Skip to main content

Advertisement

Log in

Extracellular Vesicles and Bone-Associated Cancer

  • Cancer-induced Musculoskeletal Diseases (C Lynch and J Sterling, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this review, we describe the biology of extracellular vesicles (EV) and how they contribute to bone-associated cancers.

Recent Findings

Crosstalk between tumor and bone has been demonstrated to promote tumor and metastatic progression. In addition to direct cell-to-cell contact and soluble factors, such as cytokines, EVs mediate crosstalk between tumor and bone. EVs are composed of a heterogenous group of membrane-delineated vesicles of varying size range, mechanisms of formation, and content. These include apoptotic bodies, microvesicles, large oncosomes, and exosomes. EVs derived from primary tumors have been shown to alter bone remodeling and create formation of a pre-metastatic niche that favors development of bone metastasis. Similarly, EVs from marrow stromal cells have been shown to promote tumor progression. Additionally, EVs can act as therapeutic delivery vehicles due to their low immunogenicity and targeting specificity.

Summary

EVs play critical roles in intercellular communication. Multiple classes of EVs exist based on size on mechanism of formation. In addition to a role in pathophysiology, EVs can be exploited as therapeutic delivery vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Raposo G, Stahl PD. Extracellular vesicles: a new communication paradigm? Nat Rev Mol Cell Biol. 2019;20(9):509–10. https://doi.org/10.1038/s41580-019-0158-7.

    Article  CAS  PubMed  Google Scholar 

  2. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28. https://doi.org/10.1038/nrm.2017.125.

    Article  CAS  PubMed  Google Scholar 

  3. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83. https://doi.org/10.1083/jcb.201211138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gangoda L, Boukouris S, Liem M, Kalra H, Mathivanan S. Extracellular vesicles including exosomes are mediators of signal transduction: are they protective or pathogenic? Proteomics. 2015;15(2-3):260–71. https://doi.org/10.1002/pmic.201400234.

    Article  CAS  PubMed  Google Scholar 

  5. Schorey JS, Cheng Y, Singh PP, Smith VL. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep. 2015;16(1):24–43. https://doi.org/10.15252/embr.201439363.

    Article  CAS  PubMed  Google Scholar 

  6. Minciacchi VR, You S, Spinelli C, Morley S, Zandian M, Aspuria PJ, et al. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget. 2015;6(13):11327–41. https://doi.org/10.18632/oncotarget.3598.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6(3):267–83. https://doi.org/10.1586/epr.09.17.

    Article  CAS  PubMed  Google Scholar 

  8. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89. https://doi.org/10.1146/annurev-cellbio-101512-122326.

    Article  CAS  PubMed  Google Scholar 

  9. Christianson HC, Svensson KJ, Belting M. Exosome and microvesicle mediated phene transfer in mammalian cells. Semin Cancer Biol. 2014;28:31–8. https://doi.org/10.1016/j.semcancer.2014.04.007.

    Article  CAS  PubMed  Google Scholar 

  10. Rajendran L, Bali J, Barr MM, Court FA, Kramer-Albers EM, Picou F, et al. Emerging roles of extracellular vesicles in the nervous system. J Neurosci. 2014;34(46):15482–9. https://doi.org/10.1523/JNEUROSCI.3258-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, et al. Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007;179(3):1969–78. https://doi.org/10.4049/jimmunol.179.3.1969.

    Article  CAS  PubMed  Google Scholar 

  12. French KC, Antonyak MA, Cerione RA. Extracellular vesicle docking at the cellular port: Extracellular vesicle binding and uptake. Semin Cell Dev Biol. 2017;67:48–55. https://doi.org/10.1016/j.semcdb.2017.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Flemming JP, Hill BL, Haque MW, Raad J, Bonder CS, Harshyne LA, et al. miRNA- and cytokine-associated extracellular vesicles mediate squamous cell carcinomas. J Extracell Vesicles. 2020;9(1):1790159. https://doi.org/10.1080/20013078.2020.1790159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57. https://doi.org/10.1038/bjc.1972.33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ihara T, Yamamoto T, Sugamata M, Okumura H, Ueno Y. The process of ultrastructural changes from nuclei to apoptotic body. Virchows Arch. 1998;433(5):443–7. https://doi.org/10.1007/s004280050272.

    Article  CAS  PubMed  Google Scholar 

  16. Bergsmedh A, Szeles A, Henriksson M, Bratt A, Folkman MJ, Spetz AL, et al. Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci U S A. 2001;98(11):6407–11. https://doi.org/10.1073/pnas.101129998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 2010;123(Pt 10):1603–11. https://doi.org/10.1242/jcs.064386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kozlov MM, Campelo F, Liska N, Chernomordik LV, Marrink SJ, McMahon HT. Mechanisms shaping cell membranes. Curr Opin Cell Biol. 2014;29:53–60. https://doi.org/10.1016/j.ceb.2014.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nabhan JF, Hu R, Oh RS, Cohen SN, Lu Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci U S A. 2012;109(11):4146–51. https://doi.org/10.1073/pnas.1200448109.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pellon-Cardenas O, Clancy J, Uwimpuhwe H, D’Souza-Schorey C. ARF6-regulated endocytosis of growth factor receptors links cadherin-based adhesion to canonical Wnt signaling in epithelia. Mol Cell Biol. 2013;33(15):2963–75. https://doi.org/10.1128/MCB.01698-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. D’Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol. 2006;7(5):347–58. https://doi.org/10.1038/nrm1910.

    Article  CAS  PubMed  Google Scholar 

  22. Linxweiler J, Junker K. Extracellular vesicles in urological malignancies: an update. Nat Rev Urol. 2020;17(1):11–27. https://doi.org/10.1038/s41585-019-0261-8.

    Article  PubMed  Google Scholar 

  23. Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 2018;20(3):332–43. https://doi.org/10.1038/s41556-018-0040-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yekula A, Minciacchi VR, Morello M, Shao H, Park Y, Zhang X, et al. Large and small extracellular vesicles released by glioma cells in vitro and in vivo. J Extracell Vesicles. 2020;9(1):1689784. https://doi.org/10.1080/20013078.2019.1689784.

    Article  CAS  PubMed  Google Scholar 

  25. Lapitz A, Arbelaiz A, Olaizola P, Aranburu A, Bujanda L, Perugorria MJ, et al. Extracellular vesicles in hepatobiliary malignancies. Front Immunol. 2018;9:2270. https://doi.org/10.3389/fimmu.2018.02270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Urabe F, Kosaka N, Ito K, Kimura T, Egawa S, Ochiya T. Extracellular vesicles as biomarkers and therapeutic targets for cancer. Am J Phys Cell Phys. 2020;318(1):C29–39. https://doi.org/10.1152/ajpcell.00280.2019.

    Article  CAS  Google Scholar 

  27. Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014;289(7):3869–75. https://doi.org/10.1074/jbc.C113.532267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523(7559):177–82. https://doi.org/10.1038/nature14581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thompson AG, Gray E, Heman-Ackah SM, Mager I, Talbot K, Andaloussi SE, et al. Extracellular vesicles in neurodegenerative disease - pathogenesis to biomarkers. Nat Rev Neurol. 2016;12(6):346–57. https://doi.org/10.1038/nrneurol.2016.68.

    Article  CAS  PubMed  Google Scholar 

  30. Boulanger CM, Loyer X, Rautou PE, Amabile N. Extracellular vesicles in coronary artery disease. Nat Rev Cardiol. 2017;14(5):259–72. https://doi.org/10.1038/nrcardio.2017.7.

    Article  CAS  PubMed  Google Scholar 

  31. Karpman D, Stahl AL, Arvidsson I. Extracellular vesicles in renal disease. Nat Rev Nephrol. 2017;13(9):545–62. https://doi.org/10.1038/nrneph.2017.98.

    Article  CAS  PubMed  Google Scholar 

  32. Szabo G, Momen-Heravi F. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2017;14(8):455–66. https://doi.org/10.1038/nrgastro.2017.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tian J, Casella G, Zhang Y, Rostami A, Li X. Potential roles of extracellular vesicles in the pathophysiology, diagnosis, and treatment of autoimmune diseases. Int J Biol Sci. 2020;16(4):620–32. https://doi.org/10.7150/ijbs.39629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peng J, Wang W, Hua S, Liu L. Roles of Extracellular Vesicles in Metastatic Breast Cancer. Breast Cancer (Auckl). 2018;12:1178223418767666. https://doi.org/10.1177/1178223418767666.

    Article  Google Scholar 

  35. Kadota T, Yoshioka Y, Fujita Y, Kuwano K, Ochiya T. Extracellular vesicles in lung cancer-from bench to bedside. Semin Cell Dev Biol. 2017;67:39–47. https://doi.org/10.1016/j.semcdb.2017.03.001.

    Article  PubMed  Google Scholar 

  36. Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer-implications for future improvements in cancer care. Nat Rev Clin Oncol. 2018;15(10):617–38. https://doi.org/10.1038/s41571-018-0036-9.

    Article  CAS  PubMed  Google Scholar 

  37. Wermuth PJ, Piera-Velazquez S, Rosenbloom J, Jimenez SA. Existing and novel biomarkers for precision medicine in systemic sclerosis. Nat Rev Rheumatol. 2018;14(7):421–32. https://doi.org/10.1038/s41584-018-0021-9.

    Article  CAS  PubMed  Google Scholar 

  38. Boyiadzis M, Whiteside TL. The emerging roles of tumor-derived exosomes in hematological malignancies. Leukemia. 2017;31(6):1259–68. https://doi.org/10.1038/leu.2017.91.

    Article  CAS  PubMed  Google Scholar 

  39. Chang L, Ni J, Zhu Y, Pang B, Graham P, Zhang H, et al. Liquid biopsy in ovarian cancer: recent advances in circulating extracellular vesicle detection for early diagnosis and monitoring progression. Theranostics. 2019;9(14):4130–40. https://doi.org/10.7150/thno.34692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Villa F, Quarto R, Tasso R. Extracellular vesicles as natural, safe and efficient drug delivery systems. Pharmaceutics. 2019;11(11):557. https://doi.org/10.3390/pharmaceutics11110557.

    Article  CAS  PubMed Central  Google Scholar 

  41. Turturici G, Tinnirello R, Sconzo G, Geraci F. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Phys Cell Phys. 2014;306(7):C621–33. https://doi.org/10.1152/ajpcell.00228.2013.

    Article  CAS  Google Scholar 

  42. Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B. 2016;6(4):287–96. https://doi.org/10.1016/j.apsb.2016.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Antimisiaris SG, Mourtas S, Marazioti A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics. 2018;10(4):218. https://doi.org/10.3390/pharmaceutics10040218.

    Article  CAS  PubMed Central  Google Scholar 

  44. Aryani A, Denecke B. Exosomes as a Nanodelivery System: a Key to the Future of Neuromedicine? Mol Neurobiol. 2016;53(2):818–34. https://doi.org/10.1007/s12035-014-9054-5.

    Article  CAS  PubMed  Google Scholar 

  45. Bunggulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y, et al. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnol. 2018;16(1):81. https://doi.org/10.1186/s12951-018-0403-9.

    Article  CAS  Google Scholar 

  46. Li YJ, Wu JY, Hu XB, Wang JM, Xiang DX. Autologous cancer cell-derived extracellular vesicles as drug-delivery systems: a systematic review of preclinical and clinical findings and translational implications. Nanomedicine (London). 2019;14(4):493–509. https://doi.org/10.2217/nnm-2018-0286.

    Article  CAS  Google Scholar 

  47. Tiedemann K, Sadvakassova G, Mikolajewicz N, Juhas M, Sabirova Z, Tabaries S, et al. Exosomal release of L-plastin by breast cancer cells facilitates metastatic bone osteolysis. Transl Oncol. 2019;12(3):462–74. https://doi.org/10.1016/j.tranon.2018.11.014.

    Article  PubMed  Google Scholar 

  48. Raimondi L, De Luca A, Fontana S, Amodio N, Costa V, Carina V, et al. Multiple myeloma-derived extracellular vesicles induce osteoclastogenesis through the activation of the XBP1/IRE1α axis. Cancers. 2020;12(8):2167. https://doi.org/10.3390/cancers12082167.

    Article  CAS  PubMed Central  Google Scholar 

  49. Faict S, Muller J, De Veirman K, De Bruyne E, Maes K, Vrancken L, et al. Exosomes play a role in multiple myeloma bone disease and tumor development by targeting osteoclasts and osteoblasts. Blood Cancer J. 2018;8(11):105. https://doi.org/10.1038/s41408-018-0139-7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Loftus A, Cappariello A, George C, Ucci A, Shefferd K, Green A, et al. Extracellular vesicles from osteotropic breast cancer cells affect bone resident cells. J Bone Min Res : the official journal of the American Society for Bone and Mineral Research. 2020;35(2):396–412. https://doi.org/10.1002/jbmr.3891This study demonstrates that cancer cells targeted to bone can impact bone remodeling.

    Article  CAS  Google Scholar 

  51. Liu X, Cao M, Palomares M, Wu X, Li A, Yan W, et al. Metastatic breast cancer cells overexpress and secrete miR-218 to regulate type I collagen deposition by osteoblasts. Breast Cancer Res. 2018;20(1):127. https://doi.org/10.1186/s13058-018-1059-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Raimondo S, Urzì O, Conigliaro A, Bosco GL, Parisi S, Carlisi M, et al. Extracellular vesicle microRNAs contribute to the osteogenic inhibition of mesenchymal stem cells in multiple myeloma. Cancers. 2020;12(2):449. https://doi.org/10.3390/cancers12020449.

    Article  CAS  PubMed Central  Google Scholar 

  53. Nakata R, Shimada H, Fernandez GE, Fanter R, Fabbri M, Malvar J, et al. Contribution of neuroblastoma-derived exosomes to the production of pro-tumorigenic signals by bone marrow mesenchymal stromal cells. J Extracell Vesicles. 2017;6(1):1332941. https://doi.org/10.1080/20013078.2017.1332941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–91. https://doi.org/10.1038/nm.2753nm.2753The first demonstration that exosomes from a primary tumor target bone marrow and establish a pre-metastatic niche that promotes metastatic growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dai J, Escara-Wilke J, Keller JM, Jung Y, Taichman RS, Pienta KJ, et al. Primary prostate cancer educates bone stroma through exosomal pyruvate kinase M2 to promote bone metastasis. J Exp Med. 2019;216(12):2883–99. https://doi.org/10.1084/jem.20190158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vallabhaneni KC, Penfornis P, Xing F, Hassler Y, Adams KV, Mo YY, et al. Stromal cell extracellular vesicular cargo mediated regulation of breast cancer cell metastasis via ubiquitin conjugating enzyme E2 N pathway. Oncotarget. 2017;8(66):109861–76. https://doi.org/10.18632/oncotarget.22371.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bliss SA, Sinha G, Sandiford OA, Williams LM, Engelberth DJ, Guiro K, et al. Mesenchymal stem cell-derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res. 2016;76(19):5832–44. https://doi.org/10.1158/0008-5472.can-16-1092.

    Article  CAS  PubMed  Google Scholar 

  58. Ono M, Kosaka N, Tominaga N, Yoshioka Y, Takeshita F, Takahashi RU, et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal. 2014;7(332):ra63. https://doi.org/10.1126/scisignal.2005231.

    Article  CAS  PubMed  Google Scholar 

  59. Walker ND, Elias M, Guiro K, Bhatia R, Greco SJ, Bryan M, et al. Exosomes from differentially activated macrophages influence dormancy or resurgence of breast cancer cells within bone marrow stroma. Cell Death Dis. 2019;10(2):59. https://doi.org/10.1038/s41419-019-1304-zDescribes how exosome derived from immunce cells can influence the progresion of breast within the bone marrow.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shupp AB, Kolb AD, Mukhopadhyay D, Bussard KM. Cancer metastases to bone: concepts, mechanisms, and interactions with bone osteoblasts. Cancers (Basel). 2018;10(6):182. https://doi.org/10.3390/cancers10060182.

    Article  CAS  Google Scholar 

  61. Morhayim J, van de Peppel J, Demmers JAA, Kocer G, Nigg AL, van Driel M, et al. Proteomic signatures of extracellular vesicles secreted by nonmineralizing and mineralizing human osteoblasts and stimulation of tumor cell growth. FASEB J. 2015;29(1):274–85. https://doi.org/10.1096/fj.14-261404.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Institutes of Health Grants P01 CA093900 (ETK), and National Institutes of Health, National Cancer Center K99/R00 Pathway to Independence Grant R00CA178177 (KMB) and Pennsylvania State Department of Health 4100072566 (KMB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan T. Keller.

Ethics declarations

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cancer-induced Musculoskeletal Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Shupp, A.B., Bussard, K.M. et al. Extracellular Vesicles and Bone-Associated Cancer. Curr Osteoporos Rep 19, 223–229 (2021). https://doi.org/10.1007/s11914-021-00668-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-021-00668-w

Keywords

Navigation