Skip to main content

Osteoporosis and Bone Marrow Adipose Tissue


Purpose of Review

This review focuses on the recent findings regarding bone marrow adipose tissue (BMAT) concerning bone health. We summarize the variations in BMAT in relation to age, sex, and skeletal sites, and provide an update on noninvasive imaging techniques to quantify human BMAT. Next, we discuss the role of BMAT in patients with osteoporosis and interventions that affect BMAT.

Recent Findings

There are wide individual variations with region-specific fluctuation and age- and gender-specific differences in BMAT content and composition. The Bone Marrow Adiposity Society (BMAS) recommendations aim to standardize imaging protocols to increase comparability across studies and sites. Water-fat imaging (WFI) seems an accurate and efficient alternative for spectroscopy (1H-MRS). Most studies indicate that greater BMAT is associated with lower bone mineral density (BMD) and a higher prevalence of vertebral fractures. The proton density fat fraction (PDFF) and changes in lipid composition have been associated with an increased risk of fractures independently of BMD. Therefore, PDFF and lipid composition could potentially be future imaging biomarkers for assessing fracture risk. Evidence of the inhibitory effect of osteoporosis treatments on BMAT is still limited to a few randomized controlled trials. Moreover, results from the FRAME biopsy sub-study highlight contradictory findings on the effect of the sclerostin antibody romosozumab on BMAT.


Further understanding of the role(s) of BMAT will provide insight into the pathogenesis of osteoporosis and may lead to targeted preventive and therapeutic strategies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3



bone marrow adipose tissue


bone marrow stromal cells


bone marrow adipocytes


positron emission tomography with 2-deoxy-2-[fluorine-18] fluoro- D-glucose


magnetic resonance imaging


proton magnetic resonance spectroscopy


water-fat imaging


international bone marrow adiposity society


dual-energy X-ray absorptiometry


bone mineral density


bone marrow adipocyte diameter


computed tomography


chemical shift encoding-based water-fat imaging


bone marrow fat fraction


signal fat fraction


proton density fat fraction


point-resolved spectroscopy


stimulated echo acquisition mode


dual energy computed tomography


subcutaneous adipose tissue


visceral adipose tissue


zoledronic acid


randomized clinical trial


adipose tissue volume/total tissue volume


adipocyte number

PPARγ2 :

peroxisome proliferator-activated receptor γ2 gene


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fazeli PK, Horowitz MC, MacDougald OA, et al. Marrow fat and bone--new perspectives. J Clin Endocrinol Metab. 2013;98(3):935–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lecka-Czernik B, Rosen CJ. Energy excess, glucose utilization, and skeletal remodeling: new insights. J Bone Miner Res. 2015;30(8):1356–61.

    Article  CAS  PubMed  Google Scholar 

  3. Craft CS, Li Z, MacDougald OA, Scheller EL. Molecular differences between subtypes of bone marrow adipocytes. Curr Mol Biol Rep. 2018;4(1):16–23.

    Article  PubMed  PubMed Central  Google Scholar 

  4. • Cawthorn WP, Scheller EL, Learman BS, Parlee SD, Simon BR, Mori H, Ning X, Bree AJ, Schell B, Broome DT, Soliman SS, DelProposto J, Lumeng CN, Mitra A, Pandit SV, Gallagher KA, Miller JD, Krishnan V, Hui SK, et al. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 2014;20(2):368–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. •• Attané C, Estève D, Chaoui K, et al. Human bone marrow is comprised of adipocytes with specific lipid metabolism. Cell Rep. 2020;30(4):949-958.e6. This study demonstrates that bone marrow adipocytes show distinct lipid metabolism compared to subcutaneous adipocytes with decreased lipolysis and enriched cholesterol metabolism.

  6. •• Suchacki KJ, Tavares AAS, Mattiucci D, et al. Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nat Commun. 2020;11(1):3097. This study reports that human BMAT is functionally distinct from brown adipose tissue with higher basal glucose uptake but no response to insulin.

  7. •• Tratwal J, Labella R, Bravenboer N, et al. Reporting guidelines, review of methodological standards, and challenges toward harmonization in bone marrow adiposity research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (Lausanne). 2020;11:65. BMAS methodology working group: Review of the literature and expert opinion on methodology of BMAT histomorphometry and BMAT imaging.

  8. • Lucas S, Tencerova M, von der Weid B, et al. Guidelines for biobanking of bone marrow adipose tissue and related cell types: Report of the Biobanking Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (Lausanne). 2021;12:744527. BMAS Biobanking working group: review on the literaute on biobanking, methods used for collection of human BMAds and BMSCs,and comparison of the protocol steps and importance for standarization of BMAT collection for future biobanking.

  9. Paccou J, Penel G, Chauveau C, Cortet B, Hardouin P. Marrow adiposity and bone: Review of clinical implications. Bone. 2019;118:8–15.

    Article  PubMed  Google Scholar 

  10. • Woods G, Ewing S, Schafer A et al. Saturated and unsaturated bone marrow lipids have distinct effects on bone density and fracture risk in older adults. J Bone Miner Res. 2022;37:700-710. Higher BMAT saturated lipid content is associated with higher prevalent and incident vertebral fractures, while higher BMAT unsaturated lipid content is associated with lower incident vertebral fractures.

  11. Woods GN, Ewing SK, Sigurdsson S, Kado DM, Eiriksdottir G, Gudnason V, Hue TF, Lang TF, Vittinghoff E, Harris TB, Rosen C, Xu K, Li X, Schwartz AV. Greater bone marrow adiposity predicts bone loss in older women. J Bone Miner Res. 2020;35:326–32.

    Article  PubMed  Google Scholar 

  12. Kugel H, Jung C, Schulte O, Heindel W. Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow. J Magn Reson Imaging. 2001;13:263–8.

    Article  CAS  PubMed  Google Scholar 

  13. Griffith JF, Yeung DK, Ma HT, Leung JC, Kwok TC, Leung PC. Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J Magn Reson Imaging. 2012;36:225–30.

    Article  PubMed  Google Scholar 

  14. Beekman KM, Regenboog M, Nederveen AJ, et al. Gender- and age-associated differences in bone marrow adipose tissue and bone marrow fat unsaturation throughout the skeleton, quantified using chemical shift encoding-based water-fat MRI. Front Endocrinol (Lausanne). 2022;13:815835.

  15. Hwang S, Panicek DM. Magnetic resonance imaging of bone marrow in oncology, Part 1. Skeletal Radiol. 2007;36:913–20.

    Article  PubMed  Google Scholar 

  16. Moore SG, Dawson KL. Red and yellow marrow in the femur: age-related changes in appearance at MR imaging. Radiology. 1990;175:219–23.

    Article  CAS  PubMed  Google Scholar 

  17. •• Bravenboer N, Bredella MA, Chauveau C, et al. Standardized nomenclature, abbreviations, and units for the study of bone marrow adiposity: Report of the Nomenclature Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (Lausanne). 2020;10:923. Reference paper for nomenclature, units and symbols for the study of bone marrow adipose tissue.

  18. Dello Spedale Venti M, Palmisano B, Donsante S, et al. Morphological and immunophenotypical changes of human bone marrow adipocytes in marrow metastasis and myelofibrosis. Front Endocrinol (Lausanne). 2022;13:882379.

  19. Beekman KM, Veldhuis-Vlug AG, den Heijer M, Maas M, Oleksik AM, Tanck MW, Ott SM, van 't Hof RJ, Lips P, Bisschop PH, Bravenboer N. The effect of raloxifene on bone marrow adipose tissue and bone turnover in postmenopausal women with osteoporosis. Bone. 2019;118:62–8.

    Article  CAS  PubMed  Google Scholar 

  20. Brooks JSJ, Persia PM. Adipose tissue. In: Mills SE, editor. Histology for pathologists. 4th edition. Philadelphia, PA 19103 USA: Lippincott Williams & Wilkins; 2012. pp. 179-210

  21. Hardouin P, Rharass T, Lucas S. Bone marrow adipose tissue: to be or not to be a typical adipose tissue? Front Endocrinol (Lausanne). 2016;7:85.

  22. Arentsen L, Yagi M, Takahashi Y, Bolan PJ, White M, Yee D, Hui S. Validation of marrow fat assessment using noninvasive imaging with histologic examination of human bone samples. Bone. 2015;72:118–22.

    Article  PubMed  Google Scholar 

  23. Reeder SB, Hu HH, Sirlin CB. Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging. 2012;36(5):1011–4.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hernando D, Sharma SD, Aliyari Ghasabeh M, Alvis BD, Arora SS, Hamilton G, Pan L, Shaffer JM, Sofue K, Szeverenyi NM, Welch EB, Yuan Q, Bashir MR, Kamel IR, Rice MJ, Sirlin CB, Yokoo T, Reeder SB. Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom. Magn Reson Med. 2017;77(4):1516–24.

    Article  CAS  PubMed  Google Scholar 

  25. Karampinos DC, Ruschke S, Dieckmeyer M, Diefenbach M, Franz D, Gersing AS, Krug R, Baum T. Quantitative MRI and spectroscopy of bone marrow. J Magn Reson Imaging. 2018;47(2):332–53.

    Article  PubMed  Google Scholar 

  26. Martel D, Leporq B, Saxena A, Belmont HM, Turyan G, Honig S, Regatte RR, Chang G. 3T chemical shift-encoded MRI: detection of altered proximal femur marrow adipose tissue composition in glucocorticoid users and validation with magnetic resonance spectroscopy. J Magn Reson Imaging. 2019;50(2):490–6.

    Article  PubMed  Google Scholar 

  27. Li X, Kuo D, Schafer AL, Porzig A, Link TM, Black D, Schwartz AV. Quantification of vertebral bone marrow fat content using 3 Tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis. J Magn Reson Imaging. 2011;33(4):974–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. • Sollmann N, Löffler MT, Kronthaler S, et al. MRI-based quantitative osteoporosis imaging at the spine and femur. J Magn Reson Imaging. 2021;54(1):12-35. Review of the literature on quantitative MRI in osteoporosis of the spine and femur.

  29. Ruschke S, Karampinos DC. Single-voxel short-TR multi-TI multi-TE STEAM MRS for water-fat relaxometry. Magn Reson Med. 2022;87(6):2587–99.

    Article  PubMed  Google Scholar 

  30. Ruschke S, Syväri J, Dieckmeyer M, Junker D, Makowski MR, Baum T, Karampinos DC. Physiological variation of the vertebral bone marrow water T2 relaxation time. NMR Biomed. 2021;34(2):e4439.

    Article  CAS  PubMed  Google Scholar 

  31. •• Ruschke S, Karampinos DC. ALFONSO: A versatiLe Formulation fOr N-dimensional Signal mOdel fitting of MR spectroscopy data and its application in MRS of body lipids. Proceedings of the 31st Joint Annual Meeting of the International Society for Magnetic Resonance in Medicine and the European Society for Magnetic Resonance in Medicine and Biology; 2022:2776. ALFONSO matlab script from Karampinos and coworkers, could greatly improve accurate quantification and standardization of PDFF measurements by 1H-MRS.

  32. Bredella MA, Daley SM, Kalra MK, Brown JK, Miller KK, Torriani M. Marrow adipose tissue quantification of the lumbar spine by using dual-energy CT and single-voxel (1)H MR spectroscopy: a feasibility study. Radiology. 2015;277(1):230–5.

    Article  PubMed  Google Scholar 

  33. Arentsen L, Hansen KE, Yagi M, Takahashi Y, Shanley R, McArthur A, Bolan P, Magome T, Yee D, Froelich J, Hui SK. Use of dual-energy computed tomography to measure skeletal-wide marrow composition and cancellous bone mineral density. J Bone Miner Metab. 2017;35(4):428–36.

    Article  CAS  PubMed  Google Scholar 

  34. Sfeir JG, Drake MT, Atkinson EJ, Achenbach SJ, Camp JJ, Tweed AJ, McCready LK, Yu L, Adkins MC, Amin S, Khosla S. Evaluation of cross-sectional and longitudinal changes in volumetric bone mineral density in postmenopausal women using single- versus dual-energy quantitative computed tomography. Bone. 2018;112:145–52.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kay FU, Ho V, Dosunmu EB, Chhabra A, Brown K, Duan X, Öz OK. Quantitative CT detects undiagnosed low bone mineral density in oncologic patients imaged with 18F-FDG PET/CT. Clin Nucl Med. 2021;46(1):8–15.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yeung DKW, Griffith JF, Antonio GE, Lee FKH, Woo J, Leung PC. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging. 2005;22:279–85.

    Article  PubMed  Google Scholar 

  37. Schwartz AV, Sigurdsson S, Hue TF, Lang TF, Harris TB, Rosen CJ, Vittinghoff E, Siggeirsdottir K, Sigurdsson G, Oskarsdottir D, Shet K, Palermo L, Gudnason V, Li X. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab. 2013;98:2294–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gassert FT, Kufner A, Gassert FG, Leonhardt Y, Kronthaler S, Schwaiger BJ, Boehm C, Makowski MR, Kirschke JS, Baum T, Karampinos DC, Gersing AS. 1MR-based proton density fat fraction (PDFF) of the vertebral bone marrow differentiates between patients with and without osteoporotic vertebral fractures. Osteoporos Int. 2022;33:487–96.

    Article  CAS  PubMed  Google Scholar 

  39. Patsch JM, Li X, Baum T, Yap SP, Karampinos DC, Schwartz AV, Link TM. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res. 2013;28:1721–8.

    Article  PubMed  Google Scholar 

  40. Cordes C, Dieckmeyer M, Ott B, Shen J, Ruschke S, Settles M, Eichhorn C, Bauer JS, Kooijman H, Rummeny EJ, Skurk T, Baum T, Hauner H, Karampinos DC. MR-detected changes in liver fat, abdominal fat, and vertebral bone marrow fat after a four-week calorie restriction in obese women. J Magn Reson Imaging. 2015;42(5):1272–80.

    Article  PubMed  Google Scholar 

  41. •• Fazeli PK, Bredella MA, Pachon-Peña G, et al. The dynamics of human bone marrow adipose tissue in response to feeding and fasting. JCI Insight. 2021;6(12):e138636. A clinical study to bring first evidence in humans that interventional treatment modulates characteristics of BMAT.

  42. •• Bredella MA, Buckless C, Fazeli PK, et al. Bone marrow adipose tissue composition following high-caloric feeding and fasting. Bone. 2021;152:116093. A clinical study demonstrates in humans that interventional treatment improves BMAT composition.

  43. Belavy DL, Quittner MJ, Ridgers ND, Shiekh A, Rantalainen T, Trudel G. Specific modulation of vertebral marrow adipose tissue by physical activity. J Bone Miner Res. 2018;33(4):651–7.

    Article  CAS  PubMed  Google Scholar 

  44. Bertheau RC, Lorbeer R, Nattenmüller J, Wintermeyer E, Machann J, Linkohr B, Peters A, Bamberg F, Schlett CL. Bone marrow fat fraction assessment in regard to physical activity: KORA FF4–3-T MR imaging in a population-based cohort. Eur Radiol. 2020;30(6):3417–28.

    Article  CAS  PubMed  Google Scholar 

  45. Belavy DL, Miller CT, Owen PJ, Rantalainen T, Connell D, Hahne AJ, Ford JJ, Trudel G. Exercise may impact on lumbar vertebrae marrow adipose tissue: Randomised controlled trial. Bone. 2022;157:116338.

    Article  PubMed  Google Scholar 

  46. Lecka-Czernik B, Baroi S, Stechschulte LA, Chougule AS. Marrow fat-a new target to treat bone diseases? Curr Osteoporos Rep. 2018;16(2):123–9.

    Article  PubMed  Google Scholar 

  47. Singh L, Tyagi S, Myers D, Duque G. Good, bad, or ugly: the biological roles of bone marrow fat. Curr Osteoporos Rep. 2018;16(2):130–7.

    Article  PubMed  Google Scholar 

  48. Chen J, Zhang H, Wu X, Wang F, Wang Y, Gao Q, Liu H, Hu Y, Su J, Jing Y. PTHG2 reduces bone loss in ovariectomized mice by directing bone marrow mesenchymal stem cell fate. Stem Cells Int. 2021;2021:8546739.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Balani DH, Kronenberg HM. Withdrawal of parathyroid hormone after prolonged administration leads to adipogenic differentiation of mesenchymal precursors in vivo. Bone. 2019;118:16–9.

    Article  CAS  PubMed  Google Scholar 

  50. Rickard DJ, Wang FL, Rodriguez-Rojas AM, Wu Z, Trice WJ, Hoffman SJ, Votta B, Stroup GB, Kumar S, Nuttall ME. Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule agonist of the PTH1 receptor inhibits adipocyte differentiation in human bone marrow stromal cells. Bone. 2006;39(6):1361-72. 6.

  51. Yang Y, Luo X, Xie X, Yan F, Chen G, Zhao W, Jiang Z, Fang C, Shen J. Influences of teriparatide administration on marrow fat content in postmenopausal osteopenic women using MR spectroscopy. Climacteric. 2016;19(3):285–91.

    Article  CAS  PubMed  Google Scholar 

  52. Li GW, Xu Z, Chang SX, Zhou L, Wang XY, Nian H, Shi X. Influence of early zoledronic acid administration on bone marrow fat in ovariectomized rats. Endocrinology. 2014;155(12):4731–8.

    Article  PubMed  Google Scholar 

  53. Li GW, Chang SX, Fan JZ, Tian YN, Xu Z, He YM. Marrow adiposity recovery after early zoledronic acid treatment of glucocorticoid-induced bone loss in rabbits assessed by magnetic resonance spectroscopy. Bone. 2013;52(2):668–75.

    Article  CAS  PubMed  Google Scholar 

  54. Yang Y, Luo X, Yan F, Jiang Z, Li Y, Fang C, Shen J. Effect of zoledronic acid on vertebral marrow adiposity in postmenopausal osteoporosis assessed by MR spectroscopy. Skeletal Radiol. 2015;44(10):1499–505.

    Article  PubMed  Google Scholar 

  55. Sadie-Van Gijsen H, Crowther NJ, Hough FS, Ferris WF. The interrelationship between bone and fat: from cellular see-saw to endocrine reciprocity. Cell Mol Life Sci. 2013;70(13):2331–49.

    Article  CAS  PubMed  Google Scholar 

  56. Ko SH, Jung Y. Energy metabolism changes and dysregulated lipid metabolism in postmenopausal women. Nutrients. 2021;13(12):4556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Limonard EJ, Veldhuis-Vlug AG, van Dussen L, Runge JH, Tanck MW, Endert E, Heijboer AC, Fliers E, Hollak CE, Akkerman EM, Bisschop PH. Short-term effect of estrogen on human bone marrow fat. J Bone Miner Res. 2015;30(11):2058–66.

    Article  CAS  PubMed  Google Scholar 

  58. Syed FA, Oursler MJ, Hefferanm TE, Peterson JM, Riggs BL, Khosla S. Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women. Osteoporos Int. 2008;19:1323–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jin J, Wang L, Wang XK, Lai PL, Huang MJ, Jin DD, Zhong ZM, Chen JT, Bai XC. Risedronate inhibits bone marrow mesenchymal stem cell adipogenesis and switches RANKL/OPG ratio to impair osteoclast differentiation. J Surg Res. 2013;180(1):e21–9.

    Article  CAS  PubMed  Google Scholar 

  60. Duque G, Rivas D. Alendronate has an anabolic effect on bone through the differentiation of mesenchymal stem cells. J Bone Miner Res. 2007;22(10):1603–11.

    Article  CAS  PubMed  Google Scholar 

  61. Duque G, Li W, Adams M, Xu S, Phipps R. Effects of risedronate on bone marrow adipocytes in postmenopausal women. Osteoporos Int. 2011;22(5):1547–53.

    Article  CAS  PubMed  Google Scholar 

  62. Costa S, Fairfield H, Reagan MR. Inverse correlation between trabecular bone volume and bone marrow adipose tissue in rats treated with osteoanabolic agents. Bone. 2019;123:211–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chavassieux P, Roux JP, Libanati C, Shi Y, Chapurlat R. Evaluation of romosozumab’s effects on bone marrow adiposity in postmenopausal osteoporotic women: results from The FRAME Bone Biopsy Sub-Study. J Bone Miner Res. 2022.

Download references


- Sapienza University (RM118164289636F0) to AC. - START UP Research programme by Institute of Physiology and the Czech Science Foundation GACR 20-03586S, GACR 22-12243S, EFSD/NovoNordisk foundation Future leaders award (NNF20SA0066174), National Institute for Research of Metabolic and Cardiovascular Diseases (Programme EXCELES, ID Project No. LX22NPO5104) - Funded by the European Union – Next Generation EU to MT.

Author information

Authors and Affiliations



Julien Paccou and Peter Bisschop had the idea for the article. All authors contributed to the literature search, data analysis, draft and critical revision of the manuscript.

Corresponding author

Correspondence to Julien Paccou.

Ethics declarations

Conflict of Interest

None of the authors have financial or non-financial interests that are directly or indirectly related to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Bone Marrow and Adipose Tissue

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beekman, K.M., Duque, G., Corsi, A. et al. Osteoporosis and Bone Marrow Adipose Tissue. Curr Osteoporos Rep 21, 45–55 (2023).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Osteoporosis
  • Bone marrow adipose tissue
  • Lipid composition
  • Imaging
  • Fractures
  • Bone mineral density
  • Clinical trials