Chronic lumbar spine and radicular pain: Pathophysiology and treatment

Abstract

The lumbar spine forms the foundation and infrastructure of an organic skyscraper equipped with the physiologic capacity to act as a crane for lifting and a crankshaft for walking. Subjected to aging like other “human machinery,” the lumbar spine adapts to the wear and tear of gravity and biomechanical loading through structural and neurochemical changes. Many of the changes are maladaptive, resulting in pain, physical and functional disability, and altered neurophysiologic circuitry. Some compensatory reactions are constructive, but others cause more interference with the organism’s capacity to cope. A conceptional understanding of the multifaceted structural, biomechanical, biochemical, medical, and psychosocial influences that compose this mix elucidates the complexity of applying effective treatments.

This is a preview of subscription content, access via your institution.

References and Recommended Reading

  1. 1.

    Kelsey JL, White AA: Epidemiology of low back pain. Spine 1980, 6:133–142.

    Article  Google Scholar 

  2. 2.

    Frymoyer JW: Back pain and sciatica. N Engl J Med 1988, 318:291–300.

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Mayer TG, Gatchel R, Mayer H, et al.: Functional restoration for spinal disorders. The Sports Medicine Approach. Philadelphia: Lea & Febiger; 1988:1–321.

    Google Scholar 

  4. 4.

    Argoff CE, Wheeler AH: Spinal and radicular pain syndromes. In Neurologic Clinics. Edited by Spinal and radicular pain syndromes. In Neurologic Clinics. Edited by Backonja M M. Philadelphia: W.B. Saunders; 1998:833–845.

    Google Scholar 

  5. 5.

    Selby DK: The structural degenerative cascade: The lumbar spine. In Spine Care: Diagnosis and Conservative Treatment. Edited by White AH, Schofferman JA. St Louis: Mosby Press; 1995:8–16.

    Google Scholar 

  6. 6.

    Cavanaugh JM, Weinstein JN: Low back pain: epidemiology, anatomy and neurophysiology. In Textbook of Pain, edn 3. Edited by Wall PD, Melzack R. London: Churchill Livingstone; 1994:441–455.

    Google Scholar 

  7. 7.

    Kuslich SD, Ulstrom CL, Michael CJ: The tissue origin of low back pain and sciatica: a report of pain response to tissue stimulation during operation on the lumbar spine using local anesthesia. Orthop Clin North Am 1991, 22:181–187.

    PubMed  CAS  Google Scholar 

  8. 8.

    Murphy F: Sources and patterns of pain in disc disease. Clin Neurosurg 1968, 15:343–350.

    Google Scholar 

  9. 9.

    Mooney V: Where is the pain coming from? Spine 1987, 12:754–759. A critical examination of the medical literature that points out gaps in past research and alludes to future investigative directions that may help elucidate causal mechanisms for chronic LBP. Mooney strongly implicates discal involvement and associated biochemical factors as pertinent influences of LBP. This published address to the International Society for the Study of the Lumbar Spine may have spurred future research efforts that concentrate on the biochemical and neurophysiologic factors associated with spine pain.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Kawakami M, Chatenia K, Weinstein JN: Anatomy, biochemistry, and physiology of low back pain. In Spine Care: Diagnosis and Conservative Treatment. Edited by White AG, Schofferman JA. St. Louis: Mosby Press; 1995:84–103. The most complete and readable summary to date, which alludes to the role of neurochemical and inflammatory mediators of spinal pain, and the research that spawned these findings and current theories.

    Google Scholar 

  11. 11.

    Weinstein JN, Claverie W, Gibson S: The pain of discography. Spine 1988, 13:1344–1348.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Weinstein JN: The role of neurogenic and non-neurogenic mediators as they related to pain in the development of osteoarthritis (a clinical view). Spine 1992, 17:S356.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Lui G, Ishihara H, Ryusuke O, etal: Nitric oxide mediates the change of proteoglycan synthesis in the human lumbar intervertebral disc in response to hydrostatic pressure. Spine 2001, 26:134–141.

    Article  Google Scholar 

  14. 14.

    Rydevik BL: The effects of compression on the physiology of nerve roots. J Manipulative Physiol Ther 1992, 1:62–66.

    Google Scholar 

  15. 15.

    Olmarker K, Rydevik B: Pathophysiology of spinal nerve roots as related to sciatica and disc herniation. In Rothman-Simeone Studies, The Spine. Edited by Herkowitz HN, Garfin SR, Balderston RA, et al. Philadelphia: WB Saunders; 1999:159–172. This is a comprehensive review of current scientific knowledge, theories, and supportive research by authors who have done a majority of the meaningful research.

    Google Scholar 

  16. 16.

    Olmarker K, Rydevik B, Holm S: Edema formation in spinal nerve roots induced by experimental, graded compression: an experimental study on the pig cauda equina with special reference to differences in effects between rapid and slow onset of compress. Spine 1989, 35:569–573.

    Article  Google Scholar 

  17. 17.

    Olmarker K, Holm S, Rydevik B: Importance of compression onset rate for the degree of impairment of impulse propagation in experimental compression injury of the porcine cauda equina. Spine 1990, 35:416–419.

    Article  Google Scholar 

  18. 18.

    Olmarker K, Holm S, Rosenqvist A-L, et al.: Experimental nerve root compression. Presentation of a model for acute, graded compression of the porcine cauda equina, with analysis of neural and vascular anatomy. Spine 1992, 16:61–69.

    Article  Google Scholar 

  19. 19.

    McCarron RF, Wimpee MW, Hudkins PG, et al.: the inflammatory effect of nucleus pulposus: a possible element in the pathogenesis of low-back pain. Spine 1987, 12:760–764.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Olmarker K, Rydevik B, Nordborg C: Autologous nucleus pulposus induces neurophysiological and histologic changes in porcine cauda equina nerve roots. Spine 1993, 18:(11)1425–1432.

    PubMed  CAS  Google Scholar 

  21. 21.

    Olmarker K, Rydevik B, Nordborg C: Ultrastructural changes in spinal nerve roots induced by autologous nucleus pulposus. Spine 1996, 27:411–414.

    Article  Google Scholar 

  22. 22.

    Olmarker K, Brisby H, Yabuki S, et al.: The effects of normal, frozen and hyaluronidase digested nucleus pulposus on nerve root structure and function. Spine 1997, 24:471–475.

    Article  Google Scholar 

  23. 23.

    Iwabuchi M, Rydevik B, Kikychi S, et al.: Effects of annulus fibrosis and experimentally degenerated nucleus pulposus on nerve root conduction velocity. Spine 2001, 26:1651–1655.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Kang JD, Georgescu HI, MacIntyre-Larkin L, et al.: Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6 and prostaglandin E2. Spine 1996, 21:271–277.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Myers RR: The pathogenesis of neuropathic pain. Reg Anesth 1962, 31:91–114.

    Google Scholar 

  26. 26.

    Sorkin LS, Xiao WH, Wagner R, et al.: TNF-alpha applied to the sciatic nerve trunk elicits background firing in nociceptive primary afferents fibers. 8th world congress for pain, IASP abstracts, Vancouver, IASP Press. 1996, 354.

  27. 27.

    Wagner R, Myers RR: Endoneurial injection of TNF-alpha procedures nociceptive pain behaviors. Neuroreport 1996, 7:2897–2901.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Probert L, Akassoglou K, Kassiotos G, et al.: TNF-alpha transgenic and knockout models of CNS inflammation and degeneration. J Neuroimmunol 1997, 72:137–141.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Redford EJ, Hall SM, Smith KJ: Vascular changes and demyelination induced by the intraneural injection of tumor necrosis factor. Brain 1995, 118:869–878.

    PubMed  Article  Google Scholar 

  30. 30.

    Russell IJ: Neurochemical pathogenesis of fibromyalgia syndrome. J Musculoskeletal Pain 1996, 4:61–92.

    Article  Google Scholar 

  31. 31.

    Wheeler AH: Evolutionary mechanisms in chronic low back pain and rationale for treatment. American Journal of Pain Management 1995, 5:62–66.

    Google Scholar 

  32. 32.

    Mense S: Biochemical pathogenesis of myofascial pain. J Musculoskeletal Pain 1996, 4:145–162.

    Article  Google Scholar 

  33. 33.

    Pillemer SE, Bradley LA, Crofford LJ, et al.: The neuroscience and endocrinology of fibromyalgia. Arthritis Rheum 1997, 40:1928–1939.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Carlton SM, Zhou S, Coggeshal RE: Evidence for the interaction of glutamate and NK1 receptors in the periphery. Brain Res 1998, 790:160–169.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Bennett RM: Emerging concepts in the neurobiology of chronic pain: evidence of abnormal sensory processing in fibromyalgia. Mayo Clin Proc 1999, 74:385–398.

    PubMed  CAS  Google Scholar 

  36. 36.

    Wall PD, Woolf CJ: Muscle but not cutaneous C-afferent input produces prolonged increases in the excitability of the flexion reflex in the rat. J Physiol 1984, 356:443–458.

    PubMed  CAS  Google Scholar 

  37. 37.

    Mendell LM, Wall PD: Responses of single dorsal cord cells to peripheral cutaneous unmyelinated fibers. Nature 1965, 206:97–99.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Roberts WJ: A hypothesis on the physiological basis for causalgia and related pains. Pain 1986, 24:297–311.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Killian LE: Psychological barriers to recovery. In Work Injury Management and Prevention. Edited by Isernhagen SJ. Gaithersburg: Aspen Inc; 1988:247–257.

    Google Scholar 

  40. 40.

    Cheatle MD, Brady JP, Ruland T: Chronic low back pain: depression and attribution styles. Clin J Pain 1990, 6:114–117.

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    The North American Spine Society’s Ad Hoc Committee on Diagnostic and Therapeutic Procedures: Common diagnostic and therapeutic procedures of the lumbosacral spine. Spine 1991, 16:1161–1167.

    Article  Google Scholar 

  42. 42.

    Wheeler AH, Hanley EN: Nonoperative treatment of low back pain; rest to restoration. Spine 1995, 20:375–378.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Wheeler AH: Diagnosis and management of low back pain and sciatica. American Family Physician 1995, 552,5:1333–1341.

    Google Scholar 

  44. 44.

    Anderson SR, Flanagan B: Discography, Cur Rev Pain 2000, 4:345–352.

    CAS  Google Scholar 

  45. 45.

    Robison R: 45. Robison R: Low back school and stabilization: Aggressive conservative care. In Spine Care: Diagnosis and Conservative Treatment. Edited by White AG, Schofferman JA. St. Louis: Mosby Press; 1995:394–412. The most complete guide to understanding and implementing spine stabilization exercises.

    Google Scholar 

  46. 46.

    Saal JA, Saal JS: Nonoperative treatment of herniated lumbar intervertebral disc with radiculopathy. An outcome study. Spine 1989, 14:431–437.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Hides JA, Tull GA, Richardson CA: Long-term effects of specific stabilization exercises for first-episode low back pain. Spine 2001, 26:E23-E248. Finally, an abstract that states what most spine practitioners believe might be true.

    Article  Google Scholar 

  48. 48.

    Linton SJ, Van Tulder MW: Preventive interventions for back and neck pain problems: What is the evidence? Spine 2001, 26:778–787.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Frost FA, Jessen B, Siggaard-Anderson J: A controlled, double blind comparison of mepivacaine injection versus saline injection for myofascial pain. Lancet 1980, 1:499–501.

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Garvey TA, Marks MR, Wiesel SW: A prospective, randomized double-blind evaluation of trigger-point injection therapy for low back pain. Spine 1989, 14:962–964. This is a well-done study that suggests soft tissue injectable therapies may all be suspect.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Knusel B, DeGryse R, Grant M, et al.: Intramuscular injection of botulinum toxin type A (Botox) in chronic low back pain associated with muscle spasm [poster abstract]. American Pain Society 1998, Nov. 5–8: San Diego, CA.

  52. 52.

    Foster L, Clapp L, Erickson M, et al.: Botulinum toxin A and chronic low back pain: a randomized double-blind study. Neurology 2001, 56:1290–1293.

    PubMed  CAS  Google Scholar 

  53. 53.

    Lippitt AB: The facet joint and its role in spine pain: management with facet joint injections. Spine 1984, 9:746–750.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Murtagh FR: Computed tomography and fluoroscopy guided anesthesia and stereo injection in facet syndrome. Spine 1988, 33:686–689.

    Google Scholar 

  55. 55.

    Carette S, Marcoux S, Truchon R, et al.: A controlled trial of corticosteroid injections into facet joints for chronic low back pain. N Engl J Med 1991, 325:1002–1006.

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    Jackson RP: The facet syndrome: myth or reality? Clin Orthop 1992, 279:110–121.

    PubMed  Google Scholar 

  57. 57.

    Jackson RP, Jacobs RR, Montesano PX: Facet joint injection in low-back pain. Spine 1988, 13:966–971.

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Lilius G, Laasonen EM, Myllynen P, et al.: Lumbar facet joint syndrome. a randomized clinical trial. Orthop Clin North Am 1991, 22:181–187.

    Google Scholar 

  59. 59.

    Bush K, Hillier S: A controlled study of caudal epidural injections of triamcinolone plus procaine for the management of intractable sciatica. Spine 1991, 16:572–575.

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Cuckler JM, Bernini PA, Wiesel WE, et al.: The use of epidural steroids in the treatment of lumbar radicular pain. J Bone Joint Surg Am 1985, 67A:63–66.

    Google Scholar 

  61. 61.

    Auld AW, Maki-Jokela A, Murdoch DM: Intraspinal narcotic analgesia in the treatment of chronic pain. Spine 1985, 10:777–781.

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Penn RD, Paice JA: Chronic intrathecal morphine for intractable pain. J Neurosurg 1987, 67:182–186.

    PubMed  CAS  Google Scholar 

  63. 63.

    Racz GB, Heavner JE, Diede JH: Lysis of epidural adhesions utilizing the epidural approach. In Interventional Pain Management. Edited by Walderman SD, Winnie AP. Philadelphia: WB Saunders Company; 1996:339–351.

    Google Scholar 

  64. 64.

    Racz GB, Heavner JE, Singleton W, et al.: Hypertonic saline and corticosteroid injected epidurally for pain control. In Techniques of Neurolysis. Edited by Racy GB. Boston: Kluwer Academic Publishers; 1989:73–86.

    Google Scholar 

  65. 65.

    Lord SM, Barnsley L, Wallis BJ, et al.: Percutaneous radiofrequency neurotomy for chronic cervical zygapophyseal joint pain. N Engl J Med 1996, 335:1721–1726.

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Sluijter ME: Percutaneous thermal lesions in the treatment of back and neck pain. Radionics Procedure Technique Series. Burlington, Massachusetts, Radionics. 1981.

  67. 67.

    Pinzon EG: Treating lumbar back pain. Practical Pain Manag 2001, April/May: 14–20. Dr. Pinzon provides an excellent review that is complete, up-to-date, and well written.

  68. 68.

    Saal JS, Saal JA: Management of chronic discogenic low back pain with a thermal intradiscal catheter: a preliminary report. Spine 2000, 25:382–388.

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Karasek M, Bogduk N: Twelve-month follow-up of a controlled trial of intradiscal thermal anuloplasty for back pain due to internal disc disruption. Spine 2000, 25:2601–2607.

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Saal JA, Saal JS: Intradiscal electrothermal treatment for chronic discogenic low back pain: a prospective outcome study with minimum 1-year follow-up. Spine 2000, 25:2622–2627.

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Rhyne AL, Smith SC, Wood KE, et al.: Outcome of un-operated discogram-positive low back pain. Spine 1995, 20:1997–2000. The only natural history study published that confirms the need for appropriate doubt when considering surgery on discogram provocation-positive patients with LBP. Is this the benchmark for surgical outcomes?

    PubMed  Article  Google Scholar 

  72. 72.

    Murrey DV, Hanley N. Surgery for lumbar disc herniation: What are the choices? J Musculoske Med 1999, 16:39–45.

    Google Scholar 

  73. 73.

    Biurski G: Magnetic resonance signal patterns of lumbar disk in patients with low back pain: A perspective study with diskographic correlation. Spine 1992, 17:1199–1204.

    Article  Google Scholar 

  74. 74.

    Snyerman G, Flanagin B, Kingston S, et al.: Magnetic resonance imaging in the diagnosis of disk degeneration: Correlation with discography. Spine 1987, 12:276–281.

    Article  Google Scholar 

  75. 75.

    Adams MA, Dolan P, Hutton WC: The stages of disk degeneration as revealed by diskograms. J Bone Joint Surg 1986, 68B:36–41.

    Google Scholar 

  76. 76.

    Lagre J, Louis R, Serrano R, Debanene A: Anatomoradiologcal considerations about lumbar discography: an experimental study. Neuroradiology 1979, 17:77–82.

    Article  Google Scholar 

  77. 77.

    Paajanen H, Erkintalo M, Kuusela T, et al.: Magnetic resonance study of disk degeneration in young low-back pain patients. Spine 1989, 14:982–985.

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Boden SD, Davis DO, Dina TS, et al.: Abnormal magneticresonance scans of the lumbar spine in asymptomatic subjects. J Bone Joint Surg 1990, 72A:403–408. This article details the prevalence of MRI-proven degenerative disc disease in the general population and clearly shows this condition is commonplace and typically not a source of pain.

    Google Scholar 

  79. 79.

    Holt EP: The questions of lumbar discography. J Bone Joint Surg 1968, 50A:720–726.

    Google Scholar 

  80. 80.

    Walsh TR, Weinstein JN, Spatt KF, et al.: Lumbar discography in normal subjects. J Bone Joint Surg 1990, 72A:1081–1088.

    Google Scholar 

  81. 81.

    Gibson MJ, Buckley J, Mawhinney R, Moeholland RC, Worthington BS: Magnetic resonance imaging and discography in the diagnosis of disk degeneration. A comparative study of 50 disks. J Bone Joint Surg 1986, 68B:369–373.

    Google Scholar 

  82. 82.

    Horton WC, Daftari TK: Which disk as visualize by magnetic imaging is actually a source of pain? A correlation between magnetic imaging and discography. Spine 1992, 17:S164-S171.

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Knox BD, Chapman TN: Anterior lumbar interbody fusion for discogram concordant pain. J Spinal Disorders 1993, 6:242–244.

    CAS  Article  Google Scholar 

  84. 84.

    Colhoun E, McCall IW, Williams L, Cassar, et al.: Provocation and discography as a guide to planning operations on the spine. J Bone Joint Surg 1988, 70B:267–271.

    Google Scholar 

  85. 85.

    Yuan HA, Kuslich SD, Dowdle JA, et al.: Prospective multi-center trial of the BAK Interbody Fusion System. Minneapolis, MN: Spine-Tech. 1997.

    Google Scholar 

  86. 86.

    Ray CD. Threaded titanium cages for lumbar interbody fusions. Spine 1997, 22:667–680.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wheeler, A.H., Murrey, D.B. Chronic lumbar spine and radicular pain: Pathophysiology and treatment. Current Science Inc 6, 97–105 (2002). https://doi.org/10.1007/s11916-002-0005-x

Download citation

Keywords

  • Nerve Root
  • Nucleus Pulposus
  • Disc Herniation
  • Annulus Fibrosis
  • Radicular Pain