Skip to main content

Advertisement

Log in

Part I: Which Child with a Chronic Disease Needs Bone Health Monitoring?

  • Pediatrics (C Munns and F Rauch, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Underlying conditions which adversely affect skeletal strength are one of the most common reasons for consultations in pediatric bone health clinics. The diseases most frequently linked to fragility fractures include leukemia and other cancers, inflammatory disorders, neuromuscular disease, and those treated with osteotoxic drugs (particularly glucocorticoids). The decision to treat a child with secondary osteoporosis is challenged by the fact that fractures are frequent in childhood, even in the absence of risk factors. Furthermore, some children have the potential for medication-unassisted recovery from osteoporosis, obviating the need for bisphosphonate therapy.

Recent Findings

Over the last decade, there have been important advances in our understanding of the skeletal phenotypes, fracture frequencies, and risk factors for bone fragility in children with underlying disorders. With improved knowledge about the importance of fracture characteristics in at-risk children, there has been a shift away from a bone mineral density (BMD)–centric definition of osteoporosis in childhood, to a fracture-focused approach. As a result, attention is now drawn to the early identification of fragility fractures, which includes asymptomatic vertebral collapse. Furthermore, even a single, long bone fracture can represent a major osteoporotic event in an at-risk child.

Summary

Fundamental biological principles of bone strength development, and the ways in which these go awry in chronic illnesses, form the basis for monitoring and diagnosis of osteoporosis in children with underlying conditions. Overall, the goal of monitoring is to identify early, rather than late, signs of osteoporosis in children with limited potential to undergo medication-unassisted recovery. These are the children who should undergo bisphosphonate therapy, as discussed in part 1 (monitoring and diagnosis) and part 2 (recovery and the decision to treat) of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BMD:

Bone mineral density

DXA:

Dual-energy x-ray absorptiometry

DMD:

Duchenne muscular dystrophy

GC:

Glucocorticoid(s)

ISCD:

International Society for Clinical Densitometry

References

  1. Ward LM, Konji VN, Ma J. The management of osteoporosis in children. Osteoporos Int. 2016;27(7):2147–79.

    Article  CAS  PubMed  Google Scholar 

  2. Grover M, Bachrach LK. Osteoporosis in children with chronic illnesses: diagnosis, monitoring, and treatment. Curr Osteoporos Rep. 2017;15(4):271–82.

    Article  PubMed  Google Scholar 

  3. George S, Weber DR, Kaplan P, Hummel K, Monk HM, Levine MA. Short-term safety of zoledronic acid in young patients with bone disorders: an extensive institutional experience. J Clin Endocrinol Metab. 2015;100(11):4163–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nasomyont N, Hornung LN, Gordon CM, Wasserman H. Outcomes following intravenous bisphosphonate infusion in pediatric patients: a 7-year retrospective chart review. Bone. 2019;121:60–7.

    Article  CAS  PubMed  Google Scholar 

  5. Ward LM. Glucocorticoid-induced osteoporosis: why kids are different. Front Endocrinol (Lausanne). 2020;11:576.

    Article  Google Scholar 

  6. Halton J, Gaboury I, Grant R, Alos N, Cummings EA, Matzinger M, et al. Advanced vertebral fracture among newly diagnosed children with acute lymphoblastic leukemia: results of the Canadian Steroid-Associated Osteoporosis in the Pediatric Population (STOPP) research program. J Bone Miner Res. 2009;24(7):1326–34.

    Article  PubMed  Google Scholar 

  7. Huber AM, Gaboury I, Cabral DA, Lang B, Ni A, Stephure D, et al. Prevalent vertebral fractures among children initiating glucocorticoid therapy for the treatment of rheumatic disorders. Arthritis Care Res. 2010;62(4):516–26.

    Article  CAS  Google Scholar 

  8. Thearle M, Horlick M, Bilezikian JP, Levy J, Gertner JM, Levine LS, et al. Osteoporosis: an unusual presentation of childhood Crohn’s disease. J Clin Endocrinol Metab. 2000;85(6):2122–6.

    CAS  PubMed  Google Scholar 

  9. Boulanger Piette A, Hamoudi D, Marcadet L, Morin F, Argaw A, Ward L, et al. Targeting the muscle-bone unit: filling two needs with one deed in the treatment of duchenne muscular dystrophy. Curr Osteoporos Rep. 2018;16(5):541–53.

    Article  PubMed  Google Scholar 

  10. Lorenzo J. Cytokines and bone: osteoimmunology. Handb Exp Pharmacol. 2020;262:177–230.

  11. Ward LM, Ma J, Lang B, Ho J, Alos N, Matzinger MA, et al. Bone morbidity and recovery in children with acute lymphoblastic leukemia: results of a six-year prospective cohort study. J Bone Miner Res. 2018;33(8):1435–43.

    Article  CAS  PubMed  Google Scholar 

  12. Joseph S, Wang C, Bushby K, Guglieri M, Horrocks I, Straub V, et al. Fractures and linear growth in a nationwide cohort of boys with Duchenne muscular dystrophy with and without glucocorticoid treatment: results from the UK NorthStar Database. JAMA Neurol. 2019;76(6):701–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. LeBlanc CM, Ma J, Taljaard M, Roth J, Scuccimarri R, Miettunen P, et al. Incident vertebral fractures and risk factors in the first three years following glucocorticoid initiation among pediatric patients with rheumatic disorders. J Bone Miner Res. 2015;30(9):1667–75.

    Article  CAS  PubMed  Google Scholar 

  14. Phan V, Blydt-Hansen T, Feber J, Alos N, Arora S, Atkinson S, et al. Skeletal findings in the first 12 months following initiation of glucocorticoid therapy for pediatric nephrotic syndrome. Osteoporos Int. 2014;25(2):627–37.

    Article  CAS  PubMed  Google Scholar 

  15. Hartmann K, Koenen M, Schauer S, Wittig-Blaich S, Ahmad M, Baschant U, et al. Molecular actions of glucocorticoids in cartilage and bone during health, disease, and steroid therapy. Physiol Rev. 2016;96(2):409–47.

    Article  CAS  PubMed  Google Scholar 

  16. Nephrotic syndrome in children: a randomized trial comparing two prednisone regimens in steroid-responsive patients who relapse early. Report of the international study of kidney disease in children. J Pediatr. 1979;95(2):239–43.

  17. Rauch F, Schoenau E. The developing bone: slave or master of its cells and molecules? Pediatr Res. 2001;50(3):309–14.

    Article  CAS  PubMed  Google Scholar 

  18. Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner. 1987;2(2):73–85.

    CAS  PubMed  Google Scholar 

  19. Frost HM, Schonau E. The “muscle-bone unit” in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab. 2000;13(6):571–90.

    Article  CAS  PubMed  Google Scholar 

  20. Ma J, McMillan HJ, Karaguzel G, Goodin C, Wasson J, Matzinger MA, et al. The time to and determinants of first fractures in boys with Duchenne muscular dystrophy. Osteoporos Int. 2017;28(2):597–608.

    Article  CAS  PubMed  Google Scholar 

  21. Cooper C, Dennison EM, Leufkens HG, Bishop N, van Staa TP. Epidemiology of childhood fractures in Britain: a study using the general practice research database. J Bone Miner Res. 2004;19(12):1976–81.

    Article  PubMed  Google Scholar 

  22. Clark EM. The epidemiology of fractures in otherwise healthy children. Curr Osteoporos Rep. 2014;12(3):272–8.

    Article  PubMed  Google Scholar 

  23. Mayranpaa MK, Makitie O, Kallio PE. Decreasing incidence and changing pattern of childhood fractures: a population-based study. J Bone Miner Res. 2010;25(12):2752–9.

    Article  PubMed  Google Scholar 

  24. Bishop N, Arundel P, Clark E, Dimitri P, Farr J, Jones G, et al. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 Pediatric Official Positions. J Clin Densitom. 2014;17(2):275–80.

    Article  PubMed  Google Scholar 

  25. Baim S, Leonard MB, Bianchi ML, Hans DB, Kalkwarf HJ, Langman CB, et al. Official Positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Pediatric Position Development Conference. J Clin Densitom. 2008;11(1):6–21.

    Article  PubMed  Google Scholar 

  26. Leonard MB, Propert KJ, Zemel BS, Stallings VA, Feldman HI. Discrepancies in pediatric bone mineral density reference data: potential for misdiagnosis of osteopenia. J Pediatr. 1999;135(2 Pt 1):182–8.

    Article  CAS  PubMed  Google Scholar 

  27. Kocks J, Ward K, Mughal Z, Moncayo R, Adams J, Hogler W. Z-score comparability of bone mineral density reference databases for children. J Clin Endocrinol Metab. 2010;95(10):4652–9.

    Article  CAS  PubMed  Google Scholar 

  28. Ma J, Siminoski K, Alos N, Halton J, Ho J, Lentle B, et al. The choice of normative pediatric reference database changes spine bone mineral density Z-scores but not the relationship between bone mineral density and prevalent vertebral fractures. J Clin Endocrinol Metab. 2015;100(3):1018–27.

    Article  CAS  PubMed  Google Scholar 

  29. Fiscaletti M, Coorey CP, Biggin A, Briody J, Little DG, Schindeler A, et al. Diagnosis of recurrent fracture in a pediatric cohort. Calcif Tissue Int. 2018;103(5):529–39.

    Article  CAS  PubMed  Google Scholar 

  30. Rodd C, Lang B, Ramsay T, Alos N, Huber AM, Cabral DA, et al. Incident vertebral fractures among children with rheumatic disorders 12 months after glucocorticoid initiation: a national observational study. Arthritis Care Res. 2012;64(1):122–31.

    Article  Google Scholar 

  31. Ward LM, Weber DR, Munns CF, Hogler W, Zemel BS. A contemporary view of the definition and diagnosis of osteoporosis in children and adolescents. J Clin Endocrinol Metab. 2020;105(5):e2088–97.

    Article  Google Scholar 

  32. Ward LM, Konji VN. Advances in the bone health assessment of children. Endocrinol Metab Clin N Am. 2020;49(4):613–36.

    Article  Google Scholar 

  33. Ward LM, Ma J, Rauch F, Benchimol EI, Hay J, Leonard MB, et al. Musculoskeletal health in newly diagnosed children with Crohn’s disease. Osteoporos Int. 2017;28(11):3169–77.

    Article  CAS  PubMed  Google Scholar 

  34. Kilpinen-Loisa P, Paasio T, Soiva M, Ritanen UM, Lautala P, Palmu P, et al. Low bone mass in patients with motor disability: prevalence and risk factors in 59 Finnish children. Dev Med Child Neurol. 2010;52(3):276–82.

    Article  PubMed  Google Scholar 

  35. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8(9):1137–48.

    Article  CAS  PubMed  Google Scholar 

  36. Genant HK, Jergas M, Palermo L, Nevitt M, Valentin RS, Black D, et al. Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis The Study of Osteoporotic Fractures Research Group. J Bone Miner Res. 1996;11(7):984–96.

    Article  CAS  PubMed  Google Scholar 

  37. Jaremko JL, Siminoski K, Firth GB, Matzinger MA, Shenouda N, Konji VN, et al. Common normal variants of pediatric vertebral development that mimic fractures: a pictorial review from a national longitudinal bone health study. Pediatr Radiol. 2015;45(4):593–605.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kyriakou A, Shepherd S, Mason A, Ahmed SF. Prevalence of vertebral fractures in children with suspected osteoporosis. J Pediatr. 2016;179:219–25.

    Article  PubMed  Google Scholar 

  39. Singh A, Schaeffer EK, Reilly CW. Vertebral fractures in Duchenne muscular dystrophy patients managed with deflazacort. J Pediatr Orthop. 2018; 38(6):320–4.

  40. Hansen KE, Kleker B, Safdar N, Bartels CM. A systematic review and meta-analysis of glucocorticoid-induced osteoporosis in children. Semin Arthritis Rheum. 2014;44(1):47–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feber J, Gaboury I, Ni A, Alos N, Arora S, Bell L, et al. Skeletal findings in children recently initiating glucocorticoids for the treatment of nephrotic syndrome. Osteoporos Int. 2012;23(2):751–60.

    Article  CAS  PubMed  Google Scholar 

  42. Alos N, Grant RM, Ramsay T, Halton J, Cummings EA, Miettunen PM, et al. High incidence of vertebral fractures in children with acute lymphoblastic leukemia 12 months after the initiation of therapy. J Clin Oncol. 2012;30(22):2760–7.

    Article  CAS  PubMed  Google Scholar 

  43. Cummings EA, Ma J, Fernandez CV, Halton J, Alos N, Miettunen PM, et al. Incident vertebral fractures in children with leukemia during the four years following diagnosis. J Clin Endocrinol Metab. 2015;100(9):3408–17.

    Article  CAS  PubMed  Google Scholar 

  44. King WM, Ruttencutter R, Nagaraja HN, Matkovic V, Landoll J, Hoyle C, et al. Orthopedic outcomes of long-term daily corticosteroid treatment in Duchenne muscular dystrophy. Neurology. 2007;68(19):1607–13.

    Article  CAS  PubMed  Google Scholar 

  45. Larson CM, Henderson RC. Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop. 2000;20(1):71–4.

    CAS  PubMed  Google Scholar 

  46. Ma J, Siminoski K, Wang P, Alos N, Cummings EA, Feber J, et al. The accuracy of prevalent vertebral fracture detection in children using targeted case-finding approaches. J Bone Miner Res. 2020;35(3):460–8.

    Article  PubMed  Google Scholar 

  47. Kelly A, Shults J, Mostoufi-Moab S, McCormack SE, Stallings VA, Schall JI, et al. Pediatric bone mineral accrual Z-score calculation equations and their application in childhood disease. J Bone Miner Res. 2019;34(1):195–203.

    Article  PubMed  Google Scholar 

  48. Weber DR, Boyce A, Gordon C, Hogler W, Kecskemethy HH, Misra M, et al. The utility of DXA assessment at the forearm, proximal femur, and lateral distal femur, and vertebral fracture assessment in the pediatric population: the 2019 Official Pediatric Positions of the ISCD. J Clin Densitom. 2019;22:567–89.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr. Ward thanks the research staff and scientists affiliated with The Ottawa Pediatric Bone Health Research Group and The CHEO Genetic and Metabolic Bone Disease Clinic who have been dedicated to the study and care of children with osteoporosis for many years, including Maya Scharke; Elizabeth Sykes; Lynn MacLeay; Scott Walker; Colleen Hartigan; members of the Canadian STeroid-induced Osteoporosis in the Pediatric Population (STOPP) Consortium; and Drs. Kerry Siminoski, Frank Rauch, Marie-Eve Robinson, Karine Khatchadourian, Jacob Jaremko, Nazih Shenouda, Mary-Ann Matzinger, Khaldoun Koujok, Jinhui Ma, Stefan Jackowski, Nasrin Khan, and Victor Konji.

Funding

Dr. Ward has been supported by Tier 1 and Tier 2 Research Chair Awards from the University of Ottawa since 2010, the Children’s Hospital of Eastern Ontario Departments of Pediatrics and Surgery, and the Children’s Hospital of Eastern Ontario Research Institute. The STeroid-induced Osteoporosis in the Pediatric Population (STOPP) study was funded by the Canadian Institutes of Health Research (Funding Reference Number 64285).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leanne M. Ward.

Ethics declarations

Conflict of Interest

Dr. Ward has participated in clinical trials with ReveraGen BioPharma, PTC Therapeutics, Catabasis Pharmaceuticals, Novartis, and Amgen. Dr. Ward has also received consulting fees from PTC Therapeutics, Novartis and Amgen, with funds to the Children’s Hospital of Eastern Ontario Research Institute.

Human and Animal Rights and Informed Consent

This article does not contain any original studies with human or animal subjects performed by the author.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatrics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ward, L.M. Part I: Which Child with a Chronic Disease Needs Bone Health Monitoring?. Curr Osteoporos Rep 19, 278–288 (2021). https://doi.org/10.1007/s11914-021-00667-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-021-00667-x

Keywords

Navigation