Abstract
Purpose of Review
Here, we overview the latest findings from studies investigating the skeletal endocannabinoid (EC) system and its involvement in bone formation and resorption.
Recent Findings
The endocannabinoid system consists of endogenous ligands, receptors, and enzymes. The main cannabinoids found in the cannabis plant are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Cannabinoid receptors CB1 and CB2 are expressed in bone and regulate bone homeostasis in rodents and humans. CBD treatment was shown to enhance fracture healing in rats. Recent studies in mice indicate that strain, age, and sex differences dictate the skeletal outcome of the EC activation.
Summary
CBD treatment was shown to enhance bone healing, but needs validation in clinical trials. While research shows that EC activity protects against bone loss, studies on CB1 and CB2 agonists in bone regeneration models are lacking. Whether modulating the EC system would affect bone repair remains therefore an open question worth investigating.
This is a preview of subscription content, access via your institution.
References
Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance
Hsu WY, Lin CL, Kao CH. Association between opioid use disorder and fractures: a population-based study. Addiction. 2019;114(11):2008–15. https://doi.org/10.1111/add.14732.
Jain N, Himed K, Toth JM, Briley KC, Phillips FM, Khan SN. Opioids delay healing of spinal fusion: a rabbit posterolateral lumbar fusion model. Spine J. 2018;18(9):1659–68. https://doi.org/10.1016/j.spinee.2018.04.012.
Mechoulam R, Gaoni Y. Hashish. IV. The isolation and structure of cannabinolic cannabidiolic and cannabigerolic acids. Tetrahedron. 1965;21(5):1223–9. https://doi.org/10.1016/0040-4020(65)80064-3.
Mackie K, Stella N. Cannabinoid receptors and endocannabinoids: evidence for new players. AAPS J. 2006;8(2):E298–306. https://doi.org/10.1208/aapsj080234.
Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258(5090):1946–9.
Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50(1):83–90.
Basavarajappa BS. Critical enzymes involved in endocannabinoid metabolism. Protein Pept Lett. 2007;14(3):237–46. https://doi.org/10.2174/092986607780090829.
Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365(6441):61–5. https://doi.org/10.1038/365061a0.
Mackie K. Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol. 2005;168:299–325.
Ofek O, Karsak M, Leclerc N, Fogel M, Frenkel B, Wright K, et al. Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc Natl Acad Sci U S A. 2006;103(3):696–701.
Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, et al. Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A. 1990;87(5):1932–6.
Herkenham M. Characterization and localization of cannabinoid receptors in brain: an in vitro technique using slide-mounted tissue sections. NIDA Res Monogr. 1991;112:129–45.
Bab IA. The skeleton: stone bones and stoned heads? In: Cannabinoids as Therapeutics: Springer; 2005. p. 201–6.
Idris AI, van ‘t Hof RJ, Greig IR, Ridge SA, Baker D, Ross RA, et al. Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med. 2005;11(7):774–9. https://doi.org/10.1038/nm1255.
Di Marzo V, Goparaju SK, Wang L, Liu J, Batkai S, Jarai Z, et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature. 2001;410(6830):822–5.
Orzel JA, Rudd TG. Heterotopic bone formation: clinical, laboratory, and imaging correlation. J Nucl Med. 1985;26(2):125–32.
Wildburger R, Zarkovic N, Tonkovic G, Skoric T, Frech S, Hartleb M, et al. Post-traumatic hormonal disturbances: prolactin as a link between head injury and enhanced osteogenesis. J Endocrinol Investig. 1998;21(2):78–86.
Panikashvili D, Simeonidou C, Ben-Shabat S, Hanus L, Breuer A, Mechoulam R, et al. An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature. 2001;413(6855):527–31.
Bab I, Zimmer A, Melamed E. Cannabinoids and the skeleton: from marijuana to reversal of bone loss. Ann Med. 2009;41(8):560–7. https://doi.org/10.1080/07853890903121025.
Idris AI, Ralston SH. Role of cannabinoids in the regulation of bone remodeling. Front Endocrinol (Lausanne). 2012;3:136. https://doi.org/10.3389/fendo.2012.00136.
Karsak M, Cohen-Solal M, Freudenberg J, Ostertag A, Morieux C, Kornak U, et al. Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum Mol Genet. 2005;14(22):3389–96.
Morales P, Hurst DP, Reggio PH. Molecular targets of the phytocannabinoids: a complex picture. Prog Chem Org Nat Prod. 2017;103:103–31. https://doi.org/10.1007/978-3-319-45541-9_4.
Pertwee RG, Ross RA, Craib SJ, Thomas A. (-)-Cannabidiol antagonizes cannabinoid receptor agonists and noradrenaline in the mouse vas deferens. Eur J Pharmacol. 2002;456(1–3):99–106. https://doi.org/10.1016/s0014-2999(02)02624-9.
Thomas A, Baillie GL, Phillips AM, Razdan RK, Ross RA, Pertwee RG. Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br J Pharmacol. 2007;150(5):613–23. https://doi.org/10.1038/sj.bjp.0707133.
Burstein S. Cannabidiol (CBD) and its analogs: a review of their effects on inflammation. Bioorg Med Chem. 2015;23(7):1377–85. https://doi.org/10.1016/j.bmc.2015.01.059.
• Sophocleous A, Robertson R, Ferreira NB, McKenzie J, Fraser WD, Ralston SH. Heavy cannabis use is associated with low bone mineral density and an increased risk of fractures. Am J Med. 2017;130(2):214–21. https://doi.org/10.1016/j.amjmed.2016.07.034. In this cohort of 200 adults, heavy cannabis smoking was associated with increased fracture risk.
• Bourne D, Plinke W, Hooker ER, Nielson CM. Cannabis use and bone mineral density: NHANES 2007-2010. Arch Osteoporos. 2017;12(1):29. https://doi.org/10.1007/s11657-017-0320-9. In a population of > 4700, a multivariable linear regression showed no association between cannabis use and BMD.
Bab I, Ofek O, Tam J, Rehnelt J, Zimmer A. Endocannabinoids and the regulation of bone metabolism. J Neuroendocrinol. 2008;20(Suppl 1):69–74. https://doi.org/10.1111/j.1365-2826.2008.01675.x.
Buczynski MW, Parsons LH. Quantification of brain endocannabinoid levels: methods, interpretations and pitfalls. Br J Pharmacol. 2010;160(3):423–42. https://doi.org/10.1111/j.1476-5381.2010.00787.x.
Tam J, Trembovler V, Di Marzo V, Petrosino S, Leo G, Alexandrovich A, et al. The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. FASEB J. 2008;22(1):285–94. https://doi.org/10.1096/fj.06-7957com.
Wasserman E, Tam J, Mechoulam R, Zimmer A, Maor G, Bab I. CB1 cannabinoid receptors mediate endochondral skeletal growth attenuation by Delta9-tetrahydrocannabinol. Ann N Y Acad Sci. 2015;1335:110–9. https://doi.org/10.1111/nyas.12642.
Tam J, Alexandrovich A, Di Marzo V, Petrosino S, Trembovler V, Zimmer A, et al. CB1, but not CB2 cannabinoid receptor mediates stimulation of bone formation induced by traumatic brain injury. J Bone Miner Res. 2006;21(suppl 1):S10.
Idris AI, Sophocleous A, Landao-Bassonga E, Canals M, Milligan G, Baker D, et al. Cannabinoid receptor type 1 protects against age-related osteoporosis by regulating osteoblast and adipocyte differentiation in marrow stromal cells. Cell Metab. 2009;10(2):139–47. https://doi.org/10.1016/j.cmet.2009.07.006.
Ofek O, Attar-Namdar M, Kram V, Dvir-Ginzberg M, Mechoulam R, Zimmer A, et al. CB2 cannabinoid receptor targets mitogenic Gi protein-cyclin D1 axis in osteoblasts. J Bone Miner Res. 2011;26(2):308–16. https://doi.org/10.1002/jbmr.228.
Rossi F, Bellini G, Tortora C, Bernardo ME, Luongo L, Conforti A, et al. CB(2) and TRPV(1) receptors oppositely modulate in vitro human osteoblast activity. Pharmacol Res. 2015;99:194–201. https://doi.org/10.1016/j.phrs.2015.06.010.
Matias I, Pochard P, Orlando P, Salzet M, Pestel J, Di Marzo V. Presence and regulation of the endocannabinoid system in human dendritic cells. Eur J Biochem. 2002;269(15):3771–8. https://doi.org/10.1046/j.1432-1033.2002.03078.x.
Mechoulam R. Plant cannabinoids: a neglected pharmacological treasure trove. Br J Pharmacol. 2005;146(7):913–5. https://doi.org/10.1038/sj.bjp.0706415.
Tam J, Ofek O, Fride E, Ledent C, Gabet Y, Muller R, et al. Involvement of neuronal cannabinoid receptor CB1 in regulation of bone mass and bone remodeling. Mol Pharmacol. 2006;70(3):786–92. https://doi.org/10.1124/mol.106.026435.
Idris AI, Sophocleous A, Landao-Bassonga E, van't Hof RJ, Ralston SH. Regulation of bone mass, osteoclast function, and ovariectomy-induced bone loss by the type 2 cannabinoid receptor. Endocrinology. 2008;149(11):5619–26. https://doi.org/10.1210/en.2008-0150.
Sophocleous A, Landao-Bassonga E, Van't Hof RJ, Idris AI, Ralston SH. The type 2 cannabinoid receptor regulates bone mass and ovariectomy-induced bone loss by affecting osteoblast differentiation and bone formation. Endocrinology. 2011;152(6):2141–9. https://doi.org/10.1210/en.2010-0930.
Samir SM, Malek HA. Effect of cannabinoid receptors 1 modulation on osteoporosis in a rat model of different ages. J Physiol Pharmacol. 2014;65(5):687–94.
Eger M, Bader M, Bree D, Hadar R, Nemerovski A, Tam J, et al. Bone anabolic response in the calvaria following mild traumatic brain injury is mediated by the cannabinoid-1 receptor. Sci Rep. 2019;9(1):16196. https://doi.org/10.1038/s41598-019-51720-w.
Brown JP, Delmas PD, Malaval L, Edouard C, Chapuy MC, Meunier PJ. Serum bone Gla-protein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet. 1984;1(8386):1091–3.
Karsak M, Malkin I, Toliat MR, Kubisch C, Nurnberg P, Zimmer A, et al. The cannabinoid receptor type 2 (CNR2) gene is associated with hand bone strength phenotypes in an ethnically homogeneous family sample. Hum Genet. 2009;126(5):629–36. https://doi.org/10.1007/s00439-009-0708-8.
Sophocleous A, Idris AI, Ralston SH. Genetic background modifies the effects of type 2 cannabinoid receptor deficiency on bone mass and bone turnover. Calcif Tissue Int. 2014;94(3):259–68. https://doi.org/10.1007/s00223-013-9793-8.
Sophocleous A, Sims AH, Idris AI, Ralston SH. Modulation of strain-specific differences in gene expression by cannabinoid type 2 receptor deficiency. Calcif Tissue Int. 2014;94(4):423–32. https://doi.org/10.1007/s00223-013-9823-6.
• Sophocleous A, Marino S, Kabir D, Ralston SH, Idris AI. Combined deficiency of the Cnr1 and Cnr2 receptors protects against age-related bone loss by osteoclast inhibition. Aging Cell. 2017;16(5):1051–61. https://doi.org/10.1111/acel.12638. CB1−/− and CB2−/− separately aggravated age-related bone loss. However, double knockout (CB1−/−/CB2−/−) protected against bone loss in mice.
Smoum R, Baraghithy S, Chourasia M, Breuer A, Mussai N, Attar-Namdar M, et al. CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: an inverse relationship between binding affinity and biological potency. Proc Natl Acad Sci U S A. 2015;112(28):8774–9. https://doi.org/10.1073/pnas.1503395112.
Guida M, Ligresti A, De Filippis D, D'Amico A, Petrosino S, Cipriano M, et al. The levels of the endocannabinoid receptor CB2 and its ligand 2-arachidonoylglycerol are elevated in endometrial carcinoma. Endocrinology. 2010;151(3):921–8. https://doi.org/10.1210/en.2009-0883.
Rossi F, Bellini G, Luongo L, Mancusi S, Torella M, Tortora C, et al. The 17-beta-oestradiol inhibits osteoclast activity by increasing the cannabinoid CB2 receptor expression. Pharmacol Res. 2013;68(1):7–15. https://doi.org/10.1016/j.phrs.2012.10.017.
Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep. 2014;3:481. https://doi.org/10.1038/bonekey.2013.215.
Sterin-Borda L, Del Zar CF, Borda E. Differential CB1 and CB2 cannabinoid receptor-inotropic response of rat isolated atria: endogenous signal transduction pathways. Biochem Pharmacol. 2005;69(12):1705–13. https://doi.org/10.1016/j.bcp.2005.03.027.
van't Hof RJ, Ralston SH. Nitric oxide and bone. Immunology. 2001;103(3):255–61. https://doi.org/10.1046/j.1365-2567.2001.01261.x.
Khalid AB, Goodyear SR, Ross RA, Aspden RM. Effects of deleting cannabinoid receptor-2 on mechanical and material properties of cortical and trabecular bone. Cogent Eng. 2015;2(1):1001015. https://doi.org/10.1080/23311916.2014.1001015.
Huang QY, Li GH, Kung AW. Multiple osteoporosis susceptibility genes on chromosome 1p36 in Chinese. Bone. 2009;44(5):984–8. https://doi.org/10.1016/j.bone.2009.01.368.
Yamada Y, Ando F, Shimokata H. Association of candidate gene polymorphisms with bone mineral density in community-dwelling Japanese women and men. Int J Mol Med. 2007;19(5):791–801.
Zhang C, Ma J, Chen G, Fu D, Li L, Li M. Evaluation of common variants in CNR2 gene for bone mineral density and osteoporosis susceptibility in postmenopausal women of Han Chinese. Osteoporos Int. 2015;26(12):2803–10. https://doi.org/10.1007/s00198-015-3195-x.
Sipe JC, Arbour N, Gerber A, Beutler E. Reduced endocannabinoid immune modulation by a common cannabinoid 2 (CB2) receptor gene polymorphism: possible risk for autoimmune disorders. J Leukoc Biol. 2005;78(1):231–8. https://doi.org/10.1189/jlb.0205111.
Raphael B, Gabet Y. The skeletal endocannabinoid system: clinical and experimental insights. J Basic Clin Physiol Pharmacol. 2016;27(3):237–45. https://doi.org/10.1515/jbcpp-2015-0073.
•• Kogan NM, Melamed E, Wasserman E, Raphael B, Breuer A, Stok KS, et al. Cannabidiol, a major non-psychotrophic cannabis constituent enhances fracture healing and stimulates lysyl hydroxylase activity in osteoblasts. J Bone Miner Res. 2015. https://doi.org/10.1002/jbmr.2513. This study demonstrates that CBD enhances the mechanical properties of the newly formed bone in a rat fracture healing model. THC had no effect on fracture healing.
Li D, Lin Z, Meng Q, Wang K, Wu J, Yan H. Cannabidiol administration reduces sublesional cancellous bone loss in rats with severe spinal cord injury. Eur J Pharmacol. 2017;809:13–9. https://doi.org/10.1016/j.ejphar.2017.05.011.
•• Kamali A, Oryan A, Hosseini S, Ghanian MH, Alizadeh M, Baghaban Eslaminejad M, et al. Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects. Mater Sci Eng C Mater Biol Appl. 2019;101:64–75. https://doi.org/10.1016/j.msec.2019.03.070. CBD enhanced bone healing in a critical size defect in rats.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
B.R-M. and Y.G. declare no conflict of interest related to this study.
Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection on Bone and Joint Pain
Rights and permissions
About this article
Cite this article
Raphael-Mizrahi, B., Gabet, Y. The Cannabinoids Effect on Bone Formation and Bone Healing. Curr Osteoporos Rep 18, 433–438 (2020). https://doi.org/10.1007/s11914-020-00607-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11914-020-00607-1