Skip to main content

Advertisement

Log in

Pathophysiologic mechanisms of neuropathic pain

  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

New animal models of peripheral nerve injury have facilitated our understanding of neuropathic pain mechanisms. Nerve injury increases expression and redistribution of newly discovered sodium channels from sensory neuron somata to the injury site; accumulation at both loci contributes to spontaneous ectopic discharge. Large myelinated neurons begin to express nociceptive substances, and their central terminals sprout into nociceptive regions of the dorsal horn. Descending facilitation from the brain stem to the dorsal horn also increases in the setting of nerve injury. These and other mechanisms drive various pathologic states of central sensitization associated with distinct clinical symptoms, such as touch-evoked pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Merskey H, Bogduk N, eds: Pain terms. In Classification of Chronic Pain. Seattle: IASP Press; 1998:207–213.

    Google Scholar 

  2. Backonja MM, Galer BS: Pain assessment and evaluation of patients who have neuropathic pain. Neurol Clin 1998, 16:775–790.

    Article  PubMed  CAS  Google Scholar 

  3. Koltzenburg M: Painful neuropathies. Curr Opin Neurol 1998, 11:515–521.

    Article  PubMed  CAS  Google Scholar 

  4. Woolf CJ, Salter MW: Neuronal plasticity: increasing the gain in pain. Science 2000, 288:1765–1769.

    Article  PubMed  CAS  Google Scholar 

  5. Taylor BK, Akana SF, Peterson MA, et al.: Pituitaryadrenocortical responses to persistent noxious stimuli in the awake rat: endogenous corticosterone does not reduce nociception in the formalin test. Endocrinology 1998, 139:2407–2413.

    Article  PubMed  CAS  Google Scholar 

  6. Taylor B, Peterson MA, Basbaum A: Persistent cardiovascular and behavioral nociceptive responses to subcutaneous formalin require peripheral nerve input. J Neurosci 1995, 15:7575–7584.

    PubMed  CAS  Google Scholar 

  7. Stewart JD: Focal Peripheral Neuropathies, 3 Philadelphia: Lippincott Williams & Wilkins; 2000:580.

    Google Scholar 

  8. Rowbotham M, Harden N, Stacey B, et al.: Gabapentin for the treatment of postherpetic neuralgia: a randomized controlled trial. JAMA 1998, 280:1837–1842.

    Article  PubMed  CAS  Google Scholar 

  9. Backonja M, Beydoun A, Edwards KR, et al.: Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trial. JAMA 1998, 280:1831–1836.

    Article  PubMed  CAS  Google Scholar 

  10. Bennett GJ: New frontiers in mechanisms and therapy of painful peripheral neuropathies. Acta Anaesthesiol Sin 1999, 37:197–203.

    PubMed  CAS  Google Scholar 

  11. Petersen KL, Fields HL, Brennum J, et al.: Capsaicin evoked pain and allodynia in post-herpetic neuralgia. Pain 2000, 88:125–133. This study was cleverly controlled by comparing sensation in sensitive skin (postherpetic neuralgia [PHN] skin) with mirror-image skin. The results suggest that allodynia in patients with PHN may be mediated by undamaged sensory neurons. These "irritable nociceptors" are suggested to maintain central sensitization, leading to allodynia (see [58] for a review of this intriguing hypothesis).

    Article  PubMed  CAS  Google Scholar 

  12. Seltzer Z, Beilin B, Ginzburg R, et al.: The role of injury discharge in the induction of neuropathic pain behavior in rats. Pain 1991, 46:327–336.

    Article  PubMed  CAS  Google Scholar 

  13. Bennett GJ: An animal model of neuropathic pain: a review. Muscle Nerve 1993, 16:1040–1048.

    Article  PubMed  CAS  Google Scholar 

  14. Kim SH, Chung JM: An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992, 50:355–363.

    Article  PubMed  CAS  Google Scholar 

  15. Lee BH, Won R, Baik EJ, et al.: An animal model of neuropathic pain employing injury to the sciatic nerve branches. Neuroreport 2000, 11:657–661.

    Article  PubMed  CAS  Google Scholar 

  16. Decosterd I, Woolf CJ: Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 2000, 87:149–158. Likely to be referred to as the "Woolf model," the spared nerve injury model permits behavioral testing of the noninjured skin territories adjacent to the denervated areas, which is true in many clinical cases of neuropathic pain. Spared nerve injury is devoid of certain shortcomings inherent to the now classic animal models of neuropathic pain (chronic constriction injury, partial nerve ligation, and spinal nerve ligation), such as nonresponder prevalence or highly invasive surgery. Spared nerve injury is unique in that a comingling of distal intact axons with degenerating axons is avoided.

    Article  PubMed  CAS  Google Scholar 

  17. Wall PD, Gutnick M: Properties of afferent nerve impulses originating from a neuroma. Nature 1974, 248:740–743.

    Article  PubMed  CAS  Google Scholar 

  18. Kajander KC, Bennett GJ: Onset of a painful peripheral neuropathy in rat: a partial and differential deafferentation and spontaneous discharge in A beta and A delta primary afferent neurons. J Neurophysiol 1992, 68:734–744.

    PubMed  CAS  Google Scholar 

  19. Xie Y, Zhang J, Petersen M, et al.: Functional changes in dorsal root ganglion cells after chronic nerve constriction in the rat. J Neurophysiol 1995, 73:1811–1820.

    PubMed  CAS  Google Scholar 

  20. Lee DH, Liu X, Kim HT, et al.: Receptor subtype mediating the adrenergic sensitivity of pain behavior and ectopic discharges in neuropathic Lewis rats. J Neurophysiol 1999, 81:2226–2233. The long-asserted claim that the alpha-2 receptor mediates sensory-sympathetic coupling is challenged by this mixed behavioral/electrophysiologic study.

    PubMed  CAS  Google Scholar 

  21. Liu X, Eschenfelder S, Blenk KH, et al.: Spontaneous activity of axotomized afferent neurons after L5 spinal nerve injury in rats. Pain 2000, 84:309–318. Upon demonstrating a positive correlation between ectopic activity and the allodynia-like behavior in spinal nerve-lesioned rats, the authors suggest that ectopic activity elicits tactile hypersensitivity in a now classic model of neuropathic pain.

    Article  PubMed  CAS  Google Scholar 

  22. Devor M, Seltzer Z: Pathophysiology of damaged nerves in relation to chronic pain. In Textbook of Pain. Edited by Wall PD, Melzack R. Edinburgh: Churchill Livingstone; 1999:129–164.

    Google Scholar 

  23. Nystrom B, Hagbarth KE: Microelectrode recordings from transected nerves in amputees with phantom limb pain. Neurosci Lett 1981, 27:211–216.

    Article  PubMed  CAS  Google Scholar 

  24. Michaelis M, Liu X, Janig W: Axotomized and intact muscle afferents but no skin afferents develop ongoing discharges of dorsal root ganglion origin after peripheral nerve lesion. J Neurosci 2000, 20:2742–2748.

    PubMed  CAS  Google Scholar 

  25. Kajander KC, Wakisaka S, Bennett GJ: Spontaneous discharge originates in the dorsal root ganglion at the onset of a painful peripheral neuropathy in the rat. Neurosci Lett 1992, 138:225–228.

    Article  PubMed  CAS  Google Scholar 

  26. Devor M, Govrin-Lippmann R, Angelides K: Na+ channel immunolocalization in peripheral mammalian axons and changes following nerve injury and neuroma formation. J Neurosci 1993, 13:1976–1992.

    PubMed  CAS  Google Scholar 

  27. England JD, Happel LT, Kline DG, et al.: Sodium channel accumulation in humans with painful neuromas. Neurology 1996, 47:272–276.

    PubMed  CAS  Google Scholar 

  28. Novakovic SD, Tzoumaka E, McGivern JG, et al.: Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J Neurosci 1998, 18:2174–2187.

    PubMed  CAS  Google Scholar 

  29. Cummins TR, Dib-Hajj SD, Black JD, et al.: Sodium channels and the molecular pathophysiology of pain. Prog Brain Res 2000, 129:3–19.

    PubMed  CAS  Google Scholar 

  30. Akopian AN, Souslova V, England S, et al.: The tetrodotoxinresistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 1999, 2:541–548.

    Article  PubMed  CAS  Google Scholar 

  31. Porreca F, Lai J, Bian D, et al.: A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/ SNS and NaN/SNS2, in rat models of chronic pain. Proc Natl Acad Sci U S A 1999, 96:7640–7644. In the absence of specific antagonists, knockdown techniques were used to disrupt the function of SNS. Following intrathecal administration, antisense oligonucleotides possibly reached the DRG via retrograde transport. Knockdown of the SNS protein, but not NaN, abolished tactile and thermal hypersensitivity in the spinal nerve ligation model, prompting a competitive and still ongoing search for specific sodium channel antagonists that will offer effective pain relief without side effects.

    Article  PubMed  CAS  Google Scholar 

  32. Dib-Hajj SD, Tyrrell L, Black JA, et al.: NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc Natl Acad Sci U S A 1998, 95:8963–8968.

    Article  PubMed  CAS  Google Scholar 

  33. Dib-Hajj SD, Tyrrell L, Cummins TR, et al.: Two tetrodotoxinresistant sodium channels in human dorsal root ganglion neurons. FEBS Lett 1999, 462:117–120.

    Article  PubMed  CAS  Google Scholar 

  34. Dib-Hajj SD, Fjell J, Cummins TR, et al.: Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic pain. Pain 1999, 83:591–600. Chronic constriction injury decreases the gene expression of SNS and NaN, but increases the expression of alpha-III and a rapidly repriming TTX-S Na current in small DRG neurons, suggesting a role for sodium channels in neuropathic pain.

    Article  PubMed  CAS  Google Scholar 

  35. Boucher TJ, Okuse K, Bennett DL, et al.: Potent analgesic effects of GDNF in neuropathic pain states. Science 2000, 290:124–127. Demonstrates that chronic intrathecal infusion of GDNF not only prevents and reverses mechanical and thermal hypersensitivity, but also prevents the increase in alpha-III sodium channel expression associated with nerve injury. It is intriguing that GDNF or other growth factors may be able to prevent or reverse the pathologic changes in gene expression and structural reorganization that might cause abnormal sensations in peripheral neuropathies. Such an approach could conceivable prevent or even cure some forms of neuropathic pain.

    Article  PubMed  CAS  Google Scholar 

  36. Waxman SG, Kocsis JD, Black JA: Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is reexpressed following axotomy. J Neurophysiol 1994, 72:466–470.

    PubMed  CAS  Google Scholar 

  37. Chabal C, Jacobson L, Russell LC, et al.: Pain response to perineuromal injection of normal saline, epinephrine, and lidocaine in humans. Pain 1992, 49:9–12.

    Article  PubMed  CAS  Google Scholar 

  38. Sato J, Perl ER: Adrenergic excitation of cutaneous pain receptors induced by peripheral nerve injury. Science 1991, 251:1608–1610.

    Article  PubMed  CAS  Google Scholar 

  39. Devor M, Janig W: Activation of myelinated afferents ending in a neuroma by stimulation of the sympathetic supply in the rat. Neurosci Lett 1981, 24:43–47.

    Article  PubMed  CAS  Google Scholar 

  40. Janig W, Levine JD, Michaelis M: Interactions of sympathetic and primary afferent neurons following nerve injury and tissue trauma. Prog Brain Res 1996, 113:161–184.

    PubMed  CAS  Google Scholar 

  41. McLachlan EM, Janig W, Devor M, et al.: Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature 1993, 363:543–546.

    Article  PubMed  CAS  Google Scholar 

  42. Kingery WS: A critical review of controlled clinical trials for peripheral neuropathic pain and complex regional pain syndromes. Pain 1997, 73:123–139.

    Article  PubMed  CAS  Google Scholar 

  43. Ringkamp M, Eschenfelder S, Grethel EJ, et al.: Lumbar sympathectomy failed to reverse mechanical allodynia- and hyperalgesia-like behavior in rats with L5 spinal nerve injury. Pain 1999, 79:143–153. The spinal nerve ligation rat model of Chung was originally thought to be sympathetic-dependent. This article and another by the same group suggests this is not always true.

    Article  PubMed  CAS  Google Scholar 

  44. Noguchi K, Kawai Y, Fukuoka T, et al.: Substance P induced by peripheral nerve injury in primary afferent sensory neurons and its effect on dorsal column nucleus neurons. J Neurosci 1995, 15:7633–7643.

    PubMed  CAS  Google Scholar 

  45. Doubell TP, Mannion RJ, Woolf CJ: The dorsal horn: state-dependent sensory processing, plasticity and the generation of pain. In Textbook of Pain. Edited by Wall PD, Melzack R. Edinburgh: Churchill Livingstone; 1999:165–181. This novel and important thesis suggests that the normal dorsal horn has the capacity to operate in three modes: a control mode (normal pain transmission), a suppressed mode (pain inhibitory systems are active), and a sensitized mode (central sensitization). Nerve injury can lead to a fourth mode involving changes in neurochemical signature and structural reorganization. The authors suggest that appropriate treatment first involves an understanding of the operational mode of the complex patient with neuropathic pain.

    Google Scholar 

  46. Noguchi K, De Leon M, Nahin RL, et al.: Quantification of axotomy-induced alteration of neuropeptide mRNAs in dorsal root ganglion neurons with special reference to neuropeptide Y mRNA and the effects of neonatal capsaicin treatment. J Neurosci Res 1993, 35:54–66.

    Article  PubMed  CAS  Google Scholar 

  47. Mark MA, Colvin LA, Duggan AW: Spontaneous release of immunoreactive neuropeptide Y from the central terminals of large diameter primary afferents of rats with peripheral nerve injury. Neuroscience 1998, 83:581–589.

    Article  PubMed  CAS  Google Scholar 

  48. Dickenson AH: Balances between excitatory and inhibitory events in the spinal cord and chronic pain. Prog Brain Res 1996, 110:225–231.

    PubMed  CAS  Google Scholar 

  49. Hokfelt T, Zhang X, Wiesenfeld-Hallin Z: Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci 1994, 17:22–30.

    Article  PubMed  CAS  Google Scholar 

  50. Wagner R, Janjigian M, Myers RR: Anti-inflammatory interleukin-10 therapy in CCI neuropathy decreases thermal hyperalgesia, macrophage recruitment, and endoneurial TNF-alpha expression. Pain 1998, 74:35–42.

    Article  PubMed  CAS  Google Scholar 

  51. Sorkin LS, Xiao WH, Wagner R, et al.: Tumour necrosis factor-alpha induces ectopic activity in nociceptive primary afferent fibres. Neuroscience 1997, 81:255–262.

    Article  PubMed  CAS  Google Scholar 

  52. Junger H, Sorkin LS: Nociceptive and inflammatory effects of subcutaneous TNF alpha. Pain 2000, 85:145–151. Suggests that the TNF released after tissue injury participates in the generation of hyperalgesia and inflammation.

    Article  PubMed  CAS  Google Scholar 

  53. Eliav E, Herzberg U, Ruda MA, et al.: Neuropathic pain from an experimental neuritis of the rat sciatic nerve. Pain 1999, 83:169–182. This new model of neuropathic pain, involving the application of carrageenan or complete Freund’s adjuvant directly to the sciatic nerve, suggests that inflammatory mediators are indeed capable of producing tactile and heat hypersensitivity.

    Article  PubMed  CAS  Google Scholar 

  54. Asbury AK, Fields HL: Pain due to peripheral nerve damage: an hypothesis. Neurology 1984, 34:1587–1590.

    PubMed  CAS  Google Scholar 

  55. Amir R, Devor M: Chemically mediated cross-excitation in rat dorsal root ganglia. J Neurosci 1996, 16:4733–4741.

    PubMed  CAS  Google Scholar 

  56. Amir R, Devor M: Functional cross-excitation between afferent A- and C-neurons in dorsal root ganglia. Neuroscience 2000, 95:189–195. Shows the stimulation of myelinated axons produces a transient depolarization in neighboring unmyelinated axons that share the same ganglion. The authors suggest that this coupling might be exacerbated in the setting of nerve injury, and thus contribute to neuropathic pain.

    Article  PubMed  CAS  Google Scholar 

  57. Castro-Lopes JM, Coimbra A, Grant G, et al.: Ultrastructural changes of the central scalloped (C1) primary afferent endings of synaptic glomeruli in the substantia gelatinosa Rolandi of the rat after peripheral neurotomy. J Neurocytol 1990, 19:329–337.

    Article  PubMed  CAS  Google Scholar 

  58. Fields HL, Rowbotham M, Baron R: Postherpetic neuralgia: irritable nociceptors and deafferentation. Neurobiol Dis 1998, 5:209–227.

    Article  PubMed  CAS  Google Scholar 

  59. Woolf CJ, Shortland P, Coggeshall RE: Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 1992, 355:75–78.

    Article  PubMed  CAS  Google Scholar 

  60. Woolf CJ, Shortland P, Reynolds M, et al.: Reorganization of central terminals of myelinated primary afferents in the rat dorsal horn following peripheral axotomy. J Comp Neurol 1995, 360:121–134.

    Article  PubMed  CAS  Google Scholar 

  61. Abbadie C, Brown JL, Mantyh PW, et al.: Spinal cord substance P receptor immunoreactivity increases in both inflammatory and nerve injury models of persistent pain. Neuroscience 1996, 70:201–209.

    Article  PubMed  CAS  Google Scholar 

  62. Kohama I, Ishikawa K, Kocsis JD: Synaptic reorganization in the substantia gelatinosa after peripheral nerve neuroma formation: aberrant innervation of lamina II neurons by A-beta afferents. J Neurosci 2000, 20:1538–1549. Normally, lamina II neurons respond best to high threshold (nociceptive) input. In this elegant electrophysiologic study of spinal cord slices, low threshold stimulation evoked synaptic potentials in lamina II neurons 3 weeks after in vivo nerve injury. The authors suggest that the low threshold Ab-afferents that sprout into lamina II establish functional contacts with nociceptive dorsal horn neurons.

    PubMed  CAS  Google Scholar 

  63. Woolf CJ, Wall PD: Relative effectiveness of C primary afferent fibers of different origins in evoking a prolonged facilitation of the flexor reflex in the rat. J Neurosci 1986, 6:1433–1442.

    PubMed  CAS  Google Scholar 

  64. McMahon SB, Lewin GR, Wall PD: Central hyperexcitability triggered by noxious inputs. Curr Opin Neurobiol 1993, 3:602–610.

    Article  PubMed  CAS  Google Scholar 

  65. Kontinen VK, Dickenson AH: Effects of midazolam in the spinal nerve ligation model of neuropathic pain in rats. Pain 2000, 85:425–431. The results lead these authors to suggest that new treatments for neuropathic pain should be targeted at changes in spinal GABAergic systems.

    Article  PubMed  CAS  Google Scholar 

  66. Laird JM, Bennett GJ: An electrophysiological study of dorsal horn neurons in the spinal cord of rats with an experimental peripheral neuropathy. J Neurophysiol 1993, 69:2072–2085.

    PubMed  CAS  Google Scholar 

  67. Kontinen VK, Paananen S, Kalso E: Systemic morphine in the prevention of allodynia in the rat spinal nerve ligation model of neuropathic pain. Eur J Pain 1998, 2:35–42.

    Article  PubMed  CAS  Google Scholar 

  68. Abdi S, Lee DH, Park SK, et al.: Lack of pre-emptive analgesic effects of local anaesthetics on neuropathic pain. Br J Anaesth 2000, 85:620–623. Application of local anesthetic during spinal nerve ligation did not reduce persistent mechanical allodynia, arguing against preemptive analgesic techniques for postoperative neuropathic pain.

    Article  PubMed  CAS  Google Scholar 

  69. Nikolajsen L, Ilkjaer S, Kroner K, et al.: The influence of preamputation pain on postamputation stump and phantom pain. Pain 1997, 72:393–405.

    Article  PubMed  CAS  Google Scholar 

  70. Taylor BK, Brennan TJ: Preemptive analgesia—moving beyond conventional strategies and confusing terminology. J Pain 2000, 1:77–84. This review summarizes the evidence against the effectiveness of preemptive analgesia for postoperative pain.

    Article  Google Scholar 

  71. Melzack R, Wall PD: Pain mechanisms: a new theory. Science 1965, 150:971–979.

    Article  PubMed  CAS  Google Scholar 

  72. Castro-Lopes JM, Tavares I, Coimbra: GABA decreases in the spinal cord dorsal horn after peripheral neurectomy. Brain Res 1993, 620:287–291.

    Article  PubMed  CAS  Google Scholar 

  73. Eaton MJ, Martinez MA, Karmally S: A single intrathecal injection of GABA permanently reverses neuropathic pain after nerve injury. Brain Res 1999, 835:334–339.

    Article  PubMed  CAS  Google Scholar 

  74. Stiller CO, Linderoth B, O’Connor WT, et al.: Repeated spinal cord stimulation decreases the extracellular level of gamma-aminobutyric acid in the periaqueductal gray matter of freely moving rats. Brain Res 1995, 699:231–241.

    Article  PubMed  CAS  Google Scholar 

  75. Zhuo M, Gebhart GF: Biphasic modulation of spinal nociceptive transmission from the medullary raphe nuclei in the rat. J Neurophysiol 1997, 78:746–758.

    PubMed  CAS  Google Scholar 

  76. Basbaum AI, Fields HL: Endogenous pain control mechanisms: review and hypothesis. Ann Neurol 1978, 4:451–462.

    Article  PubMed  CAS  Google Scholar 

  77. Urban MO, Gebhart GF: Supraspinal contributions to hyperalgesia. Proc Natl Acad Sci U S A 1999, 96:7687–7692.

    Article  PubMed  CAS  Google Scholar 

  78. Ossipov MH, Lai J, Malan TP Jr, et al.: Spinal and supraspinal mechanisms of neuropathic pain. Ann N Y Acad Sci 2000, 909:12–24.

    Article  PubMed  CAS  Google Scholar 

  79. Pertovaara A, Wei H, Hamalainen MM: Lidocaine in the rostroventromedial medulla and the periaqueductal gray attenuates allodynia in neuropathic rats. Neurosci Lett 1996, 218:127–130.

    Article  PubMed  CAS  Google Scholar 

  80. Kovelowski CJ, Ossipov MH, Sun H, et al.: Supraspinal cholecystokinin may drive tonic descending facilitation mechanisms to maintain neuropathic pain in the rat. Pain 2000, 87:265–273.

    Article  PubMed  CAS  Google Scholar 

  81. Terayama R, Guan Y, Dubner R, et al.: Activity-induced plasticity in brain stem pain modulatory circuitry after inflammation. Neuroreport 2000, 11:1915–1919.

    Article  PubMed  CAS  Google Scholar 

  82. Taylor BK, Basbaum AI: Neurochemical characterization of extracellular serotonin in the rostral ventromedial medulla and its modulation by noxious stimuli. J Neurochem 1995, 65:578–589.

    Article  PubMed  CAS  Google Scholar 

  83. Wei H, Pertovaara A: MK-801, an NMDA receptor antagonist, in the rostroventromedial medulla attenuates development of neuropathic symptoms in the rat. Neuroreport 1999, 10:2933–937.

    Article  PubMed  CAS  Google Scholar 

  84. Lenz FA, Lee JI, Garonzik IM, et al.: Plasticity of pain-related neuronal activity in the human thalamus. Prog Brain Res 2000, 129:259–273.

    Article  PubMed  CAS  Google Scholar 

  85. Lenz FA, Gracely RH, Baker FH, et al.: Reorganization of sensory modalities evoked by microstimulation in region of the thalamic principal sensory nucleus in patients with pain due to nervous system injury. J Comp Neurol 1998, 399:125–138.

    Article  PubMed  CAS  Google Scholar 

  86. Flor H, Elbert T, Knecht S, et al.: Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 1995, 375:482–484.

    Article  PubMed  CAS  Google Scholar 

  87. Guilbaud G, Benoist JM, Levante A, et al.: Primary somatosensory cortex in rats with pain-related behaviours due to a peripheral mononeuropathy after moderate ligation of one sciatic nerve: neuronal responsivity to somatic stimulation. Exp Brain Res 1992, 92:227–245.

    Article  PubMed  CAS  Google Scholar 

  88. Scadding JW: Peripheral neuropathies. In Textbook of Pain. Edited by Wall PD, Melzack R. Edinburgh: Churchill Livingstone; 1999:815–834.

    Google Scholar 

  89. Fields HL, Baron R, Rowbotham MC: Peripheral neuropathic pain: an approach to management. In Textbook of Pain. Edited by Wall PD, Melzack R. Edinburgh: Churchill Livingstone; 1999:1523–1533. Because neither the disease that produces the symptoms, nor the symptoms themselves define the pathophysiologic mechanisms underlying neuropathic pain, treatment tends to be difficult and often unsatisfactory. Until a more comprehensive approach based on mechanism is created (see [45]), this book chapter provides a useful sequential algorithm of treatment based on our current knowledge of pathophysiology and data from controlled clinical trials.

    Google Scholar 

  90. Max MB: Treatment of post-herpetic neuralgia: antidepressants. Ann Neurol 1994, 35:S50–53.

    Article  PubMed  Google Scholar 

  91. Woolf CJ, Mannion RJ: Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 1999, 353:1959–1964.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, B.K. Pathophysiologic mechanisms of neuropathic pain. Current Science Inc 5, 151–161 (2001). https://doi.org/10.1007/s11916-001-0083-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-001-0083-1

Keywords

Navigation