Skip to main content

Advertisement

Log in

Osteocytes and Diabetes: Altered Function of Diabetic Osteocytes

  • Osteocytes (J Delgado-Calle and J Klein-Nulend, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Diabetes mellitus is a prevalent chronic disease affecting millions of people in the world. Bone fragility is a complication found in diabetic patients. Although osteoblasts and osteoclasts are directly affected by diabetes, herein we focus on how the diabetic state—based on hyperglycemia and accumulation of advanced glycation end products among other features—impairs osteocyte functions exerting deleterious effects on bone.

Recent Findings

In the last years, several studies described that diabetic conditions cause morphological modifications on lacunar-canalicular system, alterations on osteocyte mechanoreceptors and intracellular pathways and on osteocyte communication with other cells through the secretion of proteins such as sclerostin or RANKL.

Summary

This article gives an overview of events occurring in diabetic osteocytes. In particular, mechanical responses seem to be seriously affected in these conditions, suggesting that mechanical sensibility could be a target for future research in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferrari S, IOF Bone and Diabetes Working Group, Napoli N, Chandran M, Pierroz DD, Abrahamsen B, et al. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. 2017;13:208–19.

    Article  Google Scholar 

  2. Dobnig H, Hofbauer LC, Brueck CC, Singh SK. Osteoporosis in patients with diabetes mellitus. J Bone Miner Res. 2007;22:1317–28.

    Article  Google Scholar 

  3. Cunha JS, Ferreira VM, Maquigussa E, Naves MA, Boim MA. Effects of high glucose and high insulin concentrations on osteoblast function in vitro. Cell Tissue Res. 2014;358(1):249–56. https://doi.org/10.1007/s00441-014-1913-x.

    Article  CAS  PubMed  Google Scholar 

  4. Botolin LR, McCabe S. Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J Cell Biochem. 2006;99:411–24.

    Article  CAS  Google Scholar 

  5. Yu L, An Y, Zhang H, Wang C, Jiao F, Xu H, et al. Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. FASEB J. 2019;33(11):12515–27.

    Article  Google Scholar 

  6. Plotkin L, Bellido T. Osteocytic signalling pathways as therapeutic targets for bone fragility. Nat Rev Endocrinol. 2016;12(10):593–605.

    Article  CAS  Google Scholar 

  7. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38.

    Article  CAS  Google Scholar 

  8. Sun T, et al. Effects of mechanical vibration on cell morphology, proliferation, apoptosis, and cytokine expression/secretion in osteocyte-like MLO-Y4 cells exposed to high glucose. Cell Biol Int. 2019;128(1):128:112056. https://doi.org/10.1002/cbin.11221.

    Article  CAS  Google Scholar 

  9. Wang L, Lai X, Price C, Modla S, Thompson WR, Caplan J, et al. The dependences of osteocyte network on bone compartment, age, and disease. Bone Res. 2015;3:15009.

    Article  Google Scholar 

  10. Chappard D, Mabilleau G, Perrot R, Flatt PR, Irwin N. High fat-fed diabetic mice present with profound alterations of the osteocyte network. Bone. 2006;90:99–106.

    Google Scholar 

  11. Jing D, Liu X, Li W, Cai J, Yan Z, Shao X, et al. Spatiotemporal characterization of microdamage accumulation and its targeted remodeling mechanisms in diabetic fatigued bone. FASEB J. 2020;34(2):2579–94.

    Article  Google Scholar 

  12. Xin W, Rhodes DR, Ingold C, Chinnaiyan AM, Rubin MA. Dysregulation of the annexin family protein family is associated with prostate cancer progression. Am J Pathol. 2003;162(1):255–61. https://doi.org/10.1016/S0002-9440(10)63816-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maycas M, Esbrit P, Gortázar ARAR. Molecular mechanisms in bone mechanotransduction. Histol Histopathol. 2017;32(8):751–60.

    CAS  PubMed  Google Scholar 

  14. Plotkin LI. Connexin 43 hemichannels and intracellular signaling in bone cells. Front Physiol. 2014;5:131. https://doi.org/10.3389/fphys.2014.00131.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Xu H, Liu R, Ning D, Zhang J, Yang R, Riquelme MA, et al. Biological responses of osteocytic connexin 43 hemichannels to simulated microgravity. J Orthop Res. 2017;35(6):1195–202. https://doi.org/10.1002/jor.23224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ. Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol. 2007;212(1):207–14. https://doi.org/10.1002/jcp.21021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu H, Gu S, Riquelme MA, Burra S, Callaway D, Cheng H, et al. Connexin 43 channels are essential for normal bone structure and osteocyte viability. J Bone Miner Res. 2015;30(3):550–62. https://doi.org/10.1002/jbmr.2374.

    Article  CAS  PubMed Central  Google Scholar 

  18. Yang L, Zhou G, Li M, Li Y, Yang L, Fu Q, et al. High glucose downregulates connexin 43 expression and its gap junction and hemichannel function in osteocyte-like mlo-y4 cells through activation of the p38mapk/erk signal pathway. Diabetes, Metab Syndr Obes Targets Ther. 2020;13:545–57. https://doi.org/10.2147/DMSO.S239892.

    Article  CAS  Google Scholar 

  19. Agrawal A, Gartland A. P2x7 receptors: role in bone cell formation and function. J Mol Endocrinol. 2015;54(2):R75–88. https://doi.org/10.1530/JME-14-0226.

    Article  CAS  PubMed  Google Scholar 

  20. Orriss IR, Burnstock G, Arnett TR. Purinergic signalling and bone remodelling. Curr Opin Pharmacol. 2010;10(3):322–30. https://doi.org/10.1016/j.coph.2010.01.003.

    Article  CAS  PubMed  Google Scholar 

  21. Jørgensen NR. The purinergic P2X7 ion channel receptor—a ‘repair’ receptor in bone. Curr Opin Immunol. 2018;52:32–8. https://doi.org/10.1016/j.coi.2018.03.016.

    Article  CAS  PubMed  Google Scholar 

  22. Seref-Ferlengez Z, Maung S, Schaffler MB, Spray DC, Suadicani SO, Thi MM. P2X7R-Panx1 complex impairs bone mechanosignaling under high glucose levels associated with type-1 diabetes. PLoS One. 2016;11:5. https://doi.org/10.1371/journal.pone.0155107.

    Article  CAS  Google Scholar 

  23. Chachisvilis M, Zhang YL, Frangos JA. Mechanical stimulus alters conformation of type 1 parathyroid hormone receptor in bone cells. Am J Phys Cell Phys. 2009;296(6):C1391–9.

    Article  Google Scholar 

  24. Maycas M, Ardura JA, de Castro LF, Bravo B, Gortázar AR, Esbrit P. Role of the parathyroid hormone type 1 receptor (PTH1R) as a mechanosensor in osteocyte survival. J Bone Miner Res. Jul. 2015;30(7):1231–44. https://doi.org/10.1002/jbmr.2439.

    Article  CAS  PubMed  Google Scholar 

  25. Ben-awadh AN, Delgado-Calle J, Tu X, Kuhlenschmidt K, Allen MR, Plotkin LI, et al. Parathyroid hormone receptor signaling induces bone resorption in the adult skeleton by directly regulating the RANKL gene in osteocytes. Endocrinology. 2014;155(8):2797–809. https://doi.org/10.1210/en.2014-1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wein MN. Parathyroid hormone signaling in osteocytes. JBMR Plus. 2018;2(1):22–30. https://doi.org/10.1002/jbm4.10021.

    Article  CAS  PubMed  Google Scholar 

  27. Lozano D, de Castro LF, Dapía S, Andrade-Zapata I, Manzarbeitia F́, Alvarez-Arroyo MV, et al. Role of parathyroid hormone-related protein in the decreased osteoblast function in diabetes-related osteopenia. Endocrinology. 2009;150(5):2027–35. https://doi.org/10.1210/en.2008-1108.

    Article  CAS  PubMed  Google Scholar 

  28. Maycas M, McAndrews KA, Sato AY, Pellegrini GG, Brown DM, Allen MR, et al. PTHrP-derived peptides restore bone mass and strength in diabetic mice: additive effect of mechanical loading. J Bone Miner Res. Mar. 2017;32(3):486–97. https://doi.org/10.1002/jbmr.3007.

    Article  CAS  PubMed  Google Scholar 

  29. Esbrit P, Lozano D, Fernández-de-Castro L, Portal-Núñez S, López-Herradón A, Dapía S, et al. The C-terminal fragment of parathyroid hormone-related peptide promotes bone formation in diabetic mice with low-turnover osteopaenia. Br J Pharmacol. 2011;162(6):1424–38.

    Article  Google Scholar 

  30. Esbrit P, García-Martín A, Acitores A, Maycas M, Villanueva-Peñacarrillo ML. Src kinases mediate VEGFR2 transactivation by the osteostatin domain of PTHrP to modulate osteoblastic function. J Cell Biochem. 2013;114(6):1404–13.

    Article  Google Scholar 

  31. de Castro LF, Maycas M, Bravo B, Esbrit P, Gortazar A. VEGF receptor 2 (VEGFR2) activation is essential for osteocyte survival induced by mechanotransduction. J Cell Physiol. 2015;230(2):278–85. https://doi.org/10.1002/jcp.24734.

    Article  CAS  PubMed  Google Scholar 

  32. Schwartz M, Coon BG, Baeyens N, Han J, Budatha M, Ross TD, et al. Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. J Cell Biol. 2015;208(7):975–86.

    Article  Google Scholar 

  33. Parajuli A, Liu C, Li W, Gu X, Lai X, Pei S, et al. Bone’s responses to mechanical loading are impaired in type 1 diabetes. Bone. 2015;81:152–60. https://doi.org/10.1016/j.bone.2015.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bellido T, Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, et al. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res. 2006;21(4):605–15.

    Article  Google Scholar 

  35. Zhou Y, Zhang C, Wei W, Chi M, Wan Y, Li X, et al. FOXO1 mediates advanced glycation end products induced mouse osteocyte-like MLO-Y4 cell apoptosis and dysfunctions. J Diabetes Res. 2019;2019:6757428.

    Article  Google Scholar 

  36. Maycas M, Portolés MT, Matesanz MC, Buendía I, Linares J, Feito MJ, et al. High glucose alters the secretome of mechanically stimulated osteocyte-like cells affecting osteoclast precursor recruitment and differentiation. J Cell Physiol. 2017;232(12):3611–21. https://doi.org/10.1002/jcp.25829.

    Article  CAS  PubMed  Google Scholar 

  37. Sánchez-de-Diego C, et al. Glucose restriction promotes osteocyte specification by activating a PGC-1α-dependent transcriptional program. iScience. 2019;15:79–94. https://doi.org/10.1016/j.isci.2019.04.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Riddle RC, Clemens TL. Bone cell bioenergetics and skeletal energy homeostasis. Physiol Rev. 2017;97(2):667–98. https://doi.org/10.1152/physrev.00022.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lira VA, Benton CR, Yan Z, Bonen A. PGC-1α regulation by exercise training and its influences on muscle function and insulin sensitivity. Am J Physiol Endocrinol Metab. 2010;299(2):E145–61. https://doi.org/10.1152/ajpendo.00755.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang Y, Graves DT, Alshabab A, Albiero ML, Mattos M, Corrêa JD, et al. Osteocytes play an important role in experimental periodontitis in healthy and diabetic mice through expression of RANKL. J Clin Periodontol. 2018;45(3):285–92.

    Article  Google Scholar 

  41. Karalazou P, et al. OPG/RANK/RANKL signaling axis in patients with type i diabetes: associations with parathormone and vitamin D. Ital J Pediatr. 2019;45(1):161.

    Article  CAS  Google Scholar 

  42. Abe I, et al. Effect of denosumab, a human monoclonal antibody of receptor activator of nuclear factor kappa-B ligand (RANKL), upon glycemic and metabolic parameters: effect of denosumab on glycemic parameters. Med. 2019;98(47):e18067.

    Article  CAS  Google Scholar 

  43. Cheung W-Y, Simmons CA, You L. Osteocyte apoptosis regulates osteoclast precursor adhesion via osteocytic IL-6 secretion and endothelial ICAM-1 expression. Bone. 2012;50:104–10.

    Article  CAS  Google Scholar 

  44. Starzyk J, Wędrychowicz A, Sztefko K. Sclerostin and its significance for children and adolescents with type 1 diabetes mellitus (T1D). Bone. 2019;120:387–92.

    Article  Google Scholar 

  45. Muñoz-Torres M, García-Martín A, Rozas-Moreno P, Reyes-García R, Morales-Santana S, García-Fontana B, et al. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97(1):234–41.

    Article  Google Scholar 

  46. Gennari L, et al. Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. J Clin Endocrinol Metab. 2012;97:3744–50.

    Article  Google Scholar 

  47. Bonewald L, Pacicca DM, Brown T, Watkins D, Kover K, Yan Y, et al. Elevated glucose acts directly on osteocytes to increase sclerostin expression in diabetes. Sci Rep. 2019;9(1):17353.

    Article  Google Scholar 

  48. Cipriani C, et al. The interplay between bone and glucose metabolism. Front Endocrinol (Lausanne). 2020;11:122.

    Article  Google Scholar 

  49. Hesse M, Fröhlich LF, Zeitz U, Lanske B, Erben RG. Ablation of vitamin D signaling rescues bone, mineral, and glucose homeostasis in Fgf-23 deficient mice. Matrix Biol. 2007;26(2):75–84.

    Article  CAS  Google Scholar 

  50. Farlay D, LAG A, Gineyts E, Akhter MP, Recker RR, Boivin G. Nonenzymatic glycation and degree of mineralization are higher in bone from fractured patients with type 1 diabetes mellitus. J Bone Miner Res. 2016;31:190–5.

    Article  CAS  Google Scholar 

  51. Severcan F, Bozkurt O, Bilgin MD, Evis Z, Pleshko N. Early alterations in bone characteristics of type I diabetic rat femur: a Fourier transform infrared (FT-IR) imaging study. Appl Spectrosc. 2016;70:2005–15.

    Article  Google Scholar 

  52. McNamara L, Parle E, Tio S, Behre A, Carey JJ, Murphy CG, et al. Bone mineral is more heterogeneously distributed in the femoral heads of osteoporotic and diabetic patients: a pilot study. JBMR Plus. 2019;4(2):e10253.

    PubMed  PubMed Central  Google Scholar 

  53. Sims N, Vrahnas C, Blank M, Dite TA, Tatarczuch L, Ansari N, et al. Increased autophagy in EphrinB2-deficient osteocytes is associated with elevated secondary mineralization and brittle bone. Nat Commun. 2019;10(1):3436.

    Article  Google Scholar 

  54. Liu E, Wu M, Ai W, Chen L, Zhao S. Bradykinin receptors and EphB2/EphrinB2 pathway in response to high glucose-induced osteoblast dysfunction and hyperglycemia-induced bone deterioration in mice. Int J Mol Med. 2016;37(3):565–74.

    Article  CAS  Google Scholar 

  55. Duer M, Davies E, Müller KH, Wong WC, Pickard CJ, Reid DG, et al. Citrate bridges between mineral platelets in bone. Proc Natl Acad Sci U S A. 2014;111(14):E1354–63.

    Article  Google Scholar 

  56. Villaseñor A, Aedo-Martín D, Obeso D, Erjavec I, Rodríguez-Coira J, Buendía I, et al. Metabolomics reveals citric acid secretion in mechanically-stimulated osteocytes is inhibited by high glucose. Sci Rep. 2019;9(1):2295. https://doi.org/10.1038/s41598-018-38154-6.

Download references

Funding

This study was supported by Ministerio de Ciencia, Innovación y Universidades (SAF2016-80286).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arancha R. Gortázar.

Ethics declarations

Conflict of Interest

Arancha Gortazar and Juan Ardura declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Osteocytes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gortázar, A.R., Ardura, J.A. Osteocytes and Diabetes: Altered Function of Diabetic Osteocytes. Curr Osteoporos Rep 18, 796–802 (2020). https://doi.org/10.1007/s11914-020-00641-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-020-00641-z

Keywords

Navigation