Skip to main content

Advertisement

Log in

Genetic Evaluation for Monogenic Disorders of Low Bone Mass and Increased Bone Fragility: What Clinicians Need to Know

  • REVIEW
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to outline the principles of clinical genetic testing and to provide practical guidance to clinicians in navigating genetic testing for patients with suspected monogenic forms of osteoporosis.

Recent Findings

Heritability assessments and genome-wide association studies have clearly shown the significant contributions of genetic variations to the pathogenesis of osteoporosis. Currently, over 50 monogenic disorders that present primarily with low bone mass and increased risk of fractures have been described. The widespread availability of clinical genetic testing offers a valuable opportunity to correctly diagnose individuals with monogenic forms of osteoporosis, thus instituting appropriate surveillance and treatment.

Summary

Clinical genetic testing may identify the appropriate diagnosis in a subset of patients with low bone mass, multiple or unusual fractures, and severe or early-onset osteoporosis, and thus clinicians should be aware of how to incorporate such testing into their clinical practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sarafrazi N, Wambogo EA, Shepherd JA. Osteoporosis or low bone mass in older adults: United States, 2017–2018. NCHS Data Brief. 2021;405:1–8.

    Google Scholar 

  2. Mergler S, et al. Epidemiology of low bone mineral density and fractures in children with severe cerebral palsy: a systematic review. Dev Med Child Neurol. 2009;51(10):773–8.

    Article  PubMed  Google Scholar 

  3. Presedo A, Dabney KW, Miller F. Fractures in patients with cerebral palsy. J Pediatr Orthop. 2007;27(2):147–53.

    Article  PubMed  Google Scholar 

  4. Burge R, et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22(3):465–75.

    Article  PubMed  Google Scholar 

  5. Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393(10169):364–76.

    Article  CAS  PubMed  Google Scholar 

  6. Yengo L, et al. A saturated map of common genetic variants associated with human height. Nature. 2022;610(7933):704–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Timpson NJ, et al. Genetic architecture: the shape of the genetic contribution to human traits and disease. Nat Rev Genet. 2018;19(2):110–24.

    Article  CAS  PubMed  Google Scholar 

  8. Trajanoska K, Rivadeneira F. The genetic architecture of osteoporosis and fracture risk. Bone. 2019;126:2–10.

    Article  PubMed  Google Scholar 

  9. • Chen S, et al. Genetic burden contributing to extremely low or high bone mineral density in a senior male population from the Osteoporotic Fractures in Men Study (MrOS). JBMR Plus. 2020; 4(3): e10335. Interesting study that determined the burden of rare genetic variants in development of osteoporosis-related fractures.

  10. Bjornerem A, et al. Genetic and environmental variances of bone microarchitecture and bone remodeling markers: a twin study. J Bone Miner Res. 2015;30(3):519–27.

    Article  PubMed  Google Scholar 

  11. Piroska M, et al. Strong genetic effects on bone mineral density in multiple locations with two different techniques: results from a cross-sectional twin study. Medicina (Kaunas). 2021;57(3):248.

    Article  PubMed  Google Scholar 

  12. • Richards JB, et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet. 2008;371(9623):1505–12. Pivotal osteoporosis GWAS.

  13. • Styrkarsdottir U, et al. Multiple genetic loci for bone mineral density and fractures. N Engl J Med. 2008;358(22):2355–65. Pivotal osteoporosis GWAS.

  14. • Rivadeneira F, et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet. 2009;41(11):1199–206. Meta-analysis of pivotal osteoporosis GWAS.

  15. Paternoster L, et al. Genetic determinants of trabecular and cortical volumetric bone mineral densities and bone microstructure. PLoS Genet. 2013;9(2): e1003247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Styrkarsdottir U, et al. New sequence variants associated with bone mineral density. Nat Genet. 2009;41(1):15–7.

    Article  CAS  PubMed  Google Scholar 

  17. Pocock NA, et al. Genetic determinants of bone mass in adults. A twin study. J Clin Invest. 1987;80(3):706–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Flicker L, et al. Bone density determinants in elderly women: a twin study. J Bone Miner Res. 1995;10(11):1607–13.

    Article  CAS  PubMed  Google Scholar 

  19. Gueguen R, et al. Segregation analysis and variance components analysis of bone mineral density in healthy families. J Bone Miner Res. 1995;10(12):2017–22.

    Article  CAS  PubMed  Google Scholar 

  20. Krall EA, Dawson-Hughes B. Heritable and life-style determinants of bone mineral density. J Bone Miner Res. 1993;8(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  21. Karasik D, et al. Heritability and genetic correlations for bone microarchitecture: the Framingham Study Families. J Bone Miner Res. 2017;32(1):106–14.

    Article  PubMed  Google Scholar 

  22. Kemp JP, et al. Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment. PLoS Genet. 2014;10(6): e1004423.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Patel RM, et al. A cross-sectional multicenter study of osteogenesis imperfecta in North America - results from the linked clinical research centers. Clin Genet. 2015;87(2):133–40.

    Article  CAS  PubMed  Google Scholar 

  24. Trajanoska K, et al. Assessment of the genetic and clinical determinants of fracture risk: genome wide association and mendelian randomisation study. BMJ. 2018;362: k3225.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nethander M, et al. Assessment of the genetic and clinical determinants of hip fracture risk: genome-wide association and Mendelian randomization study. Cell Rep Med. 2022;3(10): 100776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alonso N, et al. Identification of a novel locus on chromosome 2q13, which predisposes to clinical vertebral fractures independently of bone density. Ann Rheum Dis. 2018;77(3):378–85.

    Article  CAS  PubMed  Google Scholar 

  27. Styrkarsdottir U, et al. GWAS of bone size yields twelve loci that also affect height, BMD, osteoarthritis or fractures. Nat Commun. 2019;10(1):2054.

    Article  PubMed  PubMed Central  Google Scholar 

  28. •• Zhu X, Bai W, Zheng H. Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res. 2021;9(1):23. This is a comprehensive review of the history of osteoporosis-related GWAS.

  29. Kim SK. Identification of 613 new loci associated with heel bone mineral density and a polygenic risk score for bone mineral density, osteoporosis and fracture. PLoS ONE. 2018;13(7): e0200785.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kemp JP, et al. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat Genet. 2017;49(10):1468–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morris JA, et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet. 2019;51(2):258–66.

    Article  CAS  PubMed  Google Scholar 

  32. Medina-Gomez C, et al. Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am J Hum Genet. 2018;102(1):88–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. He D, et al. Exome-wide screening identifies novel rare risk variants for bone mineral density. Osteoporos Int. 2023;34(5):965–75.

    Article  CAS  PubMed  Google Scholar 

  34. • Lu T, et al. Individuals with common diseases but with a low polygenic risk score could be prioritized for rare variant screening. Genet Med. 2021;23(3): 508–15. This study shows that patients who have osteoporosis but a low burden of common variants by PRS may benefit from further clinical genetic evaluation.

  35. Backman JD, et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature. 2021;599(7886):628–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yalaev B, et al. Using a polygenic score to predict the risk of developing primary osteoporosis. Int J Mol Sci. 2022;23(17):10021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. • Lu T, et al. Improved prediction of fracture risk leveraging a genome-wide polygenic risk score. Genome Med. 2021;13(1): 16. This study demonstrated the utility and limitations of incorporating individual polygenic risk scores into the current clinic osteoporosis fracture risk algorithm (FRAX Score).

  38. Wu Q, Jung J. Genome-wide polygenic risk score for major osteoporotic fractures in postmenopausal women using associated single nucleotide polymorphisms. J Transl Med. 2023;21(1):127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Forgetta V, et al. Development of a polygenic risk score to improve screening for fracture risk: a genetic risk prediction study. PLoS Med. 2020;17(7): e1003152.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nguyen TV, Eisman JA. Post-GWAS polygenic risk score: utility and challenges. JBMR Plus. 2020;4(11): e10411.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xiao X, Wu Q. Ethnic disparities in fracture risk assessment using polygenic scores. Osteoporos Int. 2023;34(5):943–53.

    Article  PubMed  Google Scholar 

  42. Polygenic Risk Score Task Force of the International Common Disease, A. Responsible use of polygenic risk scores in the clinic: potential benefits, risks and gaps. Nat Med. 2021;27(11):1876–84.

    Article  Google Scholar 

  43. Krakow D, Rimoin DL. The skeletal dysplasias. Genet Med. 2010;12(6):327–41.

    Article  PubMed  Google Scholar 

  44. •• Unger S, et al. Nosology of genetic skeletal disorders: 2023 revision. Am J Med Genet A. 2023;191(5):1164–1209. This is the most up-to-date classification system of genetic skeletal disorders and can be used for development of differential diagnosis or curation of genetic testing panels.

  45. • Oheim R, et al. Genetic diagnostics in routine osteological assessment of adult low bone mass disorders. J Clin Endocrinol Metab. 2022;107(7):e3048-e3057. Interesting study that highlights the diagnostic yield of genetic testing in osteoporosis and provides a framework for which patients were most likely to have a causative variant.

  46. Rouleau C, et al. Diagnostic yield of bone fragility gene panel sequencing in children and young adults referred for idiopathic primary osteoporosis at a single regional reference centre. Bone Rep. 2022;16: 101176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marom R, Rabenhorst BM, Morello R. Osteogenesis imperfecta: an update on clinical features and therapies. Eur J Endocrinol. 2020;183(4):R95–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bains JS, et al. A Multicenter Observational cohort study to evaluate the effects of bisphosphonate exposure on bone mineral density and other health outcomes in osteogenesis imperfecta. JBMR Plus. 2019;3(5): e10118.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Machol K, et al. Hearing loss in individuals with osteogenesis imperfecta in North America: results from a multicenter study. Am J Med Genet A. 2020;182(4):697–704.

    Article  CAS  PubMed  Google Scholar 

  50. Najirad M, et al. Malocclusion traits and oral health-related quality of life in children with osteogenesis imperfecta: a cross-sectional study. J Am Dent Assoc. 2020;151(7):480-490 e2.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rodriguez Celin M, et al. A multicenter study to evaluate pain characteristics in osteogenesis imperfecta. Am J Med Genet A. 2023;191(1):160–72.

    Article  PubMed  Google Scholar 

  52. Tam A, et al. A multicenter study to evaluate pulmonary function in osteogenesis imperfecta. Clin Genet. 2018;94(6):502–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Taqi D, et al. Osteogenesis imperfecta tooth level phenotype analysis: cross-sectional study. Bone. 2021;147: 115917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Steiner RD, Adsit J, Basel D, et al. COL1A1/2-related osteogenesis imperfecta. In: Pagon RA, et al., editors. GeneReviews(R). Seattle: University of Washington, Seattle University of Washington; 1993. (All rights reserved.: Seattle (WA).).

    Google Scholar 

  55. Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979;16(2):101–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhytnik L, et al. Inter- and intrafamilial phenotypic variability in individuals with collagen-related osteogenesis imperfecta. Clin Transl Sci. 2020;13(5):960–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Whyte MP. Hypophosphatasia - aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2016;12(4):233–46.

    Article  CAS  PubMed  Google Scholar 

  58. Desborough R, et al. Clinical and biochemical characteristics of adults with hypophosphatasia attending a metabolic bone clinic. Bone. 2021;144: 115795.

    Article  CAS  PubMed  Google Scholar 

  59. Hepp N, et al. Biochemical and clinical manifestations in adults with hypophosphatasia: a national cross-sectional study. Osteoporos Int. 2022;33(12):2595–605.

    Article  CAS  PubMed  Google Scholar 

  60. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19(2):179–92.

    Article  CAS  PubMed  Google Scholar 

  61. Joeng KS, et al. Osteocyte-specific WNT1 regulates osteoblast function during bone homeostasis. J Clin Invest. 2017;127(7):2678–88.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Joeng KS, et al. The swaying mouse as a model of osteogenesis imperfecta caused by WNT1 mutations. Hum Mol Genet. 2014;23(15):4035–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Laine CM, et al. WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta. N Engl J Med. 2013;368(19):1809–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lawson LY, et al. Loading-induced bone formation is mediated by Wnt1 induction in osteoblast-lineage cells. FASEB J. 2022;36(9): e22502.

    Article  CAS  PubMed  Google Scholar 

  65. Fahiminiya S, et al. Mutations in WNT1 are a cause of osteogenesis imperfecta. J Med Genet. 2013;50(5):345–8.

    Article  CAS  PubMed  Google Scholar 

  66. Alhamdi S, et al. Heterozygous WNT1 variant causing a variable bone phenotype. Am J Med Genet A. 2018;176(11):2419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Makitie RE, et al. Skeletal characteristics of WNT1 osteoporosis in children and young adults. J Bone Miner Res. 2016;31(9):1734–42.

    Article  PubMed  Google Scholar 

  68. Palomo T, et al. Skeletal characteristics associated with homozygous and heterozygous WNT1 mutations. Bone. 2014;67:63–70.

    Article  CAS  PubMed  Google Scholar 

  69. Cui Y, et al. Lrp5 functions in bone to regulate bone mass. Nat Med. 2011;17(6):684–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ai M, et al. Clinical and molecular findings in osteoporosis-pseudoglioma syndrome. Am J Hum Genet. 2005;77(5):741–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Boyden LM, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346(20):1513–21.

    Article  CAS  PubMed  Google Scholar 

  72. Jiao X, et al. Autosomal recessive familial exudative vitreoretinopathy is associated with mutations in LRP5. Am J Hum Genet. 2004;75(5):878–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Narumi S, et al. Various types of LRP5 mutations in four patients with osteoporosis-pseudoglioma syndrome: identification of a 7.2-kb microdeletion using oligonucleotide tiling microarray. Am J Med Genet A. 2010;152A(1):133–40.

    Article  CAS  PubMed  Google Scholar 

  74. van Dijk FS, et al. PLS3 mutations in X-linked osteoporosis with fractures. N Engl J Med. 2013;369(16):1529–36.

    Article  PubMed  Google Scholar 

  75. George-Abraham JK, et al. Fractures in children with neurofibromatosis type 1 from two NF clinics. Am J Med Genet A. 2013;161A(5):921–6.

    Article  PubMed  Google Scholar 

  76. Ireland A, et al. Development of tibia & fibula bone deficits in children with neurofibromatosis type I - a longitudinal case-control comparison. Bone. 2022;154: 116183.

    Article  CAS  PubMed  Google Scholar 

  77. Heerva E, et al. A controlled register-based study of 460 neurofibromatosis 1 patients: increased fracture risk in children and adults over 41 years of age. J Bone Miner Res. 2012;27(11):2333–7.

    Article  PubMed  Google Scholar 

  78. Charoenngam N, et al. Bone fragility in hereditary connective tissue disorders: a systematic review and meta-analysis. Endocr Pract. 2023;29:589–600.

    Article  PubMed  Google Scholar 

  79. Haine E, et al. Muscle and bone impairment in children with Marfan syndrome: correlation with age and FBN1 genotype. J Bone Miner Res. 2015;30(8):1369–76.

    Article  CAS  PubMed  Google Scholar 

  80. Coussens M, et al. Bone parameters in hypermobile Ehlers-Danlos syndrome and hypermobility spectrum disorder: a comparative cross-sectional study. Bone. 2023;166: 116583.

    Article  PubMed  Google Scholar 

  81. Banica T, et al. Higher fracture prevalence and smaller bone size in patients with hEDS/HSD-a prospective cohort study. Osteoporos Int. 2020;31(5):849–56.

    Article  CAS  PubMed  Google Scholar 

  82. Basalom S, Rauch F. Bone disease in patients with Ehlers-Danlos syndromes. Curr Osteoporos Rep. 2020;18(2):95–102.

    Article  PubMed  Google Scholar 

  83. Gao G, Smith DI. Clinical massively parallel sequencing. Clin Chem. 2020;66(1):77–88.

    Article  PubMed  Google Scholar 

  84. Schuler BA, Nelson ET, Koziura M, Cogan JD, Hamid R, Phillips JA, 3rd. Lessons learned: next-generation sequencing applied to undiagnosed genetic diseases. J Clin Invest. 2022;132(7). https://doi.org/10.1172/JCI154942.

  85. Bennett RL, French KS, Resta RG, Doyle DL. Standardized human pedigree nomenclature: update and assessment of the recommendations of the National Society of Genetic Counselors. J Genet Couns. 2008;17(5):424–33. https://doi.org/10.1007/s10897-008-9169-9.

    Article  PubMed  Google Scholar 

  86. Nurchis MC, et al. Whole genome sequencing diagnostic yield for paediatric patients with suspected genetic disorders: systematic review, meta-analysis, and GRADE assessment. Arch Public Health. 2023;81(1):93.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Belkadi A, et al. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci U S A. 2015;112(17):5473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Retterer K, et al. Clinical application of whole-exome sequencing across clinical indications. Genet Med. 2016;18(7):696–704.

    Article  CAS  PubMed  Google Scholar 

  89. Sabir AH, et al. Diagnostic yield of rare skeletal dysplasia conditions in the radiogenomics era. BMC Med Genomics. 2021;14(1):148.

    Article  PubMed  PubMed Central  Google Scholar 

  90. • Scocchia A, et al. Diagnostic utility of next-generation sequencing-based panel testing in 543 patients with suspected skeletal dysplasia. Orphanet J Rare Dis. 2021;16(1):412. This study suggests massively paralleled sequencing of approximately 1 in 4 adult patients will return diagnostic results.

  91. GTR: Genetic Testing Registry. Available from: https://www.ncbi.nlm.nih.gov/gtr. Accessed 23 Jan 2024.

  92. Richards S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Newey PJ. Approach to the patient with a variant of uncertain significance on genetic testing. Clin Endocrinol (Oxf). 2022;97(4):400–8.

    Article  PubMed  Google Scholar 

  94. Mighton C, et al. Clinical and psychological outcomes of receiving a variant of uncertain significance from multigene panel testing or genomic sequencing: a systematic review and meta-analysis. Genet Med. 2021;23(1):22–33.

    Article  PubMed  Google Scholar 

  95. Murdock DR, et al. Transcriptome-directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing. J Clin Invest. 2021;131(1).

  96. Hirschhorn K, et al. Duty to re-contact. Genet Med. 1999;1(4):171–2.

    Article  CAS  PubMed  Google Scholar 

  97. McInerney-Leo AM, Duncan EL. Massively parallel sequencing for rare genetic disorders: potential and pitfalls. Front Endocrinol (Lausanne). 2020;11: 628946.

    Article  PubMed  Google Scholar 

  98. Miller DT, et al. ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2023;25:100866.

    Article  CAS  PubMed  Google Scholar 

  99. Kalia SS, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017;19(2):249–55.

    Article  PubMed  Google Scholar 

  100. Miller DT, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2021 update: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021;23(8):1391–8.

    Article  PubMed  Google Scholar 

  101. Rassie K, et al. Bisphosphonate use and fractures in adults with hypophosphatasia. JBMR Plus. 2019;3(10): e10223.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lv S, et al. Genetics evaluation of targeted exome sequencing in 223 Chinese probands with genetic skeletal dysplasias. Front Cell Dev Biol. 2021;9: 715042.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by the NIH Brittle Bone Disorders Consortium (BBDC) (U54 AR068069). BBDC is a part of the National Center for Advancing Translational Sciences’ (NCATS) Rare Diseases Clinical Research Network (RDCRN), and is funded through a collaboration between NCATS, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Institute of Dental and Craniofacial Research (NIDCR), National Institute of Mental Health (NIMH), and the Eunice Kennedy Shriver National Institutes of Child Health and Development (NICHD). This work was also supported in part by funding of The Baylor College of Medicine Intellectual and Developmental Disabilities Research Center (P50HD103555) from the Eunice Kennedy Shriver NICHD. This work was funded by the NIH NIDCR (DE031162 and DE031288 to BL), the NHLBI (T32 HL092332 to EB), and the Lawrence Family Bone Disease Program of Texas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan Lee.

Ethics declarations

Conflict of Interest

EB and SCSN declare no competing interests. BL reports non-financial support and other from Baylor Genetics Laboratory, personal fees from Biomarin, other from Acer Therapeutics, other from Sanofi, and other from GQ Bio Therapeutics during the conduct of the study; grants from Sanofi, grants from Kirin Kyowa outside the submitted work.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The mention of trade names, commercial products, or organizations does not imply endorsement by the USA Government.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busse, E., Lee, B. & Nagamani, S.C.S. Genetic Evaluation for Monogenic Disorders of Low Bone Mass and Increased Bone Fragility: What Clinicians Need to Know. Curr Osteoporos Rep (2024). https://doi.org/10.1007/s11914-024-00870-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11914-024-00870-6

Keywords

Navigation