Skip to main content

Exercise and Diet: Uncovering Prospective Mediators of Skeletal Fragility in Bone and Marrow Adipose Tissue

Abstract

Purpose of Review

To highlight recent basic, translational, and clinical works demonstrating exercise and diet regulation of marrow adipose tissue (MAT) and bone and how this informs current understanding of the relationship between marrow adiposity and musculoskeletal health.

Recent Findings

Marrow adipocytes accumulate in the bone in the setting of not only hypercaloric intake (calorie excess; e.g., diet-induced obesity) but also with hypocaloric intake (calorie restriction; e.g., anorexia), despite the fact that these states affect bone differently. With hypercaloric intake, bone quantity is largely unaffected, whereas with hypocaloric intake, bone quantity and quality are greatly diminished. Voluntary running exercise in rodents was found to lower MAT and promote bone in eucaloric and hypercaloric states, while degrading bone in hypocaloric states, suggesting differential modulation of MAT and bone, dependent upon whole-body energy status. Energy status alters bone metabolism and bioenergetics via substrate availability or excess, which plays a key role in the response of bone and MAT to mechanical stimuli.

Summary

Marrow adipose tissue (MAT) is a fat depot with a potential role in—as well as responsivity to—whole-body energy metabolism. Understanding the localized function of this depot in bone cell bioenergetics and substrate storage, principally in the exercised state, will aid to uncover putative therapeutic targets for skeletal fragility.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data Availability

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.

    Pagnotti GM, Styner M. Exercise regulation of marrow adipose tissue. Front Endocrinol (Lausanne). 2016;7:94. https://doi.org/10.3389/fendo.2016.00094.

    Article  Google Scholar 

  2. 2.

    Pagnotti GM, Styner M, Uzer G, Patel VS, Wright LE, Ness KK, et al. Combating osteoporosis and obesity with exercise: leveraging cell mechanosensitivity. Nat Rev Endocrinol. 2019;15(6):339–55. https://doi.org/10.1038/s41574-019-0170-1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Paccou J, Hardouin P, Cotten A, Penel G, Cortet B. The role of bone marrow fat in skeletal health: usefulness and perspectives for clinicians. J Clin Endocrinol Metab. 2015;100(10):3613–21. https://doi.org/10.1210/jc.2015-2338.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Devlin MJ. Why does starvation make bones fat? Am J Hum Biol. 2011;23(5):577–85. https://doi.org/10.1002/ajhb.21202.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009;460(7252):259–63. https://doi.org/10.1038/nature08099.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Zhou BO, Yu H, Yue R, Zhao Z, Rios JJ, Naveiras O, et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol. 2017;19(8):891–903. https://doi.org/10.1038/ncb3570.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    •• Zhang Z, Huang Z, Ong B, Sahu C, Zeng H, Ruan HB. Bone marrow adipose tissue-derived stem cell factor mediates metabolic regulation of hematopoiesis. Haematologica. 2019;104(9):1731–43. https://doi.org/10.3324/haematol.2018.205856Stem cell factor, a MAT-secreted hormone, acts as an integral mediator for metabolic regulation of hematopoietic stem cells and its absence significantly impairs hematopoiesis.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Oehlbeck LW, Robscheit-Robbins FS, Whipple GH. Marrow hyperplasia and hemoglobin reserve in experimental anemia due to bleeding. J Exp Med. 1932;56(3):425–48. https://doi.org/10.1084/jem.56.3.425.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Meunier P, Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res. 1971;80:147–54. https://doi.org/10.1097/00003086-197110000-00021.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Lanotte M, Scott D, Dexter TM, Allen TD. Clonal preadipocyte cell lines with different phenotypes derived from murine marrow stroma: factors influencing growth and adipogenesis in vitro. J Cell Physiol. 1982;111(2):177–86. https://doi.org/10.1002/jcp.1041110209.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Kodama HA, Amagai Y, Koyama H, Kasai S. A new preadipose cell line derived from newborn mouse calvaria can promote the proliferation of pluripotent hemopoietic stem cells in vitro. J Cell Physiol. 1982;112(1):89–95. https://doi.org/10.1002/jcp.1041120114.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Rozman C, Feliu E, Berga L, Reverter JC, Climent C, Ferran MJ. Age-related variations of fat tissue fraction in normal human bone marrow depend both on size and number of adipocytes: a stereological study. Exp Hematol. 1989;17(1):34–7.

    CAS  PubMed  Google Scholar 

  13. 13.

    Rozman C, Reverter JC, Feliu E, Berga L, Rozman M, Climent C. Variations of fat tissue fraction in abnormal human bone marrow depend both on size and number of adipocytes: a stereologic study. Blood. 1990;76(5):892–5.

    CAS  Article  Google Scholar 

  14. 14.

    Hood RL, Allen CE. Cellularity of bovine adipose tissue. J Lipid Res. 1973;14(6):605–10.

    CAS  PubMed  Google Scholar 

  15. 15.

    Scheller EL, Troiano N, Vanhoutan JN, Bouxsein MA, Fretz JA, Xi Y, et al. Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. Methods Enzymol. 2014;537:123–39. https://doi.org/10.1016/B978-0-12-411619-1.00007-0.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Styner M, Thompson WR, Galior K, Uzer G, Wu X, Kadari S, et al. Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise. Bone. 2014;64:39–46. https://doi.org/10.1016/j.bone.2014.03.044.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Uzer G, Thompson WR, Sen B, Xie Z, Yen SS, Miller S, et al. Cell Mechanosensitivity to extremely low-magnitude signals is enabled by a LINCed nucleus. Stem Cells. 2015;33(6):2063–76. https://doi.org/10.1002/stem.2004.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    •• McGrath C, Sankaran JS, Misaghian-Xanthos N, Sen B, Xie Z, Styner MA, et al. Exercise degrades bone in caloric restriction, despite suppression of marrow adipose tissue (MAT). J Bone Miner Res. 2020;35(1):106–15. https://doi.org/10.1002/jbmr.3872Moderate calorie restriction induced MAT accumulation and trabecular bone loss, while combined restriction and exercise modestly suppressed MAT and further degraded bone.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Styner M, Pagnotti GM, McGrath C, Wu X, Sen B, Uzer G, et al. Exercise decreases marrow adipose tissue through β-oxidation in obese running mice. J Bone Miner Res Off J Am Soc Bone Miner Res. 2017. https://doi.org/10.1002/jbmr.3159.

  20. 20.

    Wang MC, Bachrach LK, Van Loan M, Hudes M, Flegal KM, Crawford PB. The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone. 2005;37(4):474–81. https://doi.org/10.1016/j.bone.2005.04.038.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    De Laet C, Kanis JA, Odén A, Johanson H, Johnell O, Delmas P, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005;16(11):1330–8. https://doi.org/10.1007/s00198-005-1863-y.

    Article  PubMed  Google Scholar 

  22. 22.

    Sankaran JS, Sen B, Dudakovic A, Paradise CR, Perdue T, Xie Z, et al. Knockdown of formin mDia2 alters lamin B1 levels and increases osteogenesis in stem cells. Stem Cells. 2020;38(1):102–17. https://doi.org/10.1002/stem.3098.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Robles H, Park S, Joens MS, Fitzpatrick JAJ, Craft CS, Scheller EL. Characterization of the bone marrow adipocyte niche with three-dimensional electron microscopy. Bone. 2019;118:89–98. https://doi.org/10.1016/j.bone.2018.01.020.

    Article  PubMed  Google Scholar 

  24. 24.

    Scheller EL, Doucette CR, Learman BS, Cawthorn WP, Khandaker S, Schell B, et al. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat Commun. 2015;6:7808. https://doi.org/10.1038/ncomms8808.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Cuminetti V, Arranz L. Bone marrow adipocytes: the enigmatic components of the hematopoietic stem cell niche. J Clin Med. 2019;8(5). doi:https://doi.org/10.3390/jcm8050707.

  26. 26.

    Yu EW, Greenblatt L, Eajazi A, Torriani M, Bredella MA. Marrow adipose tissue composition in adults with morbid obesity. Bone. 2017;97:38–42. https://doi.org/10.1016/j.bone.2016.12.018.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Turner RT, Martin SA, Iwaniec UT. Metabolic coupling between bone marrow adipose tissue and hematopoiesis. Curr Osteoporos Rep. 2018;16(2):95–104. https://doi.org/10.1007/s11914-018-0422-3.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Liu LF, Shen WJ, Ueno M, Patel S, Kraemer FB. Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes. BMC Genomics. 2011;12:212. https://doi.org/10.1186/1471-2164-12-212.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Suchacki KJ, Tavares AAS, Mattiucci D, Scheller EL, Papanastasiou G, Gray C, et al. Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nat Commun. 2020;11(1):3097. https://doi.org/10.1038/s41467-020-16878-2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Yeung DK, Griffith JF, Antonio GE, Lee FK, Woo J, Leung PC. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging. 2005;22(2):279–85.

    Article  Google Scholar 

  31. 31.

    Li R, Liang L, Dou Y, Huang Z, Mo H, Wang Y, et al. Mechanical stretch inhibits mesenchymal stem cell adipogenic differentiation through TGFbeta1/Smad2 signaling. J Biomech. 2015;48(13):3665–71. https://doi.org/10.1016/j.jbiomech.2015.08.013.

    Article  PubMed  Google Scholar 

  32. 32.

    Krings A, Rahman S, Huang S, Lu Y, Czernik PJ, Lecka-Czernik B. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone. 2012;50(2):546–52. https://doi.org/10.1016/j.bone.2011.06.016.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Tavassoli M, Houchin DN, Jacobs P. Fatty acid composition of adipose cells in red and yellow marrow: a possible determinant of haematopoietic potential. Scand J Haematol. 1977;18(1):47–53. https://doi.org/10.1111/j.1600-0609.1977.tb01476.x.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Bohnert M. New friends for seipin - implications of seipin partner proteins in the life cycle of lipid droplets. Semin Cell Dev Biol. 2020. https://doi.org/10.1016/j.semcdb.2020.04.012.

  35. 35.

    Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, Hamadeh MJ. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol. 2007;292(3):R1271–8. https://doi.org/10.1152/ajpregu.00472.2006.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Kozubik A, Sedlakova A, Pospisil M, Petrasek R. In vivo studies of the relationship between the activation of lipid metabolism, postirradiation bone marrow cell proliferation and radioresistance of mice. Gen Physiol Biophys. 1988;7(3):293–302.

    CAS  PubMed  Google Scholar 

  37. 37.

    Valentinitsch A, Patsch JM, Burghardt AJ, Link TM, Majumdar S, Fischer L, et al. Computational identification and quantification of trabecular microarchitecture classes by 3-D texture analysis-based clustering. Bone. 2013;54(1):133–40. https://doi.org/10.1016/j.bone.2012.12.047.

    Article  PubMed  Google Scholar 

  38. 38.

    Griffith JF, Yeung DKW, Antonio GE, Wong SYS, Kwok TCY, Woo J, et al. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology. 2006;241(3):831–8. https://doi.org/10.1148/radiol.2413051858.

    Article  PubMed  Google Scholar 

  39. 39.

    Patsch JM, Li X, Baum T, Yap SP, Karampinos DC, Schwartz AV, et al. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res. 2013. https://doi.org/10.1002/jbmr.1950.

  40. 40.

    Stout MB, Swindell WR, Zhi X, Rohde K, List EO, Berryman DE, et al. Transcriptome profiling reveals divergent expression shifts in brown and white adipose tissue from long-lived GHRKO mice. Oncotarget. 2015;6(29):26702–15. https://doi.org/10.18632/oncotarget.5760.

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Palmer AK, Kirkland JL. Aging and adipose tissue: potential interventions for diabetes and regenerative medicine. Exp Gerontol. 2016;86:97–105. https://doi.org/10.1016/j.exger.2016.02.013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Picard F, Guarente L. Molecular links between aging and adipose tissue. Int J Obes. 2005;29(Suppl 1):S36–9. https://doi.org/10.1038/sj.ijo.0802912.

    CAS  Article  Google Scholar 

  43. 43.

    Lecka-Czernik B, Stechschulte LA, Czernik PJ, Dowling AR. High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol Cell Endocrinol. 2015. https://doi.org/10.1016/j.mce.2015.01.001.

  44. 44.

    Rahman S, Lu Y, Czernik PJ, Rosen CJ, Enerback S, Lecka-Czernik B. Inducible brown adipose tissue, or beige fat is anabolic for the skeleton. Endocrinology. 2013. https://doi.org/10.1210/en.2012-2162.

  45. 45.

    Bonnet N, Bourgoin L, Biver E, Douni E, Ferrari S. RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass. J Clin Invest. 2019;129(8):3214–23. https://doi.org/10.1172/JCI125915.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Hanley DA, Adachi JD, Bell A, Brown V. Denosumab: mechanism of action and clinical outcomes. Int J Clin Pract. 2012;66(12):1139–46. https://doi.org/10.1111/ijcp.12022.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Zebaze RM, Libanati C, Austin M, Ghasem-Zadeh A, Hanley DA, Zanchetta JR, et al. Differing effects of denosumab and alendronate on cortical and trabecular bone. Bone. 2014;59:173–9. https://doi.org/10.1016/j.bone.2013.11.016.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Harris KB, Nealy KL, Jackson DJ, Thornton PL. The clinical use of denosumab for the management of low bone mineral density in postmenopausal women. J Pharm Pract. 2012;25(3):310–8. https://doi.org/10.1177/0897190012442061.

    Article  PubMed  Google Scholar 

  49. 49.

    Thomas DM, Maher F, Rogers SD, Best JD. Expression and regulation by insulin of Glut 3 in UMR 106-01, a clonal rat osteosarcoma cell line. Biochem Biophys Res Commun. 1996;218(3):789–93. https://doi.org/10.1006/bbrc.1996.0140.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Wei J, Shimazu J, Makinistoglu MP, Maurizi A, Kajimura D, Zong H, et al. Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation. Cell. 2015;161(7):1576–91. https://doi.org/10.1016/j.cell.2015.05.029.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Zoch ML, Abou DS, Clemens TL, Thorek DL, Riddle RC. In vivo radiometric analysis of glucose uptake and distribution in mouse bone. Bone Res. 2016;4(December 2015):16004. https://doi.org/10.1038/boneres.2016.4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Esen E, Chen J, Karner CM, Okunade AL, Patterson BW, Long F. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 2013;17(5):745–55. https://doi.org/10.1016/j.cmet.2013.03.017.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Karner CM, Esen E, Okunade AL, Patterson BW, Long F. Increased glutamine catabolism mediates bone anabolism in response to WNT signaling. J Clin Invest. 2015;125(2):551–62. https://doi.org/10.1172/JCI78470.

    Article  PubMed  Google Scholar 

  54. 54.

    Frey JL, Li Z, Ellis JM, Zhang Q, Farber CR, Aja S, et al. Wnt-Lrp5 signaling regulates fatty acid metabolism in the osteoblast. Mol Cell Biol. 2015;35(11):1979–91. https://doi.org/10.1128/MCB.01343-14.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Pritchard JJ. A cytological and histochemical study of bone and cartilage formation in the rat. J Anat. 1959;86:259–77.

    Google Scholar 

  56. 56.

    Thompson WR, Uzer G, Brobst KE, Xie Z, Sen B, Yen SS, et al. Osteocyte specific responses to soluble and mechanical stimuli in a stem cell derived culture model. Sci Rep. 2015;5:11049. https://doi.org/10.1038/srep11049.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Lecka-Czernik B. Marrow fat metabolism is linked to the systemic energy metabolism. Bone. 2012;50(2):534–9. https://doi.org/10.1016/j.bone.2011.06.032.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 2010;7(3):380–90. https://doi.org/10.1016/j.stem.2010.07.011.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Oburoglu L, Tardito S, Fritz V, de Barros SC, Merida P, Craveiro M, et al. Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell. 2014;15:169–84. https://doi.org/10.1016/j.stem.2014.06.002.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Oburoglu L, Romano M, Taylor N, Kinet S. Metabolic regulation of hematopoietic stem cell commitment and erythroid differentiation. Curr Opin Hematol. 2016;23(3):198–205. https://doi.org/10.1097/MOH.0000000000000234.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Morten KJ, Badder L, Knowles HJ. Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts. J Pathol. 2013;229:755–64. https://doi.org/10.1002/path.4159.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Karner CM, Long F. Glucose metabolism in bone. Bone. 2018;115:2–7. https://doi.org/10.1016/j.bone.2017.08.008.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Weivoda MM, Chew CK, Monroe DG, Farr JN, Atkinson EJ, Geske JR, et al. Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism. Nat Commun. 2020;11(1):87. https://doi.org/10.1038/s41467-019-14003-6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Schmidt-Rohr K. Oxygen is the high-energy molecule powering complex multicellular life: fundamental corrections to traditional bioenergetics. ACS Omega. 2020;5(5):2221–33. https://doi.org/10.1021/acsomega.9b03352.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Brand K. Aerobic glycolysis by proliferating cells: protection against oxidative stress at the expense of energy yield. J Bioenerg Biomembr. 1997;29(4):355–64. https://doi.org/10.1023/a:1022498714522.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Shum LC, White NS, Mills BN, Bentley KL, Eliseev RA. Energy metabolism in mesenchymal stem cells during osteogenic differentiation. Stem Cells Dev. 2016;25(2):114–22. https://doi.org/10.1089/scd.2015.0193.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Mylotte LA, Duffy AM, Murphy M, O’Brien T, Samali A, Barry F, et al. Metabolic flexibility permits mesenchymal stem cell survival in an ischemic environment. Stem Cells. 2008;26(5):1325–36. https://doi.org/10.1634/stemcells.2007-1072.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Du W, Zhang L, Brett-Morris A, Aguila B, Kerner J, Hoppel CL, et al. HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nat Commun. 2017;8(1):1769. https://doi.org/10.1038/s41467-017-01965-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3(3):187–97. https://doi.org/10.1016/j.cmet.2006.01.012.

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Kushwaha P, Wolfgang MJ, Riddle RC. Fatty acid metabolism by the osteoblast. Bone. 2018;115(November):8–14. https://doi.org/10.1016/j.bone.2017.08.024.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Komarova SV, Ataullakhanov FI, Globus RK. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts. Am J Physiol Cell Physiol. 2000;279(4):C1220–9. https://doi.org/10.1152/ajpcell.2000.279.4.C1220.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Kim SP, Li Z, Zoch ML, Frey JL, Bowman CE, Kushwaha P, et al. Fatty acid oxidation by the osteoblast is required for normal bone acquisition in a sex- and diet-dependent manner. JCI Insight. 2017;2(16):1–16. https://doi.org/10.1172/jci.insight.92704.

    Article  Google Scholar 

  73. 73.

    Shockley KR, Lazarenko OP, Czernik PJ, Rosen CJ, Churchill GA, Lecka-Czernik B. PPARgamma2 nuclear receptor controls multiple regulatory pathways of osteoblast differentiation from marrow mesenchymal stem cells. J Cell Biochem. 2009;106(2):232–46. https://doi.org/10.1002/jcb.21994.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Li Z, Macdougald OA. Stem cell factor: the bridge between bone marrow adipocytes and hematopoietic cells. Haematologica. 2019;104(9):1689–91. https://doi.org/10.3324/haematol.2019.224188.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Rimmelé P, Liang R, Bigarella CL, Kocabas F, Xie J, Serasinghe MN, et al. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO 3. EMBO Rep. 2015;16(9):1164–76. https://doi.org/10.15252/embr.201439704.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Kim JM, Jeong D, Kang HK, Jung SY, Kang SS, Min BM. Osteoclast precursors display dynamic metabolic shifts toward accelerated glucose metabolism at an early stage of RANKL-stimulated osteoclast differentiation. Cell Physiol Biochem. 2007;20:935–46. https://doi.org/10.1159/000110454.

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Lemma S, Sboarina M, Porporato PE, Zini N, Sonveaux P, Di Pompo G, et al. Energy metabolism in osteoclast formation and activity. Int J Biochem Cell Biol. 2016;79(August):168–80. https://doi.org/10.1016/j.biocel.2016.08.034.

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Indo Y, Takeshita S, Ishii KA, Hoshii T, Aburatani H, Hirao A, et al. Metabolic regulation of osteoclast differentiation and function. J Bone Miner Res. 2013;28(11):2392–9. https://doi.org/10.1002/jbmr.1976.

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, et al. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity (Silver Spring). 2011;19(1):49–53. https://doi.org/10.1038/oby.2010.106.

    CAS  Article  Google Scholar 

  80. 80.

    McCabe LR, Irwin R, Tekalur A, Evans C, Schepper JD. Exercise prevents high fat diet-induced bone loss , marrow adiposity and dysbiosis in male mice. Bone. 2019;118:20–31. https://doi.org/10.1016/j.bone.2018.03.024.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Devlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S, Pinz I, et al. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res. 2010;25(9):2078–88. https://doi.org/10.1002/jbmr.82.

    Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Bredella MA. Perspective: the bone-fat connection. Skelet Radiol. 2010;39(8):729–31. https://doi.org/10.1007/s00256-010-0936-y.

    Article  Google Scholar 

  83. 83.

    Amrein K, Amrein S, Drexler C, Dimai HP, Dobnig H, Pfeifer K, et al. Sclerostin and its association with physical activity, age, gender, body composition, and bone mineral content in healthy adults. J Clin Endocrinol Metab. 2012;97(1):148–54. https://doi.org/10.1210/jc.2011-2152.

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Lavet C, Martin A, Linossier MT, Bossche AV, Laroche N, Thomas M, et al. Fat and sucrose intake induces obesity-related bone metabolism disturbances: kinetic and reversibility studies in growing and adult rats. J Bone Miner Res. 2016;31(1):98–115. https://doi.org/10.1002/jbmr.2596.

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Heinonen S, Saarinen L, Naukkarinen J, Rodriguez A, Fruhbeck G, Hakkarainen A, et al. Adipocyte morphology and implications for metabolic derangements in acquired obesity. Int J Obes. 2014;38(11):1423–31. https://doi.org/10.1038/ijo.2014.31.

    CAS  Article  Google Scholar 

  86. 86.

    Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453(7196):783–7. https://doi.org/10.1038/nature06902.

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Nishino N, Tamori Y, Tateya S, Kawaguchi T, Shibakusa T, Mizunoya W, et al. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Investig. 2008;118(8):2808–21. https://doi.org/10.1172/JCI34090.

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Fazeli PK, Bredella MA, Freedman L, Thomas BJ, Breggia A, Meenaghan E, et al. Marrow fat and preadipocyte factor-1 levels decrease with recovery in women with anorexia nervosa. J Bone Miner Res. 2012;27(9):1864–71. https://doi.org/10.1002/jbmr.1640.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Pontzer H. Constrained total energy expenditure and the evolutionary biology of energy balance. Exerc Sport Sci Rev. 2015;43(3):110–6. https://doi.org/10.1249/JES.0000000000000048.

    Article  PubMed  Google Scholar 

  90. 90.

    Pontzer H. Energy constraint as a novel mechanism linking exercise and health. Physiology. 2018;33(6):384–93. https://doi.org/10.1152/physiol.00027.2018.

    CAS  Article  PubMed  Google Scholar 

  91. 91.

    Cordes C, Dieckmeyer M, Ott B, Shen J, Ruschke S, Settles M, et al. MR-detected changes in liver fat, abdominal fat, and vertebral bone marrow fat after a four-week calorie restriction in obese women. J Magn Reson Imaging. 2015;42(5):1272–80. https://doi.org/10.1002/jmri.24908.

    Article  PubMed  Google Scholar 

  92. 92.

    Bredella MA, Fazeli PK, Miller KK, Misra M, Torriani M, Thomas BJ, et al. Increased bone marrow fat in anorexia nervosa. J Clin Endocrinol Metab. 2009;94(6):2129–36. https://doi.org/10.1210/jc.2008-2532.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Cao JJ. Caloric restriction combined with exercise is effective in reducing adiposity and mitigating bone structural deterioration in obese rats. Ann N Y Acad Sci. 2018;1433(1):41–52. https://doi.org/10.1111/nyas.13936.

    CAS  Article  PubMed  Google Scholar 

  94. 94.

    Styner M, Pagnotti GM, Galior K, Wu X, Thompson WR, Uzer G, et al. Exercise regulation of marrow fat in the setting of PPARgamma agonist treatment in female C57BL/6 mice. Endocrinology. 2015;156(8):2753–61. https://doi.org/10.1210/en.2015-1213.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Ko FC, Martins JS, Reddy P, Bragdon B, Hussein AI, Gerstenfeld LC, et al. Acute phosphate restriction impairs bone formation and increases marrow adipose tissue in growing mice. J Bone Miner Res. 2016;31(12):2204–14. https://doi.org/10.1002/jbmr.2891.

    CAS  Article  PubMed  Google Scholar 

  96. 96.

    Lips P, Van Schoor NM. The effect of vitamin D on bone and osteoporosis. Best Pract Res Clin Endocrinol Metab. 2011;25(4):585–91. https://doi.org/10.1016/j.beem.2011.05.002.

    CAS  Article  PubMed  Google Scholar 

  97. 97.

    Zofkova I, Davis M, Blahos J. Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiol Res. 2017;66(3):391–402. https://doi.org/10.33549/physiolres.933454.

    CAS  Article  PubMed  Google Scholar 

  98. 98.

    Price CT, Langford JR, Liporace FA. Essential nutrients for bone health and a review of their availability in the average North American diet. Open Orthop J. 2012;6(1):143–9. https://doi.org/10.2174/1874325001206010143.

    Article  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Ozcivici E, Luu YK, Adler B, Qin YX, Rubin J, Judex S, et al. Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol. 2010;6(1):50–9. https://doi.org/10.1038/nrrheum.2009.239.Mechanical.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Rubin C, Lanyon L. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg. 1984;66A:397–402.

    Article  Google Scholar 

  101. 101.

    Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K. Low mechanical signals strengthen long bones. Nature. 2001;412(6847):603–4. https://doi.org/10.1038/35088119.

    CAS  Article  PubMed  Google Scholar 

  102. 102.

    Rubin J. Regulation of skeletal remodeling by biomechanical input. Osteoporos Int. 2003;14(Suppl 5):S43–S5. https://doi.org/10.1007/s00198-003-1472-6.

    Article  PubMed  Google Scholar 

  103. 103.

    Thompson WR, Rubin CT, Rubin J. Mechanical regulation of signaling pathways in bone. Gene. 2012;503(2):179–93. https://doi.org/10.1038/jid.2014.371.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Phu S, Bani Hassan E, Vogrin S, Kirk B, Duque G. Effect of denosumab on falls, muscle strength, and function in community-dwelling older adults. J Am Geriatr Soc. 2019;67(12):2660–1. https://doi.org/10.1111/jgs.16165.

    Article  PubMed  Google Scholar 

  105. 105.

    Gross TS, Rubin CT. Uniformity of resorptive bone loss induced by disuse. J Orthop Res. 1995;13(5):708–14. https://doi.org/10.1002/jor.1100130510.

    CAS  Article  PubMed  Google Scholar 

  106. 106.

    Judex S, Garman R, Squire M, Busa B, Donahue LR, Rubin C. Genetically linked site-specificity of disuse osteoporosis. J Bone Miner Res. 2004;19(4):607–13. https://doi.org/10.1359/JBMR.040110.

    Article  PubMed  Google Scholar 

  107. 107.

    Jee S, Wronski E, Morey J, Kimmel D. Effects of spaceflight on trabecular bone in rats. Am J Phys. 1983;244:4310–4.

    Google Scholar 

  108. 108.

    Hino K, Nifuji A, Morinobu M, Tsuji K, Ezura Y, Nakashima K, et al. Unloading-induced bone loss was suppressed in gold-thioglucose treated mice. J Cell Biochem. 2006;99(3):845–52. https://doi.org/10.1002/jcb.20935.

    CAS  Article  PubMed  Google Scholar 

  109. 109.

    Keune JA, Wong CP, Br AJ, Iwaniec UT, Turner RT. Bone marrow adipose tissue deficiency increases disuse-induced bone loss in male mice. Sci Rep. 2017;7(46325). doi:https://doi.org/10.1038/srep46325.

  110. 110.

    Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007;5(6):464–75. https://doi.org/10.1016/j.cmet.2007.05.001.

    CAS  Article  Google Scholar 

  111. 111.

    Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, et al. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res. 2006;21(4):605–15. https://doi.org/10.1359/jbmr.060107.

    Article  PubMed  Google Scholar 

  112. 112.

    Iwaniec UT, Philbrick KA, Wong CP, Gordon JL, Kahler-Quesada AM, Olson DA, et al. Room temperature housing results in premature cancellous bone loss in growing female mice: implications for the mouse as a preclinical model for age-related bone loss. Osteoporos Int. 2016;27(10):3091–101. https://doi.org/10.1007/s00198-016-3634-3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. 113.

    LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, et al. Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact. 2000;1(2):157–60.

    CAS  PubMed  Google Scholar 

  114. 114.

    Lang T, Leblanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19(6). doi:https://doi.org/10.1359/JBMR.040307.

  115. 115.

    Trudel G, Payne M, Madler B, Ramachandran N, Lecompte M, Wade C, et al. Bone marrow fat accumulation after 60 days of bed rest persisted 1 year after activities were resumed along with hemopoietic stimulation: the Women International Space Simulation for Exploration study. J Appl Physiol. 2009;107(2):540–8. https://doi.org/10.1152/japplphysiol.91530.2008.

    Article  PubMed  Google Scholar 

  116. 116.

    Trudel G, Coletta E, Cameron I, Belavy DL, Lecompte M, Armbrecht G, et al. Resistive exercises, with or without whole body vibration, prevent vertebral marrow fat accumulation during 60 days of head-down tilt bed rest in men. J Appl Physiol. 2012;112(11):1824–31. https://doi.org/10.1152/japplphysiol.00029.2012.

    Article  PubMed  Google Scholar 

  117. 117.

    Ambrosi TH, Scialdone A, Graja A, Saraiva LR, Schulz TJ. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell. 2017;20:771–84. https://doi.org/10.1016/j.stem.2017.02.009.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Hinton PS, Nigh P, Thyfault J. Effectiveness of resistance training or jumping-exercise to increase bone mineral density in men with low bone mass: a 12-month randomized, clinical trial. Bone. 2015;79:203–12. https://doi.org/10.1016/j.bone.2015.06.008.

    Article  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Hinton PS, Shankar K, Eaton LM, Rector RS. Obesity-related changes in bone structural and material properties in hyperphagic OLETF rats and protection by voluntary wheel running. Metab Clin Exp. 2015;64(8):905–16. https://doi.org/10.1016/j.metabol.2015.04.004.

    CAS  Article  PubMed  Google Scholar 

  120. 120.

    Newhall KM, Rodnick KJ, van der Meulen MC, Carter DR, Marcus R. Effects of voluntary exercise on bone mineral content in rats. J Bone Miner Res. 1991;6(3):289–96.

    CAS  Article  Google Scholar 

  121. 121.

    Hamann N, Kohler T, Müller R, Brüggemann GP, Niehoff A. The effect of level and downhill running on cortical and trabecular bone in growing rats. Calcif Tissue Int. 2012;90(5):429–37. https://doi.org/10.1007/s00223-012-9593-6.

    CAS  Article  PubMed  Google Scholar 

  122. 122.

    Tamakoshi K, Nishii Y, Minematsu A. Upward running is more beneficial than level surface or downslope running in reverting tibia bone degeneration in ovariectomized rats. J Musculoskelet Neuronal Interact. 2018;18(4):493–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Gregor RJ, Smith DW, Prilutsky BI. Mechanics of slope walking in the cat: quantification of muscle load, length change, and ankle extensor EMG patterns. J Neurophysiol. 2006;95(3):1397–409. https://doi.org/10.1152/jn.01300.2004.

    Article  PubMed  Google Scholar 

  124. 124.

    Wallace IJ, Pagnotti GM, Rubin-Sigler J, Naeher M, Copes LE, Judex S, et al. Focal enhancement of the skeleton to exercise correlates with responsivity of bone marrow mesenchymal stem cells rather than peak external forces. J Exp Biol. 2015;218(19):3002–9. https://doi.org/10.1242/jeb.118729.

    Article  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Huang TH, Su IH, Lewis JL, Chang MS, Hsu AT, Perrone CE, et al. Effects of methionine restriction and endurance exercise on bones of ovariectomized rats: a study of histomorphometry, densitometry, and biomechanical properties. J Appl Physiol. 2015;119(5):517–26. https://doi.org/10.1152/japplphysiol.00395.2015.

    CAS  Article  PubMed  Google Scholar 

  126. 126.

    Baker JM, De Lisio M, Parise G. Endurance exercise training promotes medullary hematopoiesis. FASEB J. 2011;25(12):4348–57. https://doi.org/10.1096/fj.11-189043.

    CAS  Article  PubMed  Google Scholar 

  127. 127.

    Yuasa Y, Miyakoshi N, Kasukawa Y, Nagahata I, Akagawa M, Ono Y, et al. Effects of bazedoxifene and low-intensity aerobic exercise on bone and fat parameters in ovariectomized rats. J Bone Miner Metab. 2020;38(2):179–87. https://doi.org/10.1007/s00774-019-01045-5.

    CAS  Article  PubMed  Google Scholar 

  128. 128.

    Bertheau RC, Lorbeer R, Nattenmuller J, Wintermeyer E, Machann J, Linkohr B, et al. Bone marrow fat fraction assessment in regard to physical activity: KORA FF4-3-T MR imaging in a population-based cohort. Eur Radiol. 2020;30(6):3417–28. https://doi.org/10.1007/s00330-019-06612-y.

    CAS  Article  PubMed  Google Scholar 

  129. 129.

    Belavy DL, Quittner MJ, Ridgers ND, Shiekh A, Rantalainen T, Trudel G. Specific modulation of vertebral marrow adipose tissue by physical activity. J Bone Miner Res. 2018;33(4):651–7. https://doi.org/10.1002/jbmr.3357.

    CAS  Article  PubMed  Google Scholar 

  130. 130.

    Mori T, Okimoto N, Sakai A, Okazaki Y, Nakura N, Notomi T, et al. Climbing exercise increases bone mass and trabecular bone turnover through transient regulation of marrow osteogenic and osteoclastogenic potentials in mice. J Bone Miner Res. 2003;18(11):2002–9. https://doi.org/10.1359/jbmr.2003.18.11.2002.

    Article  PubMed  Google Scholar 

  131. 131.

    Gomes RM, Junior MDF, Francisco FA, Moreira VM, de Almeida DL, Saavedra LPJ, et al. Strength training reverses ovariectomy-induced bone loss and improve metabolic parameters in female Wistar rats. Life Sci. 2018;213(October):134–41. https://doi.org/10.1016/j.lfs.2018.10.032.

    CAS  Article  PubMed  Google Scholar 

  132. 132.

    Singulani MP, Stringhetta-Garcia CT, Santos LF, Morais SR, Louzada MJ, Oliveira SH, et al. Effects of strength training on osteogenic differentiation and bone strength in aging female Wistar rats. Sci Rep. 2017;7(February):42878. https://doi.org/10.1038/srep42878.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Swift JM, Gasier HG, Swift SN, Wiggs MP, Hogan HA, Fluckey JD, et al. Increased training loads do not magnify cancellous bone gains with rodent jump resistance exercise. J Appl Physiol. 2010;109(6):1600–7. https://doi.org/10.1152/japplphysiol.00596.2010.

    CAS  Article  PubMed  Google Scholar 

  134. 134.

    Marín-Cascales E, Alcaraz PE, Ramos-Campo DJ, Rubio-Arias JA. Effects of multicomponent training on lean and bone mass in postmenopausal and older women: a systematic review. Menopause. 2018;25(3):346–56. https://doi.org/10.1097/GME.0000000000000975.

    Article  PubMed  Google Scholar 

  135. 135.

    Sañudo B, De Hoyo M, Del Pozo-Cruz J, Carrasco L, Del Pozo-Cruz B, Tejero S, et al. A systematic review of the exercise effect on bone health: the importance of assessing mechanical loading in perimenopausal and postmenopausal women. Menopause. 2017;24(10):1208–16. https://doi.org/10.1097/GME.0000000000000872.

    Article  PubMed  Google Scholar 

  136. 136.

    Lambert C, Beck BR, Harding AT, Watson SL, Weeks BK. Regional changes in indices of bone strength of upper and lower limbs in response to high-intensity impact loading or high-intensity resistance training. Bone. 2020;132(July 2019):115192. https://doi.org/10.1016/j.bone.2019.115192.

    Article  PubMed  Google Scholar 

  137. 137.

    •• Harding AT, Weeks BK, Lambert C, Watson SL, Weis LJ, Beck BR. A comparison of bone-targeted exercise strategies to reduce fracture risk in middle-aged and older men with osteopenia and osteoporosis: LIFTMOR-M Semi-Randomized Controlled Trial. J Bone Miner Res. 2020;35(8):1404–14. https://doi.org/10.1002/jbmr.4008Older men with low bone mass participating in an 8-month high-intensity resistance and impact training program significantly improved lumbar spine and femoral neck BMD, as well as cortical thickness at the femoral neck, proving the safety and efficacy of strength training for osteoporosis prevention.

    Article  PubMed  Google Scholar 

  138. 138.

    Watson SL, Weeks BK, Weis LJ, Harding AT, Horan SA, Beck BR. High-intensity resistance and impact training improves bone mineral density and physical function in postmenopausal women with osteopenia and osteoporosis: the LIFTMOR randomized controlled trial. J Bone Miner Res. 2018;33(2):211–20. https://doi.org/10.1002/jbmr.3284.

    Article  PubMed  Google Scholar 

  139. 139.

    Krishnamoorthy D, Frechette DM, Adler BJ, Green DE, Chan ME, Rubin CT. Marrow adipogenesis and bone loss that parallels estrogen deficiency is slowed by low-intensity mechanical signals. Osteoporos Int. 2016;27(2):747–56. https://doi.org/10.1007/s00198-015-3289-5.

    CAS  Article  PubMed  Google Scholar 

  140. 140.

    Ma R, Zhu D, Gong H, Gu G, Huang X, Gao JZ, et al. High-frequency and low-magnitude whole body vibration with rest days is more effective in improving skeletal micro-morphology and biomechanical properties in ovariectomised rodents. Hip Int. 2012;22(2):218–26. https://doi.org/10.5301/HIP.2012.9033.

    Article  PubMed  Google Scholar 

  141. 141.

    Rubin CT, Capilla E, Luu YK, Busa B, Crawford H, Nolan DJ, et al. Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc Natl Acad Sci U S A. 2007;104(45):17879–84. https://doi.org/10.1073/pnas.0708467104.

    Article  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Styner M, Sen B, Xie Z, Case N, Rubin J. Indomethacin promotes adipogenesis of mesenchymal stem cells through a cyclooxygenase independent mechanism. J Cell Biochem. 2010;111(4):1042–50. https://doi.org/10.1002/jcb.22793.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Gong H, Zhang R, Gao J, Zhang M, Liu B, Zhang M, et al. Whole body vibration with rest days could improve bone quality of distal femoral metaphysis by regulating trabecular arrangement. Sci China Life Sci. 2019;62(1):95–103. https://doi.org/10.1007/s11427-017-9253-x.

    CAS  Article  PubMed  Google Scholar 

  144. 144.

    Zhang T, Gao J, Fang J, Gong H. Multiscale investigation on the effects of additional weight bearing in combination with low-magnitude high-frequency vibration on bone quality of growing female rats. J Bone Miner Metab. 2018;36(2):157–69. https://doi.org/10.1007/s00774-017-0827-6.

    Article  PubMed  Google Scholar 

  145. 145.

    Judex S, Lei X, Han D, Rubin C. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J Biomech. 2007;40(6):1333–9. https://doi.org/10.1016/j.jbiomech.2006.05.014.

    Article  PubMed  Google Scholar 

  146. 146.

    Luo X, Zhang J, Zhang C, He C, Wang P. The effect of whole-body vibration therapy on bone metabolism, motor function, and anthropometric parameters in women with postmenopausal osteoporosis. Disabil Rehabil. 2017;39(22):2315–23. https://doi.org/10.1080/09638288.2016.1226417.

    Article  PubMed  Google Scholar 

  147. 147.

    Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res. 2004;19(3):343–51. https://doi.org/10.1359/JBMR.0301251.

    Article  PubMed  Google Scholar 

  148. 148.

    Kiel DP, Hannan MT, Barton BA, Bouxsein ML, Sisson E, Lang T, et al. Low-magnitude mechanical stimulation to improve bone density in persons of advanced age: a randomized, placebo-controlled trial. J Bone Miner Res. 2015;30(7):1319–28. https://doi.org/10.1002/jbmr.2448.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Slatkovska L, Alibhai SMH, Beyene J, Hu H, Demaras A, Cheung AM. Effect of 12 months of whole-body vibration therapy on bone density and structure in postmenopausal women: a randomized trial. Ann Intern Med. 2011;155(10):668–79. https://doi.org/10.7326/0003-4819-155-10-201111150-00005.

    Article  PubMed  Google Scholar 

  150. 150.

    Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res. 2006;21(9):1464–74. https://doi.org/10.1359/jbmr.060612.

    Article  PubMed  Google Scholar 

  151. 151.

    Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res. 2004;19(3):360–9. https://doi.org/10.1359/JBMR.040129.

    Article  PubMed  Google Scholar 

  152. 152.

    Mogil RJ, Kaste SC, Ferry RJ, Hudson MM, Mulrooney DA, Howell CR, et al. Effect of low-magnitude, high-frequency mechanical stimulation on BMD among young childhood cancer survivors a randomized clinical trial. JAMA Oncol. 2016;2(7):908–14. https://doi.org/10.1001/jamaoncol.2015.6557.

    Article  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Sen B, Xie Z, Case N, Styner M, Rubin CT, Rubin J. Mechanical signal influence on mesenchymal stem cell fate is enhanced by incorporation of refractory periods into the loading regimen. J Biomech. 2011;44(4):593–9. https://doi.org/10.1038/jid.2014.371.

    CAS  Article  PubMed  Google Scholar 

  154. 154.

    Styner M, Meyer MB, Galior K, Case N, Xie Z, Sen B, et al. Mechanical strain downregulates C/EBPbeta in MSC and decreases endoplasmic reticulum stress. PLoS One. 2012;7(12):e51613. https://doi.org/10.1371/journal.pone.0051613.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  155. 155.

    David V, Martin A, Lafage-Proust MH, Malaval L, Peyroche S, Jones DB, et al. Mechanical loading down-regulates peroxisome proliferator-activated receptor γ in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology. 2007;148(5):2553–62. https://doi.org/10.1210/en.2006-1704.

    CAS  Article  PubMed  Google Scholar 

  156. 156.

    Sen B, Xie Z, Case N, Ma M, Rubin C, Rubin J. Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable β-catenin signal. Endocrinology. 2008;149(12):6065–75. https://doi.org/10.1210/en.2008-0687.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Sen B, Paradise CR, Xie Z, Sankaran J, Uzer G, Styner M, et al. β-Catenin preserves the stem state of murine bone marrow stromal cells through activation of EZH2. J Bone Miner Res Off J Am Soc Bone Miner Res. 2020. https://doi.org/10.1002/jbmr.3975.

  158. 158.

    Nedergaard A, Henriksen K, Karsdal MA, Christiansen C. Musculoskeletal ageing and primary prevention. Best Pract Res Clin Obstet Gynaecol. 2013;27(5):673–88. https://doi.org/10.1016/j.bpobgyn.2013.06.001.

    Article  PubMed  Google Scholar 

  159. 159.

    Brown M. Skeletal muscle and bone: effect of sex steroids and aging. Am J Physiol Adv Physiol Educ. 2008;32(2):120–6. https://doi.org/10.1152/advan.90111.2008.

    Article  Google Scholar 

  160. 160.

    Syed FA, Oursler MJ, Hefferanm TE, Peterson JM, Riggs BL, Khosla S. Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women. Osteoporos Int. 2008;19(9):1323–30. https://doi.org/10.1007/s00198-008-0574-6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton. Trends Endocrinol Metab. 2012;23(11):576–81. https://doi.org/10.1016/j.japh.2018.02.005.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Clarke BL, Khosla S. Androgens and bone. Steroids. 2009;74(3):296–305. https://doi.org/10.1385/1-59259-388-7:221.

    CAS  Article  PubMed  Google Scholar 

  163. 163.

    Mistry SD, Woods GN, Sigurdsson S, Ewing SK, Hue TF, Eiriksdottir G, et al. Sex hormones are negatively associated with vertebral bone marrow fat. Bone. 2018;108(1):20–4. https://doi.org/10.1016/j.bone.2017.12.009.

    CAS  Article  PubMed  Google Scholar 

  164. 164.

    Gavin KM, Sullivan TM, Kohrt WM, Majka SM, Klemm DJ. Ovarian hormones regulate the production of adipocytes from bone marrow-derived cells. Front Endocrinol (Lausanne). 2018;9(MAY):276. https://doi.org/10.3389/fendo.2018.00276.

    Article  Google Scholar 

  165. 165.

    Wright LE, Harhash AA, Kozlow WM, Waning DL, Regan JN, She Y, et al. Aromatase inhibitor-induced bone loss increases the progression of estrogen receptor-negative breast cancer in bone and exacerbates muscle weakness in vivo. Oncotarget. 2017;8(5):8406–19. https://doi.org/10.18632/oncotarget.14139.

    Article  PubMed  Google Scholar 

  166. 166.

    Cawthorn WP, Scheller EL, Parlee SD, Pham HA, Learman BS, Redshaw CM, et al. Expansion of bone marrow adipose tissue during caloric restriction is associated with increased circulating glucocorticoids and not with hypoleptinemia. Endocrinology. 2016;157(2):508–21. https://doi.org/10.1210/en.2015-1477.

    CAS  Article  PubMed  Google Scholar 

  167. 167.

    Khosla S. Leptin-central or peripheral to the regulation of bone metabolism? Endocrinology. 2002;143(11):4161–4. https://doi.org/10.1210/en.2002-220843.

    CAS  Article  PubMed  Google Scholar 

  168. 168.

    Devlin MJ, Brooks DJ, Conlon C, Vliet M, Louis L, Rosen CJ, et al. Daily leptin blunts marrow fat but does not impact bone mass in calorie-restricted mice. J Endocrinol. 2016;229(3):295–306. https://doi.org/10.1530/JOE-15-0473.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Ackert-Bicknell CL, Shockley KR, Horton LG, Lecka-Czernik B, Churchill GA, Rosen CJ. Strain-specific effects of rosiglitazone on bone mass, body composition, and serum insulin-like growth factor-I. Endocrinology. 2009;150(3):1330–40. https://doi.org/10.1210/en.2008-0936.

    CAS  Article  PubMed  Google Scholar 

  170. 170.

    Clemmons DR. Role of IGF-binding proteins in regulating IGF responses to changes in metabolism. J Mol Endocrinol. 2018;61(1):T139–T69. https://doi.org/10.1530/JME-18-0016.

    CAS  Article  PubMed  Google Scholar 

  171. 171.

    Tian F, Wang Y, Bikle DD. IGF-1 signaling mediated cell-specific skeletal mechano-transduction. J Orthop Res. 2018;36(2):576–83. https://doi.org/10.1002/jor.23767.

    CAS  Article  PubMed  Google Scholar 

  172. 172.

    Xi G, Shen X, Rosen CJ, Clemmons DR. IRS-1 functions as a molecular scaffold to coordinate IGF-I/IGFBP-2 signaling during osteoblast differentiation. J Bone Miner Res Off J Am Soc Bone Miner Res. 2016;31(6):1300–14. https://doi.org/10.1002/jbmr.2791.

    CAS  Article  Google Scholar 

  173. 173.

    Diedrich JD, Rajagurubandara E, Herroon MK, Mahapatra G, Hüttemann M, Podgorski I. Bone marrow adipocytes promote the warburg phenotype in metastatic prostate tumors via HIF-1α activation. Oncotarget. 2016;7(40):64854–77. https://doi.org/10.18632/oncotarget.11712.

    Article  PubMed  PubMed Central  Google Scholar 

  174. 174.

    Morris EV, Edwards CM. Bone marrow adipose tissue: a new player in cancer metastasis to bone. Front Endocrinol (Lausanne). 2016;7(JUL):90. https://doi.org/10.3389/fendo.2016.00090.

    Article  Google Scholar 

  175. 175.

    Luo G, He Y, Yu X. Bone marrow adipocyte: an intimate partner with tumor cells in bone metastasis. Front Endocrinol (Lausanne). 2018;9(JUL):339. https://doi.org/10.3389/fendo.2018.00339.

    Article  Google Scholar 

  176. 176.

    Diedrich JD, Herroon MK, Rajagurubandara E, Podgorski I. The lipid side of bone marrow adipocytes: how tumor cells adapt and survive in bone. Curr Osteoporos Rep. 2018;16(4):443–57. https://doi.org/10.1007/s11914-018-0453-9.

    Article  PubMed  PubMed Central  Google Scholar 

  177. 177.

    Reagan MR. Critical assessment of in vitro and in vivo models to study marrow adipose tissue. Curr Osteoporos Rep. 2020;18(2):85–94. https://doi.org/10.1007/s11914-020-00569-4.

    Article  PubMed  Google Scholar 

Download references

Funding

This review was supported by funds from the NIH/NIAMS R01AR073264 and NIH/NCATS KL2TR002490.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarah E. Little-Letsinger.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to report.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of Topical Collection on Bone Marrow and Adipose Tissue

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Little-Letsinger, S.E., Pagnotti, G.M., McGrath, C. et al. Exercise and Diet: Uncovering Prospective Mediators of Skeletal Fragility in Bone and Marrow Adipose Tissue. Curr Osteoporos Rep 18, 774–789 (2020). https://doi.org/10.1007/s11914-020-00634-y

Download citation

Keywords

  • Mesenchymal stem cell (MSC)
  • Marrow adipose tissue (MAT)
  • Exercise
  • Bone marrow cells
  • Caloric restriction