Skip to main content

Advertisement

Log in

Recent Advances in the Role of Diet in Bone and Mineral Disorders in Chronic Kidney Disease

  • Kidney and Bone (IB Salusky and T Nickolas, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Chronic kidney disease mineral and bone disease (CKD-MBD) is a common complication of kidney disease and is strongly influenced by diet. The purpose of this manuscript is to review recent advances in the role of diet in CKD-MBD over the last 5 years.

Recent Findings

Many of the recent studies examining the role of diet in CKD-MBD have focused on the adverse effects of high phosphorus consumption on bone health and metabolism. In general, the studies have shown that high phosphorus consumption worsens markers of bone and mineral metabolism but that eating a diet with a calcium to phosphorus ratio closer to 1:1 can attenuate some of these effects. Recent studies also showed that dietary counseling is efficacious for improving markers of CKD-MBD.

Summary

High consumption of phosphorus aggravates CKD-MBD. Dietary counseling may ameliorate these effects, for example, by consuming diets with higher calcium to phosphorus ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Moe S, Drüeke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G, Kidney Disease: Improving Global Outcomes (KDIGO), et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney International. 2006;69(11):1945–53. https://doi.org/10.1038/sj.ki.5000414.

  2. Gutiérrez OM. Fibroblast growth factor 23 and disordered vitamin D metabolism in chronic kidney disease: updating the "trade-off" hypothesis. Clin J Am Soc Nephrol. 2010;5(9):1710–6. https://doi.org/10.2215/cjn.02640310.

    Article  PubMed  Google Scholar 

  3. Alem AM, Sherrard DJ, Gillen DL, Weiss NS, Beresford SA, Heckbert SR, Wong C, Stehman-Breen C. Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int. 2000;58(1):396–9. https://doi.org/10.1046/j.1523-1755.2000.00178.x.

    Article  CAS  PubMed  Google Scholar 

  4. Kim SM, Long J, Montez-Rath M, Leonard M, Chertow GM. Hip fracture in patients with non-dialysis-requiring chronic kidney disease. J Bone Miner Res. 2016;31(10):1803–9. https://doi.org/10.1002/jbmr.2862.

    Article  PubMed  Google Scholar 

  5. Barsotti G, Cupisti A, Morelli E, Meola M, Cozza V, Barsotti M, Giovannetti S. Secondary hyperparathyroidism in severe chronic renal failure is corrected by very-low dietary phosphate intake and calcium carbonate supplementation. Nephron. 1998;79(2):137–41.

    Article  CAS  Google Scholar 

  6. Combe C, Aparicio M. Phosphorus and protein restriction and parathyroid function in chronic renal failure. Kidney Int. 1994;46(5):1381–6.

    Article  CAS  Google Scholar 

  7. Combe C, Morel D, de Precigout V, Blanchetier V, Bouchet JL, Potaux L, et al. Long-term control of hyperparathyroidism in advanced renal failure by low-phosphorus low-protein diet supplemented with calcium (without changes in plasma calcitriol). Nephron. 1995;70(3):287–95.

    Article  CAS  Google Scholar 

  8. Gonzalez-Parra E, Gonzalez-Casaus ML, Galan A, Martinez-Calero A, Navas V, Rodriguez M, Ortiz A. Lanthanum carbonate reduces FGF23 in chronic kidney disease stage 3 patients. Nephrol Dial Transplant. 2011;26(8):2567–71. https://doi.org/10.1093/ndt/gfr144.

    Article  CAS  PubMed  Google Scholar 

  9. Kaye M. The effects in the rat of varying intakes of dietary calcium, phosphorus, and hydrogen ion on hyperparathyroidism due to chronic renal failure. J Clin Invest. 1974;53(1):256–69.

    Article  CAS  Google Scholar 

  10. Lafage MH, Combe C, Fournier A, Aparicio M. Ketodiet, physiological calcium intake and native vitamin D improve renal osteodystrophy. Kidney Int. 1992;42(5):1217–25.

    Article  CAS  Google Scholar 

  11. Oliveira RB, Cancela AL, Graciolli FG, Dos Reis LM, Draibe SA, Cuppari L, et al. Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? Clin J Am Soc Nephrol. 2010;5(2):286–91. https://doi.org/10.2215/CJN.05420709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Slatopolsky E, Caglar S, Gradowska L, Canterbury J, Reiss E, Bricker NS. On the prevention of secondary hyperparathyroidism in experimental chronic renal disease using "proportional reduction" of dietary phosphorus intake. Kidney Int. 1972;2(3):147–51.

    Article  CAS  Google Scholar 

  13. Khairallah P, Nickolas TL. Management of osteoporosis in CKD. Clin J Am Soc Nephrol. 2018;13(6):962–9. https://doi.org/10.2215/cjn.11031017.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Uribarri J. Phosphorus homeostasis in normal health and in chronic kidney disease patients with special emphasis on dietary phosphorus intake. Semin Dial. 2007;20(4):295–301.

    Article  Google Scholar 

  15. Gutiérrez OM. The connection between dietary phosphorus, cardiovascular disease, and mortality: where we stand and what we need to know. Adv Nutr. 2013;4(6):723–9. https://doi.org/10.3945/an.113.004812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Watanabe A, Koizumi T, Horikawa T, Sano Y, Uki H, Miyajima K, Kemuriyama N, Anzai R, Iwata H, Anzai T, Nakagawa K, Nakae D. Impact of altered dietary calcium-phosphorus ratio caused by high-phosphorus diets in a rat chronic kidney disease (CKD) model created by partial ligation of the renal arteries. J Toxicol Pathol. 2020;33(2):77–86. https://doi.org/10.1293/tox.2019-0086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ugrica M, Bettoni C, Bourgeois S, Daryadel A, Pastor-Arroyo EM, Gehring N, Hernando N, Wagner CA, Rubio-Aliaga I. A chronic high phosphate intake in mice is detrimental for bone health without major renal alterations. Nephrol Dial Transplant. 2021;36:1183–91. https://doi.org/10.1093/ndt/gfab015.

    Article  Google Scholar 

  18. Sax L. The institute of medicine's "dietary reference intake" for phosphorus: a critical perspective. J Am Coll Nutr. 2001;20(4):271–8. https://doi.org/10.1080/07315724.2001.10719047.

    Article  CAS  PubMed  Google Scholar 

  19. Gutiérrez OM, Porter AK, Viggeswarapu M, Roberts JL, Beck GR Jr. Effects of phosphorus and calcium to phosphorus consumption ratio on mineral metabolism and cardiometabolic health. J Nutr Biochem. 2020;80:108374. https://doi.org/10.1016/j.jnutbio.2020.108374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. • Gutiérrez OM, Luzuriaga-McPherson A, Lin Y, Gilbert LC, Ha SW, Beck GR Jr. Impact of phosphorus-based food additives on bone and mineral metabolism. J Clin Endocrinol Metab. 2015;100(11):4264–71. https://doi.org/10.1210/jc.2015-2279This study provided evidence for the importance of the calcium:phosphorus ratio in the manifestations of CKD-MBD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang L, Tang R, Zhang Y, Liu Z, Chen S, Song K, Guo Y, Zhang L, Wang X, Wang X, Liu H, Zhang X, Liu BC. A rat model with multivalve calcification induced by subtotal nephrectomy and high-phosphorus diet. Kidney Dis (Basel). 2020;6(5):346–54. https://doi.org/10.1159/000506013.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Aniteli TM, de Siqueira FR, Dos Reis LM, Dominguez WV, de Oliveira EMC, Castelucci P, et al. Effect of variations in dietary Pi intake on intestinal Pi transporters (NaPi-IIb, PiT-1, and PiT-2) and phosphate-regulating factors (PTH, FGF-23, and MEPE). Pflugers Arch. 2018;470(4):623–32. https://doi.org/10.1007/s00424-018-2111-6.

    Article  CAS  PubMed  Google Scholar 

  23. • Yamada S, Leaf EM, Chia JJ, Cox TC, Speer MY, Giachelli CM. PiT-2, a type III sodium-dependent phosphate transporter, protects against vascular calcification in mice with chronic kidney disease fed a high-phosphate diet. Kidney Int. 2018;94(4):716–27. https://doi.org/10.1016/j.kint.2018.05.015This study looked at differing calcium:phosphorus ratios on both circulating markers of CKD-MBD and bone histological manifestations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Byrne FN, Gillman BA, Kiely M, Palmer B, Shiely F, Kearney PM, Earlie J, Bowles MB, Keohane FM, Connolly PP, Wade S, Rennick TA, Moore BL, Smith ON, Sands CM, Slevin O, McCarthy DC, Brennan KM, Mellett H, et al. Pilot randomized controlled trial of a standard versus a modified low-phosphorus diet in hemodialysis patients. Kidney Int Rep. 2020;5(11):1945–55. https://doi.org/10.1016/j.ekir.2020.08.008.

    Article  PubMed  PubMed Central  Google Scholar 

  25. • Lim E, Hyun S, Lee JM, Kim S, Lee MJ, Lee SM, et al. Effects of education on low-phosphate diet and phosphate binder intake to control serum phosphate among maintenance hemodialysis patients: a randomized controlled trial. Kidney Res Clin Pract. 2018;37(1):69–76. https://doi.org/10.23876/j.krcp.2018.37.1.69An important study looking at differing calcium:phosphorus ratios on bone histological disease in CKD.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Moe SM. Rationale to reduce calcium intake in adult patients with chronic kidney disease. Curr Opin Nephrol Hypertens. 2018;27(4):251–7. https://doi.org/10.1097/mnh.0000000000000416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. • Moe SM, Zidehsarai MP, Chambers MA, Jackman LA, Radcliffe JS, Trevino LL, Donahue SE, Asplin JR. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(2):257–64. https://doi.org/10.2215/CJN.05040610This study showed the importance of phosphorus co-transporters in the gut in modulating the effects of diet intake on CKD-MBD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shigematsu T, Negi S. Combined therapy with lanthanum carbonate and calcium carbonate for hyperphosphatemia decreases serum FGF-23 level independently of calcium and PTH (COLC Study). Nephrol Dial Transplant. 2012;27(3):1050–4. https://doi.org/10.1093/ndt/gfr388.

    Article  CAS  PubMed  Google Scholar 

  29. •• Slatopolsky E, Caglar S, Pennell JP, Taggart DD, Canterbury JM, Reiss E, Bricker NS. On the pathogenesis of hyperparathyroidism in chronic experimental renal insufficiency in the dog. J Clin Invest. 1971;50(3):492–9 This study provided critical new evidence that low urine phosphorus excretion may be a stronger signal of whole body retention of phosphorus than lower phosphorus intake per se.

    Article  CAS  Google Scholar 

  30. Pazianas M, Miller PD. Osteoporosis and chronic kidney disease-mineral and bone disorder (CKD-MBD): back to basics. Am J Kidney Dis. 2021;78:582–9. https://doi.org/10.1053/j.ajkd.2020.12.024.

    Article  CAS  PubMed  Google Scholar 

  31. Hou HT, Wang YN, Shao SZ, Fu S, Huang XP, Wang XH. High calcium diet alleviates 5/6 nephrectomy-induced bone deteriorations of lumbar vertebrae in mice. Exp Ther Med. 2018;15(4):3483–8. https://doi.org/10.3892/etm.2018.5866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. • Stremke ER, McCabe LD, McCabe GP, Martin BR, Moe SM, Weaver CM, et al. Twenty-four-hour urine phosphorus as a biomarker of dietary phosphorus intake and absorption in CKD: a secondary analysis from a controlled diet balance study. Clin J Am Soc Nephrol. 2018;13(7):1002–12. https://doi.org/10.2215/cjn.00390118This study provides a nice meta-analysis of various studies showing a potential beneficial effect of diet counseling on circulating parameters of CKD-MBD in hemodialysis patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. St-Jules DE, Rozga MR, Handu D, Carrero JJ. Effect of phosphate-specific diet therapy on phosphate levels in adults undergoing maintenance hemodialysis: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2020;16(1):107–20. https://doi.org/10.2215/cjn.09360620.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Dr. Gutiérrez was supported by grant K24DK116180 from the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orlando M. Gutiérrez.

Ethics declarations

Conflict of Interest

Dr. Gutierrez reports receiving grant support and honoraria from Amgen and Akebia; grant support from GSK; honoraria from AstraZeneca, Ardelyx, and Reata; and serving on the Data Monitoring Committee for QED Therapeutics.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Kidney and Bone

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez, O.M. Recent Advances in the Role of Diet in Bone and Mineral Disorders in Chronic Kidney Disease. Curr Osteoporos Rep 19, 574–579 (2021). https://doi.org/10.1007/s11914-021-00710-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-021-00710-x

Keywords

Navigation