundu B, et al.: Estradiol supplementation modulates neuroendocrine response to M-chlorophenylpiperazine in menstrual status migrainosus triggered by oral contraception-free interval. Hum Reprod 2005, 20:3423–3428.PubMedCrossRefGoogle Scholar
  88. 88.
    Watkins LR, Hutchinson MR, Ledeboer A, et al.: Norman Cousins Lecture. Glia as the “bad guys”: implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun 2007, 21:131–146.PubMedCrossRefGoogle Scholar
  89. 89.
    Vegeto E, Bonincontro C, Pollio G, et al.: Estrogen prevents the lipopolysaccharide-induced inflammatory response in microglia. J Neurosci 2001, 21:1809–1818.PubMedGoogle Scholar
  90. 90.
    Vegeto E, Belcredito S, Etteri S, et al.: Estrogen receptor-alpha mediates the brain antiinflammatory activity of estradiol. Proc Natl Acad Sci U S A 2003, 100:9614–9619.PubMedCrossRefGoogle Scholar
  91. 91.
    Sierra A, Gottfried-Blackmore A, Milner TA, et al.: Steroid hormone receptor expression and function in microglia. Glia 2008, 56:659–674.PubMedCrossRefGoogle Scholar
  92. 92.
    Vegeto E, Pollio G, Ciana P, Maggi A: Estrogen blocks inducible nitric oxide synthase accumulation in LPS-activated microglia cells. Exp Gerontol 2000, 35:1309–1316.PubMedCrossRefGoogle Scholar
  93. 93.
    Multon S, Pardutz A, Mosen J, et al.: Lack of estrogen increases pain in the trigeminal formalin model: a behavioural and immunocytochemical study of transgenic ArKO mice. Pain 2005, 114:257–265.PubMedCrossRefGoogle Scholar
  94. 94.
    Martin V, Wernke S, Mandell K, et al.: Medical oophorectomy with and without estrogen add-back therapy in the prevention of migraine headache. Headache 2003, 43:309–321.PubMedCrossRefGoogle Scholar
  95. 95.
    Martin V, Liu J, Wernke S, et al.: The dose of transdermal estradiol and its role in migraine headache [abstract]. Headache 2003, 43:547–548.CrossRefGoogle Scholar
  96. 96.
    Pradalier A, Vincent D, Beaulieu P, et al.: Correlation between oestradiol plasma level and therapeutic effect on menstrual migraine. In New Advances in Headache Research: 4. Edited by Rose C. London: Smith-Gordon; 1994:129–132.Google Scholar
  97. 97.
    Eikermann-Haerter K, Kudo C, Moskowitz MA: Cortical spreading depression and estrogen. Headache 2007, 47(Suppl 2):S79–S85.PubMedCrossRefGoogle Scholar
  98. 98.
    Welch KM, Brandes JL, Berman NE: Mismatch in how oestrogen modulates molecular and neuronal function may explain menstrual migraine. Neurol Sci 2006, 27(Suppl 2):S190–S192.PubMedCrossRefGoogle Scholar
  99. 99.
    Martin V: Estrogen: a trigger factor for migraine headache—and more. J Headache Pain 2007, 18:162–172.Google Scholar
  100. 100.
    Stewart WF, Lipton RB, Chee E, et al.: Menstrual cycle and headache in a population sample of migraineurs. Neurology 2000, 55:1517–1523.PubMedGoogle Scholar

Copyright information

© Current Medicine Group LLC 2008

Authors and Affiliations

  1. 1.Division of General Internal MedicineUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations