Skip to main content

Periosteal Skeletal Stem and Progenitor Cells in Bone Regeneration

Abstract

Purpose of Review

The periosteum, the outer layer of bone, is a major source of skeletal stem/progenitor cells (SSPCs) for bone repair. Here, we discuss recent findings on the characterization, role, and regulation of periosteal SSPCs (pSSPCs) during bone regeneration.

Recent Findings

Several markers have been described for pSSPCs but lack tissue specificity. In vivo lineage tracing and transcriptomic analyses have improved our understanding of pSSPC functions during bone regeneration. Bone injury activates pSSPCs that migrate, proliferate, and have the unique potential to form both bone and cartilage. The injury response of pSSPCs is controlled by many signaling pathways including BMP, FGF, Notch, and Wnt, their metabolic state, and their interactions with the blood clot, nerve fibers, blood vessels, and macrophages in the fracture environment.

Summary

Periosteal SSPCs are essential for bone regeneration. Despite recent advances, further studies are required to elucidate pSSPC heterogeneity and plasticity that make them a central component of the fracture healing process and a prime target for clinical applications.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chartier SR, Mitchell SAT, Majuta LA, Mantyh PW. The changing sensory and sympathetic innervation of the young, adult and aging mouse femur. Neuroscience. 2018;387:178–90.

    CAS  PubMed  Article  Google Scholar 

  2. Lorenz MR, Brazill JM, Beeve AT, Shen I, Scheller EL. A neuroskeletal atlas: spatial mapping and contextualization of axon subtypes innervating the long bones of C3H and B6 mice. J Bone Miner Res. 2021;36:1012–25.

    PubMed  Article  Google Scholar 

  3. Alexander KA, Raggatt L, Millard S, Batoon L, Chiu-Ku Wu A, Chang M, Hume DA, Pettit AR. Resting and injury-induced inflamed periosteum contain multiple macrophage subsets that are located at sites of bone growth and regeneration. Immunol Cell Biol. 2017;95:7–16.

    CAS  PubMed  Article  Google Scholar 

  4. Colnot C, Lu C, Hu D, Helms JA. Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development. Dev Biol. 2004;269:55–69.

    CAS  PubMed  Article  Google Scholar 

  5. Akiyama H, Kim J-E, Nakashima K, et al. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci U S A. 2005;102:14665–70.

    CAS  PubMed  Article  Google Scholar 

  6. Kaneko S, Matsushita M, Mishima K, Takegami Y, Imagama S, Kitoh H. Effect of periosteal resection on longitudinal bone growth in a mouse model of achondroplasia. Bone Reports. 2020;13:100708.

    PubMed  PubMed Central  Article  Google Scholar 

  7. Watanabe-Takano H, Ochi H, Chiba A, Matsuo A, Kanai Y, Fukuhara S, Ito N, Sako K, Miyazaki T, Tainaka K, Harada I, Sato S, Sawada Y, Minamino N, Takeda S, Ueda HR, Yasoda A, Mochizuki N. Mechanical load regulates bone growth via periosteal osteocrin. Cell Reports. 2021;36:109380.

    CAS  PubMed  Article  Google Scholar 

  8. Moore ER, Zhu YX, Ryu HS, Jacobs CR. Periosteal progenitors contribute to load-induced bone formation in adult mice and require primary cilia to sense mechanical stimulation. Stem Cell Res Ther. 2018;9:190.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Zannit HM, Silva MJ. Proliferation and activation of osterix-lineage cells contribute to loading-induced periosteal bone formation in mice. JBMR Plus. 2019;3:e10227. https://doi.org/10.1002/jbm4.10227.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Cabahug-Zuckerman P, Liu C, Cai C, Mahaffey I, Norman SC, Cole W, Castillo AB. Site-specific load-induced expansion of Sca-1 + Prrx1 + and Sca-1 Prrx1 + cells in adult mouse long bone is attenuated with age. JBMR Plus. 2019;3:e10199. https://doi.org/10.1002/jbm4.10199.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Watson A. Observations on the formation of bone by the periosteum. Edinb Med Surg J. 1845;63:302–7.

    PubMed  PubMed Central  Google Scholar 

  12. Sales de Gauzy J, Fitoussi F, Jouve J-L, Karger C, Badina A, Masquelet A-C. Traumatic diaphyseal bone defects in children. Orthopaedics & Traumatology: Surgery & Research. 2012;98:220–6.

    CAS  Google Scholar 

  13. Garcia P, Holstein JH, Maier S, Schaumlöffel H, Al-Marrawi F, Hannig M, Pohlemann T, Menger MD. Development of a reliable non-union model in mice. Journal of Surgical Research. 2008;147:84–91.

    PubMed  Article  Google Scholar 

  14. Wu X-Q, Wang D, Liu Y, Zhou J-L. Development of a tibial experimental non-union model in rats. J Orthop Surg Res. 2021;16:261.

    PubMed  PubMed Central  Article  Google Scholar 

  15. Sharun K, Pawde AM, Banu SA, Manjusha KM, Kalaiselvan E, Kumar R, Kinjavdekar P, Amarpal. Development of a novel atrophic non-union model in rabbits: a preliminary study. Annals of Medicine and Surgery. 2021;68:102558.

    PubMed  PubMed Central  Article  Google Scholar 

  16. Gröngröft I, Wissing S, Meesters DM, Poeze M, Matthys-Mark R, Ito K, Zeiter S. Development of a novel murine delayed secondary fracture healing in vivo model using periosteal cauterization. Arch Orthop Trauma Surg. 2019;139:1743–53.

    PubMed  PubMed Central  Article  Google Scholar 

  17. Kuwahara ST, Serowoky MA, Vakhshori V, Tripuraneni N, Hegde NV, Lieberman JR, Crump JG, Mariani FV. Sox9+ messenger cells orchestrate large-scale skeletal regeneration in the mammalian rib. eLife. 2019;8:e40715.

    PubMed  PubMed Central  Article  Google Scholar 

  18. Colnot C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. Journal of Bone and Mineral Research. 2009;24:274–82.

    PubMed  Article  Google Scholar 

  19. Murao H, Yamamoto K, Matsuda S, Akiyama H. Periosteal cells are a major source of soft callus in bone fracture. J Bone Miner Metab. 2013;31:390–8.

    CAS  PubMed  Article  Google Scholar 

  20. •• Duchamp de Lageneste O, Julien A, Abou-Khalil R, Frangi G, Carvalho C, Cagnard N, Cordier C, Conway SJ, Colnot C. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat. Commun. 2018;9:773. This study provides the first evidence of the presence of skeletal stem cells within the periosteum and their enhanced contribution to bone repair compared to bone marrow stromal cells

  21. Julien A, Kanagalingam A, Martínez-Sarrà E, Megret J, Luka M, Ménager M, Relaix F, Colnot C. Direct contribution of skeletal muscle mesenchymal progenitors to bone repair. Nature Communications. 2021;12:2860.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. •• Debnath S, Yallowitz AR, McCormick J, et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature. 2018;562:133–9. This study identifies CTSK as a marker of pSSPCs supporting intramembranous ossification

  23. Matsushita Y, Nagata M, Kozloff KM, Welch JD, Mizuhashi K, Tokavanich N, Hallett SA, Link DC, Nagasawa T, Ono W, Ono N. A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nat Commun. 2020;11:332.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. • Matthews BG, Novak S, Sbrana FV, Funnell JL, Cao Y, Buckels EJ, Grcevic D, Kalajzic I. Heterogeneity of murine periosteum progenitors involved in fracture healing. eLife. 2021;10:e58534. This study characterizes the αSMA+ population within the periosteum

  25. •• Julien A, Perrin S, Martínez-Sarrà E, Kanagalingam A, Carvalho C, Luka M, Ménager M, Colnot C (2022) Skeletal stem/progenitor cells in periosteum and skeletal muscle share a common molecular response to bone injury. J of Bone & Mineral Res. https://doi.org/10.1002/jbmr.4616. This study uses single-cell transcriptomics to describe how pSSPCs respond to bone injury.

  26. Roberts SJ, van Gastel N, Carmeliet G, Luyten FP. Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath. Bone. 2015;70:10–8.

    PubMed  Article  Google Scholar 

  27. van Gastel N, Torrekens S, Roberts SJ, Moermans K, Schrooten J, Carmeliet P, Luttun A, Luyten FP, Carmeliet G. Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. Stem Cells. 2012;30:2460–71.

    PubMed  Article  CAS  Google Scholar 

  28. Perrin S, Julien A, Duchamp de Lageneste O, Abou-Khalil R, Colnot C. Mouse periosteal cell culture, in vitro differentiation, and in vivo transplantation in tibial fractures. Bio-Protocol. 2021; https://doi.org/10.21769/BioProtoc.4107.

  29. Declercq HA, De Ridder LI, Cornelissen MJ. Isolation and osteogenic differentiation of rat periosteum-derived cells. Cytotechnology. 2005;49:39–50.

    PubMed  PubMed Central  Article  Google Scholar 

  30. Wang Q, Huang C, Zeng F, Xue M, Zhang X. Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo. The American Journal of Pathology. 2010;177:3100–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Bianco P. “Mesenchymal” stem cells. Annu Rev Cell Dev Biol. 2014;30:677–704.

    CAS  PubMed  Article  Google Scholar 

  32. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    CAS  PubMed  Google Scholar 

  33. Sacchetti B, Funari A, Michienzi S, di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131:324–36.

    CAS  PubMed  Article  Google Scholar 

  34. De Bari C, Dell’Accio F, Vanlauwe J, et al. Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum. 2006;54:1209–21.

    PubMed  Article  CAS  Google Scholar 

  35. Stich S, Loch A, Park S-J, Häupl T, Ringe J, Sittinger M. Characterization of single cell derived cultures of periosteal progenitor cells to ensure the cell quality for clinical application. PLoS ONE. 2017;12:e0178560.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Chan CKF, Seo EY, Chen JY, Lo D, McArdle A, Sinha R, Tevlin R, Seita J, Vincent-Tompkins J, Wearda T, Lu WJ, Senarath-Yapa K, Chung MT, Marecic O, Tran M, Yan KS, Upton R, Walmsley GG, Lee AS, et al. Identification and specification of the mouse skeletal stem cell. Cell. 2015;160:285–98.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. • Julien A, Perrin S, Duchamp de Lageneste O, Carvalho C, Bensidhoum M, Legeai-Mallet L, Colnot C. FGFR3 in periosteal cells drives cartilage-to-bone transformation in bone repair. Stem Cell Reports. 2020;15:955–67. This study reveals the important role of periosteum-derived chondrocyte transdifferentiation into osteoblasts during bone healing., 2020

  38. Groeneveldt LC, Herpelinck T, Maréchal M, Politis C, WFJ v IJ, Huylebroeck D, Geris L, Mulugeta E, Luyten FP. The bone-forming properties of periosteum-derived cells differ between harvest sites. Front Cell Dev Biol. 2020;8:554984.

    PubMed  PubMed Central  Article  Google Scholar 

  39. Choi Y-S, Noh S-E, Lim S-M, Lee C-W, Kim C-S, Im M-W, Lee M-H, Kim D-I. Multipotency and growth characteristic of periosteum-derived progenitor cells for chondrogenic, osteogenic, and adipogenic differentiation. Biotechnol Lett. 2008;30:593–601.

    CAS  PubMed  Article  Google Scholar 

  40. Isogai N, Landis WJ, Mori R, Gotoh Y, Gerstenfeld LC, Upton J, Vacanti JP. Experimental use of fibrin glue to induce site-directed osteogenesis from cultured periosteal cells. Plast Reconstr Surg. 2000;105:953–63.

    CAS  PubMed  Article  Google Scholar 

  41. Eyckmans J, Luyten FP. Species specificity of ectopic bone formation using periosteum-derived mesenchymal progenitor cells. Tissue Eng. 2006;12:2203–13.

    CAS  PubMed  Article  Google Scholar 

  42. Gao B, Deng R, Chai Y, Chen H, Hu B, Wang X, Zhu S, Cao Y, Ni S, Wan M, Yang L, Luo Z, Cao X. Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration. Journal of Clinical Investigation. 2019;129:2578–94.

    PubMed  PubMed Central  Article  Google Scholar 

  43. •• van Gastel N, Stegen S, Eelen G, et al. Lipid availability determines fate of skeletal progenitor cells via SOX9. Nature. 2020;579:111–7. This study highlights the role of revascularization and the involvement of cell metabolism in pSSPC fate decision.

  44. Zhou X, von der Mark K, Henry S, Norton W, Adams H, de Crombrugghe B. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet. 2014;10:e1004820.

    PubMed  PubMed Central  Article  Google Scholar 

  45. Hu DP, Ferro F, Yang F, Taylor AJ, Chang W, Miclau T, Marcucio RS, Bahney CS. Cartilage to bone transformation during fracture healing is coordinated by the invading vasculature and induction of the core pluripotency genes. Development. 2017;144:221–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Kawanami A, Matsushita T, Chan YY, Murakami S. Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. Biochemical and Biophysical Research Communications. 2009;386:477–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Xu J, Wang Y, Li Z, Tian Y, Li Z, Lu A, Hsu CY, Negri S, Tang C, Tower RJ, Morris C, James AW. PDGFRα reporter activity identifies periosteal progenitor cells critical for bone formation and fracture repair. Bone Res. 2022;10:7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Uezumi A, Ikemoto-Uezumi M, Tsuchida K. Roles of nonmyogenic mesenchymal progenitors in pathogenesis and regeneration of skeletal muscle. Front Physiol. 2014;5:68.

    PubMed  PubMed Central  Article  Google Scholar 

  49. O’Rourke M, Cullen CL, Auderset L, Pitman KA, Achatz D, Gasperini R, Young KM. Evaluating tissue-specific recombination in a Pdgfrα-CreERT2 transgenic mouse line. PLoS ONE. 2016;11:e0162858.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. Matthews BG, Grcevic D, Wang L, Hagiwara Y, Roguljic H, Joshi P, Shin D-G, Adams DJ, Kalajzic I. Analysis of αSMA-labeled progenitor cell commitment identifies notch signaling as an important pathway in fracture healing. J Bone Miner Res. 2014;29:1283–94.

    CAS  PubMed  Article  Google Scholar 

  51. •• Ortinau LC, Wang H, Lei K, et al. Identification of functionally distinct Mx1+αSMA+ periosteal skeletal stem cells. Cell Stem Cell. 2019;25:784–796.e5. This study identifies αSMA+ Mx1+ cells as a population of pSSPCs required for bone healing

  52. Ransom RC, Hunter DJ, Hyman S, Singh G, Ransom SC, Shen EZ, Perez KC, Gillette M, Li J, Liu B, Brunski JB, Helms JA. Axin2-expressing cells execute regeneration after skeletal injury. Sci Rep. 2016;6:36524.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Böhm A-M, Dirckx N, Tower RJ, et al. Activation of skeletal stem and progenitor cells for bone regeneration is driven by PDGFRβ signaling. Dev. Cell. 2019;51:236–254.e12.

    PubMed  Article  CAS  Google Scholar 

  54. Pineault KM, Song JY, Kozloff KM, Lucas D, Wellik DM. Hox11 expressing regional skeletal stem cells are progenitors for osteoblasts, chondrocytes and adipocytes throughout life. Nat Commun. 2019;10:3168.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. Tournaire G, Stegen S, Giacomini G, Stockmans I, Moermans K, Carmeliet G, van Gastel N. Nestin-GFP transgene labels skeletal progenitors in the periosteum. Bone. 2020;133:115259.

    CAS  PubMed  Article  Google Scholar 

  56. Shi Y, He G, Lee W-C, McKenzie JA, Silva MJ, Long F. Gli1 identifies osteogenic progenitors for bone formation and fracture repair. Nat Commun. 2017;8:2043.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. Xia C, Ge Q, Fang L, Yu H, Zou Z, Zhang P, Lv S, Tong P, Xiao L, Chen D, Wang PE, Jin H. TGF-β/Smad2 signalling regulates enchondral bone formation of Gli1 + periosteal cells during fracture healing. Cell Prolif. 2020;53:e12904. https://doi.org/10.1111/cpr.12904.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. He X, Bougioukli S, Ortega B, Arevalo E, Lieberman JR, McMahon AP. Sox9 positive periosteal cells in fracture repair of the adult mammalian long bone. Bone. 2017;103:12–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, Henderson JM, Ebert BL, Humphreys BD. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell. 2015;16:51–66.

    CAS  PubMed  Article  Google Scholar 

  60. Yu YY, Lieu S, Lu C, Miclau T, Marcucio RS, Colnot C. Immunolocalization of BMPs, BMP antagonists, receptors, and effectors during fracture repair. Bone. 2010;46:841–51.

    CAS  PubMed  Article  Google Scholar 

  61. Tsuji K, Cox K, Bandyopadhyay A, Harfe BD, Tabin CJ, Rosen V. BMP4 is dispensable for skeletogenesis and fracture-healing in the limb. Journal of Bone and Joint Surgery. 2008;90:14–8.

    Article  Google Scholar 

  62. Tsuji K, Cox K, Gamer L, Graf D, Economides A, Rosen V. Conditional deletion of BMP7 from the limb skeleton does not affect bone formation or fracture repair. J Orthop Res. 2010;28:384–9.

    PubMed  PubMed Central  Article  Google Scholar 

  63. Salazar VS, Capelo LP, Cantù C, Zimmerli D, Gosalia N, Pregizer S, Cox K, Ohte S, Feigenson M, Gamer L, Nyman JS, Carey DJ, Economides A, Basler K, Rosen V. Reactivation of a developmental Bmp2 signaling center is required for therapeutic control of the murine periosteal niche. eLife. 2019;8:e42386.

    PubMed  PubMed Central  Article  Google Scholar 

  64. Chappuis V, Gamer L, Cox K, Lowery JW, Bosshardt DD, Rosen V. Periosteal BMP2 activity drives bone graft healing. Bone. 2012;51:800–9.

    CAS  PubMed  Article  Google Scholar 

  65. Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, Einhorn T, Tabin CJ, Rosen V. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet. 2006;38:1424–9.

    CAS  PubMed  Article  Google Scholar 

  66. Wang Q, Huang C, Xue M, Zhang X. Expression of endogenous BMP-2 in periosteal progenitor cells is essential for bone healing. Bone. 2011;48:524–32.

    CAS  PubMed  Article  Google Scholar 

  67. Wang C, Inzana JA, Mirando AJ, Ren Y, Liu Z, Shen J, O’Keefe RJ, Awad HA, Hilton MJ. NOTCH signaling in skeletal progenitors is critical for fracture repair. Journal of Clinical Investigation. 2016;126:1471–81.

    PubMed  PubMed Central  Article  Google Scholar 

  68. Zhong N, Gersch RP, Hadjiargyrou M. Wnt signaling activation during bone regeneration and the role of dishevelled in chondrocyte proliferation and differentiation. Bone. 2006;39:5–16.

    CAS  PubMed  Article  Google Scholar 

  69. Kim J-B, Leucht P, Lam K, Luppen C, Ten Berge D, Nusse R, Helms JA. Bone regeneration is regulated by wnt signaling. J Bone Miner Res. 2007;22:1913–23.

    CAS  PubMed  Article  Google Scholar 

  70. Novak S, Roeder E, Sinder BP, Adams DJ, Siebel CW, Grcevic D, Hankenson KD, Matthews BG, Kalajzic I. Modulation of Notch1 signaling regulates bone fracture healing. J Orthop Res. 2020;38:2350–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Lee S, Remark LH, Josephson AM, et al. Notch-Wnt signal crosstalk regulates proliferation and differentiation of osteoprogenitor cells during intramembranous bone healing. npj. Regen. Med. 2021;6:29.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Minear S, Leucht P, Miller S, Helms JA. rBMP represses Wnt signaling and influences skeletal progenitor cell fate specification during bone repair. J Bone Miner Res. 2010;25:1196–207.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Collette NM, Yee CS, Hum NR, Murugesh DK, Christiansen BA, Xie L, Economides AN, Manilay JO, Robling AG, Loots GG. Sostdc1 deficiency accelerates fracture healing by promoting the expansion of periosteal mesenchymal stem cells. Bone. 2016;88:20–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Schmid GJ, Kobayashi C, Sandell LJ, Ornitz DM. Fibroblast growth factor expression during skeletal fracture healing in mice. Dev Dyn. 2009;238:766–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Nakajima F, Nakajima A, Ogasawara A, Moriya H, Yamazaki M. Effects of a single percutaneous injection of basic fibroblast growth factor on the healing of a closed femoral shaft fracture in the rat. Calcif Tissue Int. 2007;81:132–8.

    CAS  PubMed  Article  Google Scholar 

  76. van Gastel N, Stegen S, Stockmans I, Moermans K, Schrooten J, Graf D, Luyten FP, Carmeliet G. Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2. Stem Cells. 2014;32:2407–18.

    PubMed  Article  CAS  Google Scholar 

  77. Moore ER, Mathews OA, Yao Y, Yang Y. Prx1-expressing cells contributing to fracture repair require primary cilia for complete healing in mice. Bone. 2021;143:115738.

    CAS  PubMed  Article  Google Scholar 

  78. Wang Q, Huang C, Zeng F, Xue M, Zhang X. Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo: implication for postnatal bone repair. Am J Pathol. 2010;177:3100–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Huang C, Tang M, Yehling E, Zhang X. Overexpressing sonic hedgehog peptide restores periosteal bone formation in a murine bone allograft transplantation model. Molecular Therapy. 2014;22:430–9.

    CAS  PubMed  Article  Google Scholar 

  80. Miyaji T, Nakase T, Iwasaki M, Kuriyama K, Tamai N, Higuchi C, Myoui A, Tomita T, Yoshikawa H. Expression and distribution of transcripts for sonic hedgehog in the early phase of fracture repair. Histochem Cell Biol. 2003;119:233–7.

    CAS  PubMed  Article  Google Scholar 

  81. Doherty L, Yu J, Wang X, Hankenson KD, Kalajzic I, Sanjay A. A PDGFRβ-PI3K signaling axis mediates periosteal cell activation during fracture healing. PLoS ONE. 2019;14:e0223846.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Wang X, Matthews BG, Yu J, Novak S, Grcevic D, Sanjay A, Kalajzic I. PDGF modulates BMP2-induced osteogenesis in periosteal progenitor cells. JBMR Plus. 2019;3:e10127.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. Huang C, Xue M, Chen H, Jiao J, Herschman HR, O’Keefe RJ, Zhang X. The spatiotemporal role of COX-2 in osteogenic and chondrogenic differentiation of periosteum-derived mesenchymal progenitors in fracture repair. PLoS ONE. 2014;9:e100079.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  84. Xie C, Ming X, Wang Q, Schwarz EM, Guldberg RE, O’Keefe RJ, Zhang X. COX-2 from the injury milieu is critical for the initiation of periosteal progenitor cell mediated bone healing. Bone. 2008;43:1075–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Yukata K, Xie C, Li T-F, Brown ML, Kanchiku T, Zhang X, Awad HA, Schwarz EM, Beck CA, Jonason JH, O'Keefe RJ. Teriparatide (human PTH1–34) compensates for impaired fracture healing in COX-2 deficient mice. Bone. 2018;110:150–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Bravo D, Josephson AM, Bradaschia-Correa V, Wong MZ, Yim NL, Neibart SS, Lee SN, Huo J, Coughlin T, Mizrahi MM, Leucht P. Temporary inhibition of the plasminogen activator inhibits periosteal chondrogenesis and promotes periosteal osteogenesis during appendicular bone fracture healing. Bone. 2018;112:97–106.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. Wang L, Yao L, Duan H, Yang F, Lin M, Zhang R, He Z, Ahn J, Fan Y, Qin L, Gong Y. Plasminogen regulates fracture repair by promoting the functions of periosteal mesenchymal progenitors. J Bone Miner Res. 2021;36:2229–42.

    CAS  PubMed  Article  Google Scholar 

  88. Lu C, Saless N, Hu D, Wang X, Xing Z, Hou H, Williams B, Swartz HM, Colnot C, Miclau T, Marcucio RS. Mechanical stability affects angiogenesis during early fracture healing. Journal of Orthopaedic Trauma. 2011;25:494–9.

    PubMed  PubMed Central  Article  Google Scholar 

  89. Stegen S, Deprez S, Eelen G, Torrekens S, Van Looveren R, Goveia J, Ghesquière B, Carmeliet P, Carmeliet G. Adequate hypoxia inducible factor 1α signaling is indispensable for bone regeneration. Bone. 2016;87:176–86.

    CAS  PubMed  Article  Google Scholar 

  90. Andrés Sastre E, Maly K, Zhu M, Witte-Bouma J, Trompet D, Böhm AM, Brachvogel B, van Nieuwenhoven CA, Maes C, van Osch GJVM, Zaucke F, Farrell E. Spatiotemporal distribution of thrombospondin-4 and -5 in cartilage during endochondral bone formation and repair. Bone. 2021;150:115999.

    PubMed  Article  CAS  Google Scholar 

  91. Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RAD, Filvaroff EH. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A. 2002;99:9656–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Raggatt LJ, Wullschleger ME, Alexander KA, Wu ACK, Millard SM, Kaur S, Maugham ML, Gregory LS, Steck R, Pettit AR. Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. The American Journal of Pathology. 2014;184:3192–204.

    CAS  PubMed  Article  Google Scholar 

  93. Ishikawa M, Ito H, Kitaori T, Murata K, Shibuya H, Furu M, Yoshitomi H, Fujii T, Yamamoto K, Matsuda S. MCP/CCR2 signaling is essential for recruitment of mesenchymal progenitor cells during the early phase of fracture healing. PLoS ONE. 2014;9:e104954.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. Xing Z, Lu C, Hu D, Yu Y, Wang X, Colnot C, Nakamura M, Wu Y, Miclau T, Marcucio RS. Multiple roles for CCR2 during fracture healing. Disease Models & Mechanisms. 2010;3:451–8.

    CAS  Article  Google Scholar 

  95. He F, Umrath F, Reinert S, Alexander D. Jaw periosteum-derived mesenchymal stem cells regulate THP-1-derived macrophage polarization. IJMS. 2021;22:4310.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. He F, Umrath F, von Ohle C, Reinert S, Alexander D. Analysis of the influence of jaw periosteal cells on macrophages phenotype using an innovative horizontal coculture system. Biomedicines. 2021;9:1753.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Li Z, Meyers CA, Chang L, Lee S, Li Z, Tomlinson R, Hoke A, Clemens TL, James AW. Fracture repair requires TrkA signaling by skeletal sensory nerves. Journal of Clinical Investigation. 2019;129:5137–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. Zhang Y, Xu J, Ruan YC, Yu MK, O'Laughlin M, Wise H, Chen D, Tian L, Shi D, Wang J, Chen S, Feng JQ, Chow DHK, Xie X, Zheng L, Huang L, Huang S, Leung K, Lu N, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016;22:1160–9.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. Doherty L, Wan M, Kalajzic I, Sanjay A. Diabetes impairs periosteal progenitor regenerative potential. Bone. 2021;143:115764.

    PubMed  Article  Google Scholar 

  100. Marin C, Tuts J, Luyten FP, Vandamme K, Kerckhofs G. Impaired soft and hard callus formation during fracture healing in diet-induced obese mice as revealed by 3D contrast-enhanced computed tomography imaging. Bone. 2021;150:116008.

    CAS  PubMed  Article  Google Scholar 

  101. Brown ML, Yukata K, Farnsworth CW, Chen D-G, Awad H, Hilton MJ, O’Keefe RJ, Xing L, Mooney RA, Zuscik MJ. Delayed fracture healing and increased callus adiposity in a C57BL/6J murine model of obesity-associated type 2 diabetes mellitus. PLoS ONE. 2014;9:e99656.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  102. Lu C, Miclau T, Hu D, Hansen E, Tsui K, Puttlitz C, Marcucio RS. Cellular basis for age-related changes in fracture repair. J Orthop Res. 2005;23:1300–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. Clark D, Nakamura M, Miclau T, Marcucio R. Effects of aging on fracture healing. Curr Osteoporos Rep. 2017;15:601–8.

    PubMed  PubMed Central  Article  Google Scholar 

  104. O’Driscoll SWM, Saris DBF, Ito Y, Fitzimmons JS. The chondrogenic potential of periosteum decreases with age. J Orthop Res. 2001;19:95–103.

    PubMed  Article  Google Scholar 

  105. Yukata K, Xie C, Li T-F, Takahata M, Hoak D, Kondabolu S, Zhang X, Awad HA, Schwarz EM, Beck CA, Jonason JH, O'Keefe RJ. Aging periosteal progenitor cells have reduced regenerative responsiveness to bone injury and to the anabolic actions of PTH 1-34 treatment. Bone. 2014;62:79–89.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Demontiero O, Vidal C, Duque G. Aging and bone loss: new insights for the clinician. Therapeutic Advances in Musculoskeletal. 2012;4:61–76.

    CAS  Article  Google Scholar 

  107. Zhang H, Shi X, Wang L, Li X, Zheng C, Gao B, Xu X, Lin X, Wang J, Lin Y, Shi J, Huang Q, Luo Z, Yang L. Intramembranous ossification and endochondral ossification are impaired differently between glucocorticoid-induced osteoporosis and estrogen deficiency-induced osteoporosis. Sci Rep. 2018;8:3867.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  108. Barastegui D, Gallardo-Calero I, Rodriguez-Carunchio L, Barrera-Ochoa S, Knorr J, Rivas-Nicolls D, Soldado F. Effect of vascularized periosteum on revitalization of massive bone isografts: an experimental study in a rabbit model. Microsurgery. 2021;41:157–64.

    PubMed  Article  Google Scholar 

  109. Harhaus L, Huang J-J, Kao S-W, Wu Y-L, Mackert GA, Höner B, Cheng M-H, Kneser U, Cheng C-M. The vascularized periosteum flap as novel tissue engineering model for repair of cartilage defects. J Cell Mol Med. 2015;19:1273–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. Abed PF, El Chaar E, Boltchi F, Bassir SH. The novel periosteal flap stretch technique: a predictable method to achieve and maintain primary closure in augmentative procedures. J Int Acad Periodontol. 2020;22:11–20.

    PubMed  Google Scholar 

  111. Hassibi H, Farsinejad A, Dabiri S, Vosough D, Mortezaeizadeh A, Kheirandish R, Azari O. Allogenic bone graft enriched by periosteal stem cell and growth factors for osteogenesis in critical size bone defect in rabbit model: histopathological and radiological evaluation. Iran J Pathol. 2020;15:205–16.

    PubMed  PubMed Central  Article  Google Scholar 

  112. Amler A-K, Dinkelborg PH, Schlauch D, Spinnen J, Stich S, Lauster R, Sittinger M, Nahles S, Heiland M, Kloke L, Rendenbach C, Beck-Broichsitter B, Dehne T. Comparison of the translational potential of human mesenchymal progenitor cells from different bone entities for autologous 3D bioprinted bone grafts. IJMS. 2021;22:796.

    CAS  PubMed Central  Article  Google Scholar 

  113. Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. Bolander J, Herpelinck T, Chaklader M, Gklava C, Geris L, Luyten FP. Single-cell characterization and metabolic profiling of in vitro cultured human skeletal progenitors with enhanced in vivo bone forming capacity. Stem Cells Translational Medicine. 2020;9:389–402.

    CAS  PubMed  Article  Google Scholar 

  115. Bolander J, Ji W, Leijten J, Teixeira LM, Bloemen V, Lambrechts D, Chaklader M, Luyten FP. Healing of a large long-bone defect through serum-free in vitro priming of human periosteum-derived cells. Stem Cell Reports. 2017;8:758–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. Dai K, Deng S, Yu Y, Zhu F, Wang J, Liu C. Construction of developmentally inspired periosteum-like tissue for bone regeneration. Bone Res. 2022;10:1.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. Wu L, Gu Y, Liu L, Tang J, Mao J, Xi K, Jiang Z, Zhou Y, Xu Y, Deng L, Chen L, Cui W. Hierarchical micro/nanofibrous membranes of sustained releasing VEGF for periosteal regeneration. Biomaterials. 2020;227:119555.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Julien and R. Marcucio for critical reading and comments.

Funding

This work was supported by ANR-18-CE14-0033, ANR-21-CE18-007-01, and NIAMS R01 AR072707 to C. Colnot. S. Perrin was supported by a PhD fellowship from Paris University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Colnot.

Ethics declarations

Conflict of Interest

Authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Skeletal Biology and Regulation

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perrin, S., Colnot, C. Periosteal Skeletal Stem and Progenitor Cells in Bone Regeneration. Curr Osteoporos Rep (2022). https://doi.org/10.1007/s11914-022-00737-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11914-022-00737-8

Keywords

  • Periosteum
  • Skeletal stem/progenitor cells
  • Bone regeneration
  • In vivo lineage tracing