Skip to main content

Advertisement

Log in

Migraine and the neck: New insights from basic data

  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

The clinical presentation of pain in patients with migraine showing spread and referral of pain throughout the trigeminal and cervical innervation territories accompanied by hyperalgesia and allodynia indicates a dynamic trigeminocervical interaction. The physiologic mechanisms may be convergence of trigemino-cervical afferents and central sensitization of trigemino-cervical neurons leading to dynamic neuroplastic changes during migraine. This review highlights the clinical phenotype and mechanisms of how nociceptive input from neck structures of the upper cervical spine are integrated into the trigemino-cervical system. The nociceptive input into the spinal cord also is subject to a modulation by segmental mechanisms in the spinal cord and by inhibitory projections from brain stem structures such as the periaqueductal gray. The functional relevance of these basic mechanisms is discussed with reference to recent studies using neurostimulation of afferent nerves aiming at pain modulation in patients with migraine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Anthony M: Headache and the greater occipital nerve. Clin Neurol Neurosurg 1992, 94:297–301.

    Article  PubMed  CAS  Google Scholar 

  2. Selby G, Lance JW: Observation on 500 cases of migraine and allied vascular headache. J Neurol Neurosurg Psychiatry 1960, 23:23–32.

    PubMed  CAS  Google Scholar 

  3. Goadsby PJ, Lipton RB, Ferrari MD: Migraine: current understanding and treatment. N Engl J Med 2002, 346:257–270.

    Article  PubMed  CAS  Google Scholar 

  4. Kerr FW: A mechanism to account for frontal headache in cases of posterior fossa tumors. J Neurosurg 1961, 18:605–609.

    PubMed  CAS  Google Scholar 

  5. Wolff H: Headache and Other Head Pain. New York: Oxford University Press; 1963.

    Google Scholar 

  6. Cremer PD, Halmagyi GM, Goadsby PJ: Secondary cluster headache responsive to sumatriptan. J Neurol Neurosurg Psychiatry 1995, 59:633–634.

    PubMed  CAS  Google Scholar 

  7. Piovesan EJ, Kowacs PA, Tatsui CE, et al.: Referred pain after painful stimulation of the greater occipital nerve in humans: evidence of convergence of cervical afferences on trigeminal nuclei. Cephalalgia 2001, 21:107–109.

    Article  PubMed  CAS  Google Scholar 

  8. Wirth FP Jr, Van Buren JM: Referral of pain from dural stimulation in man. J Neurosurg 1971, 34:630–642.

    PubMed  Google Scholar 

  9. Ruch TC: Pathophysiology of pain. In Physiology and Biophysics. Edited by Ruch TC, Patton HD. Philadelphia: WB Saunders; 1965:345–363.

    Google Scholar 

  10. Penfield W, McNaughton F: Dural headache and innervation of the dura mater. Arch Neurol Psychiatry 1940, 44:43–75.

    Google Scholar 

  11. Bartsch T, Goadsby PJ: Stimulation of the greater occipital nerve induces increased central excitability of dural afferent input. Brain 2002, 125:1496–1509.

    Article  PubMed  Google Scholar 

  12. Strassman AM, Mineta Y, Vos BP: Distribution of fos-like immunoreactivity in the medullary and upper cervical dorsal horn produced by stimulation of dural blood vessels in the rat. J Neurosci 1994, 14:3725–3735.

    PubMed  CAS  Google Scholar 

  13. Goadsby PJ: The pathophysiology of headache. In Wolff’s Headache and Other Head Pain. Edited by Silberstein SD, Lipton RB, Dalessio DJ. Oxford University Press: Oxford; 2001:57–72.

    Google Scholar 

  14. Bogduk N: Cervicogenic headache: anatomic basis and pathophysiologic mechanisms. Curr Pain Headache Rep 2001, 5:382–386.

    Article  PubMed  CAS  Google Scholar 

  15. Bogduk N, Aprill C: On the nature of neck pain, discography, and cervical zygapophyseal joint blocks. Pain 1993, 54:213–217.

    Article  PubMed  CAS  Google Scholar 

  16. Becser N, Bovim G, Sjaastad O: Extracranial nerves in the posterior part of the head: anatomic variations and their possible clinical significance. Spine 1998, 23:1435–1441.

    Article  PubMed  CAS  Google Scholar 

  17. Aprill C, Axinn MJ, Bogduk N: Occipital headaches stemming from the lateral atlanto-axial (C1-2) joint. Cephalalgia 2002, 22:15–22.

    Article  PubMed  CAS  Google Scholar 

  18. Bartsch T, Goadsby PJ: Increased responses in trigeminocervical nociceptive neurons to cervical input after stimulation of the dura mater. Brain 2003, 126:1801–1813. An electrophysiologic study describing the convergence of dural afferents and cervical afferents in the GON on to neurons in the trigemino-cervical complex with subsequent sensitization of GON input by noxious stimulation of the trigeminally innervated dura mater. The study describes a model of how common clinical features in headache patients, such as hypersensitivity, spread, and referral from structures of the upper cervical spine in the trigeminal domain, can be attributed to basic neuronal mechanisms in the trigemino-cervical complex.

    Article  PubMed  CAS  Google Scholar 

  19. Burstein R, Cutrer MF, Yarnitsky D: The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain 2000, 123:1703–1709.

    Article  PubMed  Google Scholar 

  20. Woolf CJ, Salter MW: Neuronal plasticity: increasing the gain in pain. Science 2000, 288:1765–1769.

    Article  PubMed  CAS  Google Scholar 

  21. Arendt-Nielsen L, Laursen RJ, Drewes AM: Referred pain as an indicator for neural plasticity. Prog Brain Res 2000, 129:343–356. A review describing the mechanisms and phenomenology of referred pain as a basic principle of spinal cord neurones reflected in various clinical conditions.

    Article  PubMed  CAS  Google Scholar 

  22. Mense S: Nociception from skeletal muscle in relation to clinical muscle pain. Pain 1993, 54:241–289.

    Article  PubMed  CAS  Google Scholar 

  23. Hu JW, Vernon H, Tatourian I: Changes in neck electromyography associated with meningeal noxious stimulation. J Manipulative Physiol Ther 1995, 18:577–581.

    PubMed  CAS  Google Scholar 

  24. Langemark M, Olesen J: Pericranial tenderness in tension headache: a blind, controlled study. Cephalalgia 1987, 7:249–255.

    Article  PubMed  CAS  Google Scholar 

  25. Behbehani MM: Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 1995, 46:575–605.

    Article  PubMed  CAS  Google Scholar 

  26. Bartsch T, Knight YE, Goadsby PJ: Activation of 5-HT1B/1D receptors in the periaqueductal grey inhibits meningeal nociception. Ann Neurol 2004, 56:371–381.

    Article  PubMed  CAS  Google Scholar 

  27. Keay KA, Bandler R: Vascular head pain selectively activates ventrolateral periaqueductal grey in the cat. Neurosci Lett 1998, 245:58–60.

    Article  PubMed  CAS  Google Scholar 

  28. Knight YE, Bartsch T, Kaube H, Goadsby PJ: P/Q-type calciumchannel blockade in the periaqueductal gray facilitates trigeminal nociception: A functional genetic link for migraine? J Neurosci 2002, 22:1–6.

    Google Scholar 

  29. Weiller C, May A, Limmroth V, et al.: Brain stem activation in spontaneous human migraine attacks. Nat Med 1995, 1:658–660.

    Article  PubMed  CAS  Google Scholar 

  30. Bahra A, Matharu MS, Buchel C, et al.: Brain stem activation specific to migraine headache. Lancet 2001, 357:1016–1017.

    Article  PubMed  CAS  Google Scholar 

  31. Ellis BD, Kosmorsky GS: Referred ocular pain relieved by suboccipital injection. Headache 1995, 35:101–103.

    Article  PubMed  CAS  Google Scholar 

  32. Bovim G, Fredriksen TA, Stolt-Nielsen A, Sjaastad O: Neurolysis of the greater occipital nerve in cervicogenic headache: a follow-up study. Headache 1992, 32:175–179.

    Article  PubMed  CAS  Google Scholar 

  33. Peres MF, Stiles MA, Siow HC: Greater occipital nerve blockade for cluster headache. Cephalalgia 2002, 22:520–522.

    Article  PubMed  CAS  Google Scholar 

  34. Bogduk N: Role of anesthesiologic blockade in headache management. Curr Pain Headache Rep 2004, 8:399–403. A critical review outlining the anatomy of the cervical spine with regard to strict diagnostic criteria of cervical blockades and controlled studies in headache management.

    PubMed  Google Scholar 

  35. Bogduk N: Headache and the neck. In Headache. Edited by Goadsby PJ, Silberstein SD. Oxford: Butterworth-Heinemann; 1997:369–381.

    Google Scholar 

  36. Woolf C, Thompson J: Stimulation-induced analgesia: transcutaneous electrical nerve stimulation (TENS) and vibration. In Textbook of Pain. Edited by Wall P, Melzack R. New York: Churchill Livingstone; 1994:1191–2008.

    Google Scholar 

  37. Simpson B: Spinal chord and brain stimulation. In Textbook of Pain, edn 4. Melzack PD. Edinburgh: Churchill Livingstone; 1999:1353–1381.

    Google Scholar 

  38. Matharu M, Bartsch T, Ward N, et al.: Central neuromodulation in chronic migraine patients with suboccipital stimulators: a PET study. Brain 2004, 127:220–230. Positron-emission tomography demonstrating (for the first time) that peripheral suboccipital neurostimulation alleviates pain in chronic migraine syndromes. This is a particularly interesting study because neurostimulation elicits changes in regional cerebral blood flow in certain subcortical structures.

    Article  PubMed  Google Scholar 

  39. Hansson P, Lundeberg T: Transcutaneous electrical nerve stimulation, vibration and acupuncture as pain-relieving measures. In Textbook of Pain. Edited by Melzack R, Wall PD. New York: Churchill Livingstone; 1999:1341–1351.

    Google Scholar 

  40. Woolf CJ: Transcutaneous electrical nerve stimulation and the reaction to experimental pain in human subjects. Pain 1979, 7:115–127.

    Article  PubMed  CAS  Google Scholar 

  41. Chung JM, Lee KH, Hori Y, et al.: Factors influencing peripheral nerve stimulation produced inhibition of primate spinothalamic tract cells. Pain 1984, 19:277–293.

    Article  PubMed  CAS  Google Scholar 

  42. Doubell T, Mannion RJ, Woolf CJ: The doral horn: statedependent sensory processing, plasticity, and the generation of pain. In Textbook of Pain, edn 4. Edited by Melzack PD. Edinburgh: Churchill Livingstone; 1999:165–180.

    Google Scholar 

  43. Garrison DW, Foreman RD: Effects of transcutaneous electrical nerve stimulation (TENS) on spontaneous and noxiously evoked dorsal horn cell activity in cats with transected spinal cords. Neurosci Lett 1996, 216:125–128.

    PubMed  CAS  Google Scholar 

  44. Kolmodin GM, Skoglund CR: Analysis of spinal interneurons activated by tactile and nociceptive stimulation. Acta Physiol Scand 1960, 50:337–355.

    PubMed  CAS  Google Scholar 

  45. Lindblom U, Tapper DN, Wiesenfeld Z: The effect of dorsal column stimulation on the nociceptive response of dorsal horn cells and its relevance for pain suppression. Pain 1977, 4:133–144.

    Article  PubMed  CAS  Google Scholar 

  46. Garrison D, Foreman R: Decreased activity of spontaneous and noxiously evoked dorsal horn cells during transcutaneous electrical nerve stimulation (TENS). Pain 1994, 58:309–315.

    Article  PubMed  CAS  Google Scholar 

  47. Olausson B, Xu ZQ, Shyu BC: Dorsal column inhibition of nociceptive thalamic cells mediated by gamma-aminobutyric acid mechanisms in the cat. Acta Physiol Scand 1994, 152:239–247.

    Article  PubMed  CAS  Google Scholar 

  48. Gildenberg PL, Murthy KS: Influence of dorsal column stimulation upon human thalamic somatosensory-evoked potentials. Appl Neurophysiol 1980, 43:8–17.

    Article  PubMed  CAS  Google Scholar 

  49. Knight YE, Bartsch T, Goadsby PJ: Trigeminal antinociception induced by bicuculline in the periaqueductal gray (PAG) is not affected by PAG P/Q-type calcium channel blockade in rat. Neurosci Lett 2003, 336:113–116.

    Article  PubMed  CAS  Google Scholar 

  50. Stiller CO, Linderoth B, O’Connor WT, et al.: Repeated spinal cord stimulation decreases the extracellular level of gammaaminobutyric acid in the periaqueductal gray matter of freely moving rats. Brain Res 1995, 699:231–241.

    Article  PubMed  CAS  Google Scholar 

  51. Duggan AW, Foong FW: Bicuculline and spinal inhibition produced by dorsal column stimulation in the cat. Pain 1985, 22:249–259.

    Article  PubMed  CAS  Google Scholar 

  52. Stiller CO, Cui JG, O’Connor WT, et al.: Release of gammaaminobutyric acid in the dorsal horn and suppression of tactile allodynia by spinal cord stimulation in mononeuropathic rats. Neurosurgery 1996, 39:367–375.

    Article  PubMed  CAS  Google Scholar 

  53. Hautvast RW, Ter Horst GJ, DeJong BM, et al.: Relative changes in regional cerebral blood flow during spinal cord stimulation in patients with refractory angina pectoris. Eur J Neurosci 1997, 9:1178–1183.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartsch, T. Migraine and the neck: New insights from basic data. Current Science Inc 9, 191–196 (2005). https://doi.org/10.1007/s11916-005-0061-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-005-0061-0

Keywords

Navigation