Skip to main content
Log in

Biomechanical Basis of Predicting and Preventing Lower Limb Stress Fractures During Arduous Training

  • Biomechanics (JS Nyman and C Hernandez, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Stress fractures at weight-bearing sites, particularly the tibia, are common in military recruits and athletes. This review presents recent findings from human imaging and biomechanics studies aimed at predicting and preventing stress fractures.

Recent Findings

Peripheral quantitative computed tomography (pQCT) provides evidence that cortical bone geometry (tibial width and area) is associated with tibial stress fracture risk during weight-bearing exercise. The contribution of bone trabecular microarchitecture, cortical porosity, and bone material properties in the pathophysiology of stress fractures is less clear, but high-resolution pQCT and new techniques such as impact microindentation may improve our understanding of the role of microarchitecture and material properties in stress fracture prediction. Military studies demonstrate osteogenic outcomes from high impact, repetitive tibial loading during training. Kinetic and kinematic characteristics may influence stress fracture risk, but there is no evidence that interventions to modify biomechanics can reduce the incidence of stress fracture.

Summary

Strategies to promote adaptive bone formation, in combination with improved techniques to assess bone strength, present exciting opportunities for future research to prevent stress fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No data were used in the generation of this manuscript.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wentz L, Liu PY, Haymes E, Ilich JZ. Females have a greater incidence of stress fractures than males in both military and athletic populations: a systemic review. Mil Med. 2011;176(4):420–30. https://doi.org/10.7205/milmed-d-10-00322.

    Article  PubMed  Google Scholar 

  2. Hughes JM, Popp KL, Yanovich R, Bouxsein ML, Matheny RW Jr. The role of adaptive bone formation in the etiology of stress fracture. Exp Biol Med. 2016;242:897–906. https://doi.org/10.1177/1535370216661646.

    Article  CAS  Google Scholar 

  3. Seeman E, Delmas PD. Bone quality--the material and structural basis of bone strength and fragility. New Eng J Med. 2006;354(21):2250–61. https://doi.org/10.1056/NEJMra053077.

    Article  CAS  PubMed  Google Scholar 

  4. Derrick TR, Edwards WB, Fellin RE, Seay JF. An integrative modeling approach for the efficient estimation of cross sectional tibial stresses during locomotion. J Biomech. 2016;49(3):429–35. https://doi.org/10.1016/j.jbiomech.2016.01.003.

    Article  PubMed  Google Scholar 

  5. Meardon SA, Derrick TR. Effect of step width manipulation on tibial stress during running. J Biomech. 2014;47(11):2738–44. https://doi.org/10.1016/j.jbiomech.2014.04.047.

    Article  PubMed  Google Scholar 

  6. Meardon SA, Willson JD, Gries SR, Kernozek TW, Derrick TR. Bone stress in runners with tibial stress fracture. Clin Biomech. 2015;30(9):895–902. https://doi.org/10.1016/j.clinbiomech.2015.07.012.

    Article  Google Scholar 

  7. Rice H, Weir G, Trudeau MB, Meardon S, Derrick T, Hamill J. Estimating tibial stress throughout the duration of a treadmill run. Med Sci Sports Exerc. 2019;51(11):2257–64. https://doi.org/10.1249/MSS.0000000000002039.

    Article  PubMed  Google Scholar 

  8. Yang P-F, Sanno M, Ganse B, Koy T, Brüggemann G-P, Müller LP, et al. Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running. PLoS One. 2014;9(4):e94525. https://doi.org/10.1371/journal.pone.0094525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hart NH, Newton RU, Tan J, Rantalainen T, Chivers P, Siafarikas A, et al. Biological basis of bone strength: anatomy, physiology and measurement. J Musculoskelet Neuronal Interact. 2020;20(3):347–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fonseca H, Moreira-Goncalves D, Coriolano HJ, Duarte JA. Bone quality: the determinants of bone strength and fragility. Sports Med. 2014;44(1):37–53. https://doi.org/10.1007/s40279-013-0100-7.

    Article  PubMed  Google Scholar 

  11. Turner CH. Bone strength: current concepts. Ann N Y Acad Sci. 2006;1068:429–46. https://doi.org/10.1196/annals.1346.039.

    Article  PubMed  Google Scholar 

  12. Evans RK, Negus C, Antczak AJ, Yanovich R, Israeli E, Moran DS. Sex differences in parameters of bone strength in new recruits: beyond bone density. Med Sci Sports Exerc. 2008;40(11 Suppl):S645–53. https://doi.org/10.1249/MSS.0b013e3181893cb7.

    Article  PubMed  Google Scholar 

  13. Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006;8:455–98. https://doi.org/10.1146/annurev.bioeng.8.061505.095721.

    Article  CAS  PubMed  Google Scholar 

  14. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002;359(9321):1929–36. https://doi.org/10.1016/S0140-6736(02)08761-5.

    Article  PubMed  Google Scholar 

  15. Bouxsein ML, Seeman E. Quantifying the material and structural determinants of bone strength. Best Pract Res Clin Rheumatol. 2009;23(6):741–53. https://doi.org/10.1016/j.berh.2009.09.008.

    Article  PubMed  Google Scholar 

  16. Geusens P, Chapurlat R, Schett G, Ghasem-Zadeh A, Seeman E, de Jong J, et al. High-resolution in vivo imaging of bone and joints: a window to microarchitecture. Nat Rev Rheumatol. 2014;10(5):304–13. https://doi.org/10.1038/nrrheum.2014.23.

    Article  PubMed  Google Scholar 

  17. Cosman F, Ruffing J, Zion M, Uhorchak J, Ralston S, Tendy S, et al. Determinants of stress fracture risk in United States Military Academy cadets. Bone. 2013;55(2):359–66. https://doi.org/10.1016/j.bone.2013.04.011.

    Article  PubMed  Google Scholar 

  18. Schnackenburg KE, Macdonald HM, Ferber R, Wiley JP, Boyd SK. Bone quality and muscle strength in female athletes with lower limb stress fractures. Med Sci Sports Exerc. 2011;43(11):2110–9. https://doi.org/10.1249/MSS.0b013e31821f8634.

    Article  PubMed  Google Scholar 

  19. Ackerman KE, Cano Sokoloff N, Denm G, Clarke HM, Lee H, Misra M. Fractures in relation to menstrual status and bone parameters in young athletes. Med Sci Sports Exerc. 2015;47(8):1577–86. https://doi.org/10.1249/MSS.0000000000000574.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Whittier DE, Boyd SK, Burghardt AJ, Paccou J, Ghasem-Zadeh A, Chapurlat R, et al. Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos Int. 2020;31(9):1607–27. https://doi.org/10.1007/s00198-020-05438-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. MacNeil JA, Boyd SK. Load distribution and the predictive power of morphological indices in the distal radius and tibia by high resolution peripheral quantitative computed tomography. Bone. 2007;41(1):129–37. https://doi.org/10.1016/j.bone.2007.02.029.

    Article  PubMed  Google Scholar 

  22. Liu XS, Zhang XH, Sekhon KK, Adams MF, McMahon DJ, Bilezikian JP, et al. High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res. 2010;25(4):746–56. https://doi.org/10.1359/jbmr.090822.

    Article  CAS  PubMed  Google Scholar 

  23. Cheung AM, Adachi JD, Hanley DA, Kendler DL, Davison KS, Josse R, et al. High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr Osteoporos Rep. 2013;11(2):136–46. https://doi.org/10.1007/s11914-013-0140-9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Diez-Perez A, Farr JN. Reference Point Indentation. In: Bilezikian JP, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Wiley-Blackwell; 2019.

  25. Schoeb M, Hamdy NAT, Malgo F, Winter EM, Appelman-Dijkstra NM. Added value of impact microindentation in the evaluation of bone fragility: a systematic review of the literature. Front Endocrinol. 2020;11:15. https://doi.org/10.3389/fendo.2020.00015.

    Article  Google Scholar 

  26. •• Duarte Sosa D, Fink EE. Women with previous stress fractures show reduced bone material strength. Acta Orthop. 2016;87(6):626–31. https://doi.org/10.1080/17453674.2016.1198883Case-scontrol study showing diffferences in bone material strength, measured with impact microindentation, between stress fracture cases and controls.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rozental TD, Walley KC, Demissie S, Caksa S, Martinez-Betancourt A, Parker AM, et al. Bone material strength index as measured by impact microindentation in postmenopausal women with distal radius and hip fractures. J Bone Miner Res. 2018;33(4):621–6. https://doi.org/10.1002/jbmr.3338.

    Article  PubMed  Google Scholar 

  28. Mellibovsky L, Prieto-Alhambra D, Mellibovsky F, Guerri-Fernandez R, Nogues X, Randall C, et al. Bone tissue properties measurement by reference point indentation in glucocorticoid-induced osteoporosis. J Bone Miner Res. 2015;30(9):1651–6. https://doi.org/10.1002/jbmr.2497.

    Article  CAS  PubMed  Google Scholar 

  29. Sundh D, Nilsson M, Zoulakis M, Pasco C, Yilmaz M, Kazakia GJ, et al. High-impact mechanical loading increases bone material strength in postmenopausal women-a 3-month intervention study. J Bone Miner Res. 2018;33(7):1242–51. https://doi.org/10.1002/jbmr.3431.

    Article  PubMed  Google Scholar 

  30. Mandair GS, Morris MD. Contributions of Raman spectroscopy to the understanding of bone strength. Bonekey Rep. 2015;4:620. https://doi.org/10.1038/bonekey.2014.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cristofolini L, Angeli E, Juszczyk JM, Juszczyk MM. Shape and function of the diaphysis of the human tibia. J Biomech. 2013;46(11):1882–92. https://doi.org/10.1016/j.jbiomech.2013.04.026.

    Article  PubMed  Google Scholar 

  32. Pauwels F. Biomechanics of the locomotor apparatus: contributions on the functional anatomy of the locomotor apparatus. Berlin Heidelberg: Springer-Verlag; 1980.

    Book  Google Scholar 

  33. Burr D. Muscle strength, bone mass, and age-related bone loss. J Bone Miner Res. 1997;12:1547–51. https://doi.org/10.1359/jbmr.1997.12.10.1547.

    Article  CAS  PubMed  Google Scholar 

  34. Frost HM. Muscle, bone, and the Utah paradigm: a 1999 overview. Med Sci Sports Exerc. 2000;32(5):911–7. https://doi.org/10.1097/00005768-200005000-00006.

    Article  CAS  PubMed  Google Scholar 

  35. Sasimontonkul S, Bay BK, Pavol MJ. Bone contact forces on the distal tibia during the stance phase of running. J Biomech. 2007;40(15):3503–9. https://doi.org/10.1016/j.jbiomech.2007.05.024.

    Article  PubMed  Google Scholar 

  36. Komi PV. Relevance of in vivo force measurements to human biomechanics. J Biomech. 1990;23(Suppl 1):23–34. https://doi.org/10.1016/0021-9290(90)90038-5.

    Article  PubMed  Google Scholar 

  37. Scott SH, Winter DA. Internal forces of chronic running injury sites. Med Sci Sports Exerc. 1990;22(3):357–69.

    Article  CAS  PubMed  Google Scholar 

  38. Burdett RG. Forces predicted at the ankle during running. Med Sci Sports Exerc. 1982;14(4):308–16. https://doi.org/10.1249/00005768-198204000-00010.

    Article  CAS  PubMed  Google Scholar 

  39. Robling AG. Is bone's response to mechanical signals dominated by muscle forces? Med Sci Sports Exerc. 2009;41(11):2044–9. https://doi.org/10.1249/MSS.0b013e3181a8c702.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Robling AG, Hinant FM, Burr DB, Turner CH. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res. 2002;17(8):1545–54. https://doi.org/10.1359/jbmr.2002.17.8.1545.

    Article  PubMed  Google Scholar 

  41. Warden SJ, Hurst JA, Sanders MS, Turner CH, Burr DB, Li J. Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. J Bone Miner Res. 2005;20(5):809–16. https://doi.org/10.1359/JBMR.041222.

    Article  PubMed  Google Scholar 

  42. Devas MB. Stress fractures of the tibia in athletes or shin soreness. J Bone Joint Surg (Br). 1958;40-B(2):227–39. https://doi.org/10.1302/0301-620X.40B2.227.

    Article  CAS  Google Scholar 

  43. Fredericson M, Bergman AG, Hoffman KL, Dillingham MS. Tibial stress reaction in runners: correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med. 1995;23(4):472–81. https://doi.org/10.1177/036354659502300418.

    Article  CAS  PubMed  Google Scholar 

  44. Nattiv A, Kennedy G, Barrack MT, Abdelkerim A, Goolsby MA, Arends JC, et al. Correlation of MRI grading of bone stress injuries with clinical risk factors and return to play: a 5-year prospective study in collegiate track and field athletes. Am J Sports Med. 2013;41(8):1930–41. https://doi.org/10.1177/0363546513490645.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lieberman DE, Polk JD, Demes B. Predicting long bone loading from cross-sectional geometry. Am J Phys Anthropol. 2004;123(2):156–71. https://doi.org/10.1002/ajpa.10316.

    Article  PubMed  Google Scholar 

  46. Dempster WT, Liddicoat RT. Compact bone as a non-isotropic material. Am J Anat. 1952;91(3):331–62. https://doi.org/10.1002/aja.1000910302.

    Article  CAS  PubMed  Google Scholar 

  47. Maeda K, Mochizuki T, Kobayashi K, Tanifuji O, Someya K, Hokari S, et al. Cortical thickness of the tibial diaphysis reveals age- and sex-related characteristics between non-obese healthy young and elderly subjects depending on the tibial regions. J Exp Orthop. 2020;7(1):78. https://doi.org/10.1186/s40634-020-00297-9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Giladi M, Milgrom C, Simkin A, Stein M, Kashtan H, Margulies J, et al. Stress fractures and tibial bone width. A risk factor. J Bone Joint Surg (Br). 1987;69(2):326–9. https://doi.org/10.1302/0301-620X.69B2.3818769.

    Article  CAS  Google Scholar 

  49. Beck TJ, Ruff CB, Mourtada FA, Shaffer RA, Maxwell-Williams K, Kao GL, et al. Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. Marine Corps recruits. J Bone Miner Res. 1996;11(5):645–53. https://doi.org/10.1002/jbmr.5650110512.

    Article  CAS  PubMed  Google Scholar 

  50. Beck TJ, Ruff CB, Shaffer RA, Betsinger K, Trone DW, Brodine SK. Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone. 2000;27(3):437–44. https://doi.org/10.1016/s8756-3282(00)00342-2.

    Article  CAS  PubMed  Google Scholar 

  51. Milgrom C, Giladi M, Simkin A, Rand N, Kedem R, Kashtan H, et al. The area moment of inertia of the tibia: a risk factor for stress fractures. J Biomech. 1989;22(11-12):1243–8. https://doi.org/10.1016/0021-9290(89)90226-1.

    Article  CAS  PubMed  Google Scholar 

  52. Crossley K, Bennell KL, Wrigley T, Oakes BW. Ground reaction forces, bone characteristics, and tibial stress fracture in male runners. Med Sci Sports Exerc. 1999;31(8):1088–93. https://doi.org/10.1097/00005768-199908000-00002.

    Article  CAS  PubMed  Google Scholar 

  53. • Izard RM, Fraser WD, Negus C, Sale C, Greeves JP. Increased density and periosteal expansion of the tibia in young adult men following short-term arduous training. Bone. 2016;88:13–9. https://doi.org/10.1016/j.bone.2016.03.015Prospective study showing site-specific adaptation of the tibia in men in response to 10 weeks of military training.

    Article  PubMed  Google Scholar 

  54. Moran DS, Israeli E, Evans RK, Yanovich R, Constantini N, Shabshin N, et al. Prediction model for stress fracture in young female recruits during basic training. Med Sci Sports Exerc. 2008;40(11 Suppl):S636–44. https://doi.org/10.1249/MSS.0b013e3181893164.

    Article  PubMed  Google Scholar 

  55. Moran DS, Finestone AS, Arbel Y, Shabshin N, Laor A. A simplified model to predict stress fracture in young elite combat recruits. J Strength Cond Res. 2012;26(9):2585–92. https://doi.org/10.1519/JSC.0b013e31823f2733.

    Article  PubMed  Google Scholar 

  56. Jepsen KJ, Evans R, Negus CH, Gagnier JJ, Centi A, Erlich T, et al. Variation in tibial functionality and fracture susceptibility among healthy, young adults arises from the acquisition of biologically distinct sets of traits. J Bone Miner Res. 2013;28(6):1290–300. https://doi.org/10.1002/jbmr.1879.

    Article  PubMed  Google Scholar 

  57. Davey T, Lanham-New SA, Shaw AM, Cobley R, Allsopp AJ, Hajjawi MO, et al. Fundamental differences in axial and appendicular bone density in stress fractured and uninjured Royal Marine recruits--a matched case-control study. Bone. 2015;73:120–6. https://doi.org/10.1016/j.bone.2014.12.018.

    Article  PubMed  Google Scholar 

  58. Popp KL, Frye AC, Stovitz SD, Hughes JM. Bone geometry and lower extremity bone stress injuries in male runners. J Sci Med Sport. 2020;23(2):145–50. https://doi.org/10.1016/j.jsams.2019.09.009.

    Article  PubMed  Google Scholar 

  59. Popp KL, Hughes JM, Smock AJ, Novotny SA, Stovitz SD, Koehler SM, et al. Bone geometry, strength, and muscle size in runners with a history of stress fracture. Med Sci Sports Exerc. 2009;41(12):2145–50. https://doi.org/10.1249/MSS.0b013e3181a9e772.

    Article  PubMed  Google Scholar 

  60. Popp KL, McDermott W, Hughes JM, Baxter SA, Stovitz SD, Petit MA. Bone strength estimates relative to vertical ground reaction force discriminates women runners with stress fracture history. Bone. 2017;94:22–8. https://doi.org/10.1016/j.bone.2016.10.006.

    Article  PubMed  Google Scholar 

  61. Duckham RL, Bialo SR, Machan J, Kriz P, Gordon CM. A case-control pilot study of stress fracture in adolescent girls: the discriminative ability of two imaging technologies to classify at-risk athletes. Osteoporos Int. 2019;30(8):1573–80. https://doi.org/10.1007/s00198-019-05001-x.

    Article  CAS  PubMed  Google Scholar 

  62. Weidauer LA, Binkley T, Vukovich M, Specker B. Greater polar moment of inertia at the tibia in athletes who develop stress fractures. Orthop J Sports Med. 2014;2(7):2325967114541411. https://doi.org/10.1177/2325967114541411.

    Article  PubMed  PubMed Central  Google Scholar 

  63. •• Schanda JE, Kocijan R, Resch H, Baierl A, Feichtinger X, Mittermayr R, et al. Bone stress injuries are associated with differences in bone microarchitecture in male professional soldiers. J Orthop Res. 2019;37(12):2516–23. https://doi.org/10.1002/jor.24442Case-control study showing differences in distal trabecular microarchitecture between soldiers with mid-tibial bone stress injuries compared with controls.

    Article  PubMed  Google Scholar 

  64. Bouxsein M, Popp K, Loranger E, Gehman S. Mechanisms underlying stress fracture and the influence of sex and race/ethnicity. U.S. Army Medical Research and Materiel Command. 2019.

  65. Gaffney-Stomberg E, Lutz LJ, Rood JC, Cable SJ, Pasiakos SM, Young AJ, et al. Calcium and vitamin D supplementation maintains parathyroid hormone and improves bone density during initial military training: a randomized, double-blind, placebo controlled trial. Bone. 2014;68:46–56. https://doi.org/10.1016/j.bone.2014.08.002.

    Article  CAS  PubMed  Google Scholar 

  66. Gaffney-Stomberg E, Nakayama AT, Guerriere KI, Lutz LJ, Walker LA, Staab JS, et al. Calcium and vitamin D supplementation and bone health in Marine recruits: effect of season. Bone. 2019;123:224–33. https://doi.org/10.1016/j.bone.2019.03.021.

    Article  CAS  PubMed  Google Scholar 

  67. O'Leary TJ, Izard RM, Walsh NP, Tang JCY, Fraser WD, Greeves JP. Skeletal macro- and microstructure adaptations in men undergoing arduous military training. Bone. 2019;125:54–60. https://doi.org/10.1016/j.bone.2019.05.009.

    Article  PubMed  Google Scholar 

  68. • Hughes JM, Gaffney-Stomberg E, Guerriere KI, Taylor KM, Popp KL, Xu C, et al. Changes in tibial bone microarchitecture in female recruits in response to 8 weeks of U.S. Army Basic Combat Training. Bone. 2018;113:9–16. https://doi.org/10.1016/j.bone.2018.04.021Prospective study showing adaption of the trabecular microarchitecture to short periods of military training. A temporary decrease in cortical voumetric bone mineral density was also observed, which may be important in the pathophysiology of stress fracture.

    Article  PubMed  Google Scholar 

  69. Sundaramurthy A, Xu C, Hughes JM, Gaffney-Stomberg E, Guerriere KI, Popp KL, et al. Regional changes in density and microarchitecture in the ultradistal tibia of female recruits after U.S. Army Basic Combat Training. Calcif Tissue Int. 2019;105(1):68–76. https://doi.org/10.1007/s00223-019-00548-7.

    Article  CAS  PubMed  Google Scholar 

  70. O'Leary TJ, Wardle SL, Greeves JP. Energy deficiency in soldiers: the risk of the athlete triad and relative energy deficiency in sport syndromes in the military. Front Nutr. 2020;7:142. https://doi.org/10.3389/fnut.2020.00142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. O'Leary TJ, Saunders SC, McGuire SJ, Venables MC, Izard RM. Sex differences in training loads during British army basic training. Med Sci Sports Exerc. 2018;50(12):2565–74. https://doi.org/10.1249/MSS.0000000000001716.

    Article  PubMed  Google Scholar 

  72. Jones BH, Thacker SB, Gilchrist J, Kimsey CD Jr, Sosin DM. Prevention of lower extremity stress fractures in athletes and soldiers: a systematic review. Epidemiol Rev. 2002;24(2):228–47. https://doi.org/10.1093/epirev/mxf011.

    Article  PubMed  Google Scholar 

  73. Baggaley M, Esposito M, Xu C, Unnikrishnan G, Reifman J, Edwards WB. Effects of load carriage on biomechanical variables associated with tibial stress fractures in running. Gait Posture. 2020;77:190–4. https://doi.org/10.1016/j.gaitpost.2020.01.009.

    Article  PubMed  Google Scholar 

  74. Carden PJ, Izard RM, Greeves JP, Lake JP, Myers SP. Force and acceleration characteristics of military foot drill: implications for injury risk in recruits. BMJ Open Sport Exerc Med. 2015;1(1):bmjsem-2015-000025, 0(e000025):1-7. https://doi.org/10.1136/bmjsem-2015-000025.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rice HM, Saunders SC, McGuire SJ, O'Leary TJ, Izard RM. Estimates of tibial shock magnitude in men and women at the start and end of a military drill training program. Mil Med. 2018;183:e392–8. https://doi.org/10.1093/milmed/usy037.

    Article  PubMed  Google Scholar 

  76. Pohl MB, Mullineaux DR, Milner CE, Hamill J, Davis IS. Biomechanical predictors of retrospective tibial stress fractures in runners. J Biomech. 2008;41(6):1160–5. https://doi.org/10.1016/j.jbiomech.2008.02.001.

    Article  PubMed  Google Scholar 

  77. Zadpoor AA, Nikooyan AA. The relationship between lower-extremity stress fractures and the ground reaction force: a systematic review. Clin Biomech. 2011;26(1):23–8. https://doi.org/10.1016/j.clinbiomech.2010.08.005.

    Article  Google Scholar 

  78. O'Leary TJ, Saunders SC, McGuire SJ, Izard RM. Sex differences in neuromuscular fatigability in response to load carriage in the field in British Army recruits. J Sci Med Sport. 2018;21(6):591–5. https://doi.org/10.1016/j.jsams.2017.10.018.

    Article  PubMed  Google Scholar 

  79. Yoshikawa T, Mori S, Santiesteban AJ, Sun TC, Hafstad E, Chen J, et al. The effects of muscle fatigue on bone strain. J Exp Biol. 1994;188(1):217–33.

    Article  CAS  PubMed  Google Scholar 

  80. Milgrom C, Radeva-Petrova D, Finestone A, Nyska M, Mendelson S, Benjuya N, et al. The effect of muscle fatigue on in vivo tibial strains. J Biomech. 2007;40(4):845–50. https://doi.org/10.1016/j.jbiomech.2006.03.006.

    Article  PubMed  Google Scholar 

  81. Arndt A, Ekenman I, Westblad P, Lundberg A. Effects of fatigue and load variation on metatarsal deformation measured in vivo during barefoot walking. J Biomech. 2002;35(5):621–8. https://doi.org/10.1016/s0021-9290(01)00241-x.

    Article  CAS  PubMed  Google Scholar 

  82. Rice HM, Kenny M, Ellison MA, Fulford J, Meardon SA, Derrick TR, et al. Tibial stress during running following a repeated calf-raise protocol. Scand J Med Sci Sports. 2020;30(12):2382–9. https://doi.org/10.1111/sms.13794.

    Article  PubMed  Google Scholar 

  83. Matijevich ES, Branscombe LM, Scott LR, Zelik KE. Ground reaction force metrics are not strongly correlated with tibial bone load when running across speeds and slopes: implications for science, sport and wearable tech. PLoS One. 2019;14(1):e0210000. https://doi.org/10.1371/journal.pone.0210000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. • Dixon S, Nunns M, House C, Rice H, Mostazir M, Stiles V, et al. Prospective study of biomechanical risk factors for second and third metatarsal stress fractures in military recruits. J Sci Med Sport. 2019;22(2):135–9. https://doi.org/10.1016/j.jsams.2018.06.015This prospective study of 1065 Royal Marines recruits identified biomechanical predictors of metatarsal stress fracture.

    Article  PubMed  Google Scholar 

  85. •• Nunns M, House C, Rice H, Mostazir M, Davey T, Stiles V, et al. Four biomechanical and anthropometric measures predict tibial stress fracture: a prospective study of 1065 Royal Marines. Br J Sports Med. 2016;2016:bjsports-2015-095394. https://doi.org/10.1136/bjsports-2015-095394This prospective study of 1065 Royal Marines recruits identified biomechanical predictors of tibial stress fracture.

    Article  Google Scholar 

  86. Willy RW, Buchenic L, Rogacki K, Ackerman J, Schmidt A, Willson JD. In-field gait retraining and mobile monitoring to address running biomechanics associated with tibial stress fracture. Scand J Med Sci Sports. 2015:n/a-n/a. https://doi.org/10.1111/sms.12413.

  87. Edwards WB, Taylor D, Rudolphi TJ, Gillette JC, Derrick TR. Effects of stride length and running mileage on a probabilistic stress fracture model. Med Sci Sports Exerc. 2009;41(12):2177–84. https://doi.org/10.1249/MSS.0b013e3181a984c4.

    Article  PubMed  Google Scholar 

  88. Riggs BL, Khosla S, Melton LJ 3rd. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002;23(3):279–302. https://doi.org/10.1210/edrv.23.3.0465.

    Article  CAS  PubMed  Google Scholar 

  89. Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, et al. The IOC consensus statement: beyond the Female Athlete Triad--Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(7):491–7. https://doi.org/10.1136/bjsports-2014-093502.

    Article  PubMed  Google Scholar 

  90. Ackerman KE, Davis B, Jacoby L, Misra M. DXA surrogates for visceral fat are inversely associated with bone density measures in adolescent athletes with menstrual dysfunction. J Pediatr Endocrinol Metab. 2011;24(7-8):497–504. https://doi.org/10.1210/jc.2011-1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hughes JM, Smith MA, Henning PC, Scofield DE, Spiering BA, Staab JS, et al. Bone formation is suppressed with multi-stressor military training. Eur J Appl Physiol. 2014;114(11):2251–9. https://doi.org/10.1007/s00421-014-2950-6.

    Article  CAS  PubMed  Google Scholar 

  92. O'Leary TJ, Gifford RM, Double RL, Reynolds RM, Woods DR, Wardle SL, et al. Skeletal responses to an all-female unassisted Antarctic traverse. Bone. 2019;121:267–76. https://doi.org/10.1016/j.bone.2019.02.002.

    Article  PubMed  Google Scholar 

  93. O'Leary TJ, Walsh NP, Casey A, Izard RM, Tang JC, Fraser WD, et al. Supplementary energy increases bone formation during arduous military training. Med Sci Sports Exerc. 2020. https://doi.org/10.1249/MSS.0000000000002473 Publish Ahead of Print.

  94. Al Nazer R, Rantalainen T, Heinonen A, Sievanen H, Mikkola A. Flexible multibody simulation approach in the analysis of tibial strain during walking. J Biomech. 2008;41(5):1036–43. https://doi.org/10.1016/j.jbiomech.2007.12.002.

    Article  PubMed  Google Scholar 

  95. Staab JS, Smith TJ, Wilson M, Montain SJ, Gaffney-Stomberg E. Bone turnover is altered during 72 h of sleep restriction: a controlled laboratory study. Endocrine. 2019;65(1):192–9. https://doi.org/10.1007/s12020-019-01937-6.

    Article  CAS  PubMed  Google Scholar 

  96. Finestone A, Milgrom C. How stress fracture incidence was lowered in the Israeli army: a 25-yr struggle. Med Sci Sports Exerc. 2008;40(11 Suppl):S623–9. https://doi.org/10.1249/MSS.0b013e3181892dc2.

    Article  PubMed  Google Scholar 

  97. Holt K, Grindlay K, Taskier M, Grossman D. Unintended pregnancy and contraceptive use among women in the U.S. military: a systematic literature review. Mil Med. 2011;176(9):1056–64. https://doi.org/10.7205/milmed-d-11-00012.

    Article  PubMed  Google Scholar 

  98. Martin D, Sale C, Cooper SB, Elliott-Sale KJ. Period prevalence and perceived side effects of hormonal contraceptive use and the menstrual cycle in elite athletes. Int J Sports Physiol Perfor. 2018;13(7):926–32. https://doi.org/10.1123/ijspp.2017-0330.

    Article  Google Scholar 

  99. Lopez LM, Grimes DA, Schulz KF, Curtis KM, Chen M. Steroidal contraceptives: effect on bone fractures in women. Cochrane Database Sys Rev. 2014(6):CD006033. https://doi.org/10.1002/14651858.CD006033.pub5.

  100. Herrmann M, Seibel MJ. The effects of hormonal contraceptives on bone turnover markers and bone health. Clin Endocrinol. 2010;72(5):571–83. https://doi.org/10.1111/j.1365-2265.2009.03688.x.

    Article  CAS  Google Scholar 

  101. Lappe JM, Stegman MR, Recker RR. The impact of lifestyle factors on stress fractures in female Army recruits. Osteoporos Int. 2001;12(1):35–42. https://doi.org/10.1007/s001980170155.

    Article  CAS  PubMed  Google Scholar 

  102. Hughes JM, McKinnon CJ, Taylor KM, Kardouni JR, Bulathsinhala L, Guerriere KI, et al. Nonsteroidal anti-inflammatory drug prescriptions are associated with increased stress fracture diagnosis in the U.S. army population. J Bone Miner Res. 2019;34(3):429–36. https://doi.org/10.1002/jbmr.3616.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TOL and JPG conceived the idea for the article. TOL and HMR performed the literature search. All authors drafted the manuscript, critically revised the work, and approved the final manuscript.

Corresponding author

Correspondence to Julie P. Greeves.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors have no conflicts of interest to declare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Code Availability

No codes were used in the generation of this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biomechanics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Leary, T.J., Rice, H.M. & Greeves, J.P. Biomechanical Basis of Predicting and Preventing Lower Limb Stress Fractures During Arduous Training. Curr Osteoporos Rep 19, 308–317 (2021). https://doi.org/10.1007/s11914-021-00671-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-021-00671-1

Keywords

Navigation