Skip to main content

Advertisement

Log in

Osteogenesis Imperfecta—Who Needs Rodding Surgery?

  • Pediatrics (C Munns and F Rauch, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to precise the indications for intramedullary rodding of long bones in osteogenesis imperfecta, the classic treatment for fractures and deformities in this condition.

Recent Findings

The use of plates and screws alone is not recommended, but its use in conjunction with rodding is becoming more popular as demonstrated in recent literature. The different types of rods are reviewed and their advantages/disadvantages exposed. There is a clear advantage for telescopic rods in terms of incidence of revision surgery but complications are still to be expected.

Summary

An interdisciplinary approach combining a medical treatment with a surgical correction of deformities as well as a rehabilitation program is the key for success in the treatment of osteogenesis imperfecta children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sofield HA, Millar A. Fragmentation, realignment, and intra-medullary rod fixation of deformities of the long bones in children: a ten-year appraisal. J Bone Joint Surg Am 1959 41:1371-1391

  2. Mau H. [In osteogenesis imperfecta no intramedullary nailing and especially no bone plates in childhood] [Article in German]. Z Orthop Ihre Grenzgeb. 1982;120(3):297–308.

    Article  CAS  Google Scholar 

  3. Enright WJ, Noonan KJ. Bone plating in patients with type III osteogenesis imperfecta: results and complications. Iowa Orthop J. 2006;26:37–40.

    PubMed  PubMed Central  Google Scholar 

  4. • Cho TJ, Lee K, Oh CW, Park MS, Yoo WJ, Choi IH. Locking plate placement with unicortical screw fixation adjunctive to intramedullary rodding in long bones of patients with osteogenesis imperfecta. J Bone Joint Surg Am. 2015;97(9):733–7 The authors describe a new surgical technique for rotational control of long bone fractures/osteotomies. The unicortical locking plates are removed after bone healing.

    Article  Google Scholar 

  5. Franzone JM, Kruse RW. Nailing With Supplemental Plate and Screw Fixation of Long Bones of Patients With Osteogenesis Imperfecta: Operative Technique and Preliminary Results. J Pediatr Orthop B. 2018l;27(4):344–9.

    Article  Google Scholar 

  6. Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R. Cyclic Administration of Pamidronate in Children With Severe Osteogenesis Imperfecta. New Engl Med J. 1998;339(14):947–52.

    Article  CAS  Google Scholar 

  7. Frick SL, Sponseller PD, Leet A. Pediatric limb reconstruction in osteogenesis imperfecta. In: Shapiro JR, editor. Osteogenesis Imperfecta-a translational approach to brittle bone disease. New York: Elsevier; 2014. p. 443–51.

    Google Scholar 

  8. Azzam KA, Rush ET, Burke BR, Nabower AM, Esposito PW. Mid-term results of femoral and tibial osteotomies and Fassier-Duval nailing in children with osteogenesis imperfect. J Pediatr Orthop. 2018;38(6):331–6.

    Article  Google Scholar 

  9. Li WC, Kao HK, Yang WE, Chang CJ, Chang CH. Femoral non-elongating rodding in Osteogenesis Imperfecta- The importance of purchasing epiphyseal plate. Biom J. 2015;38(2):143–7.

    Google Scholar 

  10. Imajima Y, Kitano M, Ueda T. Intramedullary fixation using Kirschner wires in children with Osteogenesis Imperfecta. J Pediatr Orthop. 2015;35(4):431–4.

    Article  Google Scholar 

  11. Scollan JP, Jauregui JJ, Jacobsen CM, Abzug JM. The outcomes of nonelongating intramedullary fixation of the lower extremity for pediatric osteogenesis imperfecta patients: A meta-analysis. J Pediatr Orthop. 2017;37(5):e313–6.

    Article  Google Scholar 

  12. Metaizeau JP. L’embrochage centromédullaire coulissant. Applications au traitement des formes graves d’ostéogenèse imparfaite. Chir Pediatr. 1987;28:240–3.

    CAS  PubMed  Google Scholar 

  13. Persiani P, Martini L, Ranaldi FM, Zambrano A, Celli M, Celli L, et al. Elastic intramedullary nailing of the femur fracture in patients affected by osteogenesis imperfecta type 3 : Indications, limits and pitfalls. Injury. 2019;50(Suppl 2):S52–6.

    Article  Google Scholar 

  14. Popkov D, Popkov A, Mingazov E. Use of sliding transphyseal flexible intramedullary nailing in pediatric osteogenesis imperfecta patients. Acta Orthop Belg. 2019;85(1):1–11.

    PubMed  Google Scholar 

  15. Bailey RW, Dubow HI. Studies of longitudinal bone growth resulting in an extensible nail. Surg Forum. 1963;14:455–8.

    CAS  PubMed  Google Scholar 

  16. Shin CH, Lee DJ, Yoo WJ, Choi IH, Cho TJ. Dual interlocking telescopic rod provides effective tibial stabilization in children with osteogenesis imperfect. Clin Orthop Relat Res. 2018;476(11):2238–46.

    Article  Google Scholar 

  17. Sulko J, Oberc A. Advantages and complications following Fassier-Duval Intramedullary rodding in children. Pilot study. Ortop Traumatol Rehabil. 2015;17(5):523–30.

    Article  Google Scholar 

  18. Sterian A, Balanescu R, Barbilian A, Tevanov I, Carp M, Nahoi C, et al. Early telescopic rod osteosynthesis for osteogenesis imperfecta patients. J Med Life. 2015;8(4):544–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Persiani P, Ranaldi FM, Martini L, Zambrano A, Celli M, D’Eufemia P, et al. Treatment of tibial deformities with the Fassier-Duval telescopic nail and minimally invasive percutaneous osteotomies in patients with osteogenesis imperfecta type III. J Pediatr Orthop B. 2019;2:179–85.

    Article  Google Scholar 

  20. •• Spahn KM, Mickel T, Carry PM, Brazell CJ, Whalen K, Georgeopoulos G, et al. Fassier-Duval rods are associated with superior probability of survival compared with static implants in a cohort of children with osteogenesis imperfecta deformities. J Pediatr Orthop. 2019;39(5):e392–6 Interesting comparison between static rods and telescopic rods. Fassier-Duval rods were associated with significantly improved probability of survival compared with static implants.

    Article  Google Scholar 

  21. Holmes K, Gralla J, Brazell C, Carry P, Tong S, Miller NH, Georgeopoulos G. Fassier-Duval rod failure: Is it related to positioning in the distal epiphysis? J Pediatr Orthop 2020 (Online ahead of print).

  22. Mansour A 3rd, Barsi J, Baldini T, Georgeopoulos G. Effect of different distal fixation augmentation methods on the pullout strength of Fassier-Duval telescoping rods. Orthopedics. 2016;39(2):e328–32.

    Article  Google Scholar 

  23. Lee K, Park MS, Yoo WJ, Chung CY, Choi IH, Cho TJ. Proximal migration of femoral telescopic rod in children with osteogenesis imperfecta. J Pediatr Orthop. 2015;35(2):178–84.

    Article  Google Scholar 

  24. Lee RJ, Paloski MD, Sponseller PD, Leet AI. Bent telescopic rods in patients with osteogenesis imperfecta. J Pediatr Orthop. 2016;36(6):656–60.

    Article  Google Scholar 

  25. • Ruck J, Dahan-Oliel N, Montpetit K, Rauch F, Fassier F. Fassier-Duval femoral rodding in children with Osteogenesis imperfecta receiving bisphosphonates: functional outcomes at one year. J Child Orthop. 2011;5:217–24 First study on functional results after a combination of bisphosphonates, Fassier-Duval rodding, and a rehabilitation program. The improvement in ambulation, gross motor function, self-care, and mobility is beyond physiological expectations due to developmental growth.

    Article  Google Scholar 

  26. Smith PS, Rodriguez C, Kruger KK, Caudill AC, Harris GH. A multicenter study of intramedullary rodding in osteogenesis imperfecta. Poster #101, Conf.Qualityoflife4OI, Amsterdam, 2019.

  27. Bhaskar AR, Khurana D. Results of rodding and impact on ambulation and refracture in osteogenesis imperfecta: Study of 21 children. Indian J Orthop. 2019;53(4):554–9.

    Article  Google Scholar 

  28. Fassier F, Addar A, Jiang F, Marwan Y, Algarni N, Montpetit K, Hamdy R . Fassier-Duval rodding in Osteogenesis Imperfecta: Long-term results. POSNA Annual meeting, Charlotte NC, 2019, Paper #156.

  29. Mingazov ER, Gofman FF, Popkov AV, Aranovich AM, Gubin AV, Poppkov DA. Genij Ortopedii 2019; T.25, No 3: 297-303.

  30. Amako M, Fassier F, Hamdy RC, Aarabi M, Montpetit K, Glorieux FH. Functional analysis of upper limb deformities in osteogenesis imperfecta. J Pediatr Orthop. 2014;24(6):689–94.

    Article  Google Scholar 

  31. Montpetit K, Plotkin H, Rauch F, Bilodeau N, Cloutier S, Rabzel M, et al. Rapid increase in grip force after start of pamidronate therapy in children and adolescents with severe osteogenesis imperfecta. Pediatrics. 2003;111(5 Pt 1):e601–3.

    Article  Google Scholar 

  32. Letocha AD, Cintas HL, Troendle JF, Reynolds JC, Cann CE, Chernoff EJ, et al. Controlled trial of pamidronate in children with types III and IV osteogenesis imperfecta confirms vertebral gains but not short-term functional improvement. J Bone Miner Res. 2005;20(6):977–86.

    Article  CAS  Google Scholar 

  33. Huang RP, Ambrose CG, Sullivan E, Haynes RJ. Functional significance of bone density measurements in children with osteogenesis imperfecta. J Bone Joint Surg Am. 2006;88(6):1324–30.

    Article  Google Scholar 

  34. Ashby E, Montpetit K, Hamdy RC, Fassier F. Functional Outcome of Forearm Rodding in Children With Osteogenesis Imperfecta. J Pediatr Orthop. 2018;38(1):54–9.

    Article  Google Scholar 

  35. Ashby E, Montpetit K, Hamdy RC, Fassier F. Functional Outcome of Humeral Rodding in Children With Osteogenesis Imperfecta. J Pediatr Orthop. 2018;38(1):49–53.

    Article  Google Scholar 

  36. Franzone JM, Bober MB, Rogers KJ, McGreal CM, Kruse RW. Re-alignment and intramedullary rodding of the humerus and forearm in children with osteogenesis imperfecta: Revision rate and effect on fracture rate. J Pediatr Orthop. 2017;3:185–90.

    Google Scholar 

  37. Grossman LS, Price AL, Rush ET, Goodwin JL, Wallace MJ, Esposito PW. Initial experience with percutaneous IM rodding of the humeri in children with osteogenesis imperfecta. J Pediatr Orthop. 2018;38(9):484–9.

    Article  Google Scholar 

  38. Puvanesarajah V, Shapiro JR, Sponseller PD. Sandwich allografts for long-bone nonunions in patients with osteogenesis imperfecta: a retrospective study. J Bone Joint Surg Am. 2015;97(4):318–25.

    Article  Google Scholar 

  39. Devalia KL, Mehta R, Yagnik MG. Use of maternal bone grafting for long standing segmental gap non-union in Osteogenesis Imperfecta: a case report with review of literature. Injury. 2005;36(9):1130–4.

    Article  CAS  Google Scholar 

  40. Hsaio MS, Mormino MA, Esposito PW, Burke BA. Distal humerus atrophic nonunion in a child with osteogenesis imperfecta. J Pediatr Orthop. 2013;33(7):725–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François R. Fassier.

Ethics declarations

Conflict of Interest

Francois Fassier reports royalties from Pega Medical Inc. for the surgical implant: Fassier-Duval rod.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatrics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fassier, F.R. Osteogenesis Imperfecta—Who Needs Rodding Surgery?. Curr Osteoporos Rep 19, 264–270 (2021). https://doi.org/10.1007/s11914-021-00665-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-021-00665-z

Keywords

Navigation