Skip to main content
Log in

Are Probiotics the New Calcium and Vitamin D for Bone Health?

  • Nutrition, Exercise and Lifestyle in Osteoporosis (S Shapses and R Daly, Section Editors)
  • Published:
  • volume 18pages 273–284 (2020)
Current Osteoporosis Reports Aims and scope Submit manuscript

Cite this article

Abstract

Purpose of Review

Calcium and vitamin D supplementation is recommended for patients at high risk of fracture and/or for those receiving pharmacological osteoporosis treatments. Probiotics are micro-organisms conferring a health benefit on the host when administered in adequate amounts, likely by influencing gut microbiota (GM) composition and/or function. GM has been shown to influence various determinants of bone health.

Recent Findings

In animal models, probiotics prevent bone loss associated with estrogen deficiency, diabetes, or glucocorticoid treatments, by modulating both bone resorption by osteoclasts and bone formation by osteoblast. In humans, they interfere with 25-hydroxyvitamin D levels, and calcium intake and absorption, and slightly decrease bone loss in elderly postmenopausal women, in a quite similar magnitude as observed with calcium ± vitamin D supplements. A dietary source of probiotics is fermented dairy products which can improve calcium balance, prevent secondary hyperparathyroidism, and attenuate age-related increase of bone resorption and bone loss.

Summary

Additional studies are required to determine whether probiotics or any other interventions targeting GM and its metabolites may be adjuvant treatment to calcium and vitamin D or anti-osteoporotic drugs in the general management of patients with bone fragility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Harvey NC, Biver E, Kaufman JM, Bauer J, Branco J, Brandi ML, et al. The role of calcium supplementation in healthy musculoskeletal ageing : an expert consensus meeting of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the International Foundation for Osteoporosis (IOF). Osteoporos Int. 2017;28(2):447–62. https://doi.org/10.1007/s00198-016-3773-6.

    Article  CAS  PubMed  Google Scholar 

  2. • Kanis JA, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30(1):3–44. https://doi.org/10.1007/s00198-018-4704-5An updated summary of the management of patients with osteoporosis.

    Article  CAS  PubMed  Google Scholar 

  3. Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. Jama. 2010;303(18):1815–22. https://doi.org/10.1001/jama.2010.594.

    Article  CAS  PubMed  Google Scholar 

  4. Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ, Staehelin HB, Meyer OW, Theiler R, et al. Monthly high-dose vitamin D treatment for the prevention of functional decline: a randomized clinical trial. JAMA Intern Med. 2016;176(2):175–83. https://doi.org/10.1001/jamainternmed.2015.7148.

    Article  PubMed  Google Scholar 

  5. Khaw KT, Stewart AW, Waayer D, Lawes CMM, Toop L, Camargo CA Jr, et al. Effect of monthly high-dose vitamin D supplementation on falls and non-vertebral fractures: secondary and post-hoc outcomes from the randomised, double-blind, placebo-controlled ViDA trial. Lancet Diabetes Endocrinol. 2017;5(6):438–47. https://doi.org/10.1016/s2213-8587(17)30103-1.

    Article  CAS  PubMed  Google Scholar 

  6. •• McCabe LR, Parameswaran N. Advances in probiotic regulation of bone and mineral metabolism. Calcif Tissue Int. 2018;102(4):480–8. https://doi.org/10.1007/s00223-018-0403-7An extensive and updated review on the role of probiotics in bone metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4586–91. https://doi.org/10.1073/pnas.1000097107.

    Article  PubMed  Google Scholar 

  8. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–84. https://doi.org/10.1038/nature11319.

    Article  CAS  PubMed  Google Scholar 

  9. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010;5(5):e10667. https://doi.org/10.1371/journal.pone.0010667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. https://doi.org/10.1038/nature12820.

    Article  CAS  PubMed  Google Scholar 

  11. Beaumont M, Portune KJ, Steuer N, Lan A, Cerrudo V, Audebert M, et al. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans. Am J Clin Nutr. 2017;106(4):1005–19. https://doi.org/10.3945/ajcn.117.158816.

    Article  CAS  PubMed  Google Scholar 

  12. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbiota. Science. 2013;341(6141):1237439. https://doi.org/10.1126/science.1237439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Devkota S. MICROBIOME. Prescription drugs obscure microbiome analyses. Science. 2016;351(6272):452–3. https://doi.org/10.1126/science.aaf1353.

    Article  CAS  PubMed  Google Scholar 

  14. Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555(7698):623–8. https://doi.org/10.1038/nature25979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sjogren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, et al. The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27(6):1357–67. https://doi.org/10.1002/jbmr.1588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schwarzer M, Strigini M, Leulier F. Gut microbiota and host juvenile growth. Calcif Tissue Int. 2017;102:387–405. https://doi.org/10.1007/s00223-017-0368-y.

    Article  CAS  PubMed  Google Scholar 

  17. Yan J, Herzog JW, Tsang K, Brennan CA, Bower MA, Garrett WS, et al. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci U S A. 2016;113(47):E7554–e63. https://doi.org/10.1073/pnas.1607235113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488(7413):621–6. https://doi.org/10.1038/nature11400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cromwell GL. Why and how antibiotics are used in swine production. Anim Biotechnol. 2002;13(1):7–27. https://doi.org/10.1081/abio-120005767.

    Article  PubMed  Google Scholar 

  20. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158(4):705–21. https://doi.org/10.1016/j.cell.2014.05.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pytlik M, Folwarczna J, Janiec W. Effects of doxycycline on mechanical properties of bones in rats with ovariectomy-induced osteopenia. Calcif Tissue Int. 2004;75(3):225–30. https://doi.org/10.1007/s00223-004-0097-x.

    Article  CAS  PubMed  Google Scholar 

  22. Williams S, Wakisaka A, Zeng QQ, Barnes J, Martin G, Wechter WJ, et al. Minocycline prevents the decrease in bone mineral density and trabecular bone in ovariectomized aged rats. Bone. 1996;19(6):637–44.

    Article  CAS  PubMed  Google Scholar 

  23. McCabe LR, Irwin R, Schaefer L, Britton RA. Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol. 2013;228(8):1793–8. https://doi.org/10.1002/jcp.24340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, et al. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol. 2014;229(11):1822–30. https://doi.org/10.1002/jcp.24636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang J, Motyl KJ, Irwin R, MacDougald OA, Britton RA, McCabe LR. Loss of bone and Wnt10b expression in male type 1 diabetic mice is blocked by the probiotic Lactobacillus reuteri. Endocrinology. 2015;156(9):3169–82. https://doi.org/10.1210/en.2015-1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schepper JD, Collins F, Rios-Arce ND, Kang HJ, Schaefer L, Gardinier JD, et al. Involvement of the gut microbiota and barrier function in glucocorticoid-induced osteoporosis. J Bone Miner Res. 2019. https://doi.org/10.1002/jbmr.3947.

    Article  CAS  PubMed  Google Scholar 

  27. Chiang SS, Pan TM. Antiosteoporotic effects of Lactobacillus -fermented soy skim milk on bone mineral density and the microstructure of femoral bone in ovariectomized mice. J Agric Food Chem. 2011;59(14):7734–42. https://doi.org/10.1021/jf2013716.

    Article  CAS  PubMed  Google Scholar 

  28. Kimoto-Nira H, Suzuki C, Kobayashi M, Sasaki K, Kurisaki J, Mizumachi K. Anti-ageing effect of a lactococcal strain: analysis using senescence-accelerated mice. Br J Nutr. 2007;98(6):1178–86. https://doi.org/10.1017/s0007114507787469.

    Article  CAS  PubMed  Google Scholar 

  29. Li JY, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 2016;126(6):2049–63. https://doi.org/10.1172/jci86062.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Narva M, Rissanen J, Halleen J, Vapaatalo H, Vaananen K, Korpela R. Effects of bioactive peptide, valyl-prolyl-proline (VPP), and lactobacillus helveticus fermented milk containing VPP on bone loss in ovariectomized rats. Ann Nutr Metab. 2007;51(1):65–74. https://doi.org/10.1159/000100823.

    Article  CAS  PubMed  Google Scholar 

  31. Ohlsson C, Engdahl C, Fak F, Andersson A, Windahl SH, Farman HH, et al. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One. 2014;9(3):e92368. https://doi.org/10.1371/journal.pone.0092368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parvaneh K, Ebrahimi M, Sabran MR, Karimi G, Hwei AN, Abdul-Majeed S, et al. Probiotics (Bifidobacterium longum) increase bone mass density and Upregulate Sparc and Bmp-2 genes in rats with bone loss resulting from ovariectomy. Biomed Res Int. 2015;2015:897639. https://doi.org/10.1155/2015/897639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rodrigues FC, Castro AS, Rodrigues VC, Fernandes SA, Fontes EA, de Oliveira TT, et al. Yacon flour and Bifidobacterium longum modulate bone health in rats. J Med Food. 2012;15(7):664–70. https://doi.org/10.1089/jmf.2011.0296.

    Article  CAS  PubMed  Google Scholar 

  34. Amdekar S, Singh V, Singh R, Sharma P, Keshav P, Kumar A. Lactobacillus casei reduces the inflammatory joint damage associated with collagen-induced arthritis (CIA) by reducing the pro-inflammatory cytokines: Lactobacillus casei: COX-2 inhibitor. J Clin Immunol. 2011;31(2):147–54. https://doi.org/10.1007/s10875-010-9457-7.

    Article  PubMed  Google Scholar 

  35. Foureaux Rde C, Messora MR, de Oliveira LF, Napimoga MH, Pereira AN, Ferreira MS, et al. Effects of probiotic therapy on metabolic and inflammatory parameters of rats with ligature-induced periodontitis associated with restraint stress. J Periodontol. 2014;85(7):975–83. https://doi.org/10.1902/jop.2013.130356.

    Article  CAS  PubMed  Google Scholar 

  36. Garcia VG, Knoll LR, Longo M, Novaes VC, Assem NZ, Ervolino E, et al. Effect of the probiotic Saccharomyces cerevisiae on ligature-induced periodontitis in rats. J Periodontal Res. 2016;51(1):26–37. https://doi.org/10.1111/jre.12274.

    Article  CAS  PubMed  Google Scholar 

  37. Jones ML, Martoni CJ, Prakash S. Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: a post hoc analysis of a randomized controlled trial. J Clin Endocrinol Metab. 2013;98(7):2944–51. https://doi.org/10.1210/jc.2012-4262.

    Article  CAS  PubMed  Google Scholar 

  38. Jamilian M, Amirani E, Asemi Z. The effects of vitamin D and probiotic co-supplementation on glucose homeostasis, inflammation, oxidative stress and pregnancy outcomes in gestational diabetes: a randomized, double-blind, placebo-controlled trial. Clin Nutr. 2019;38(5):2098–105. https://doi.org/10.1016/j.clnu.2018.10.028.

    Article  CAS  PubMed  Google Scholar 

  39. Karbaschian Z, Mokhtari Z, Pazouki A, Kabir A, Hedayati M, Moghadam SS, et al. Probiotic supplementation in morbid obese patients undergoing one anastomosis gastric bypass-mini gastric bypass (OAGB-MGB) surgery: a randomized, double-blind, placebo-controlled. Clin Trial Obes Surg. 2018;28(9):2874–85. https://doi.org/10.1007/s11695-018-3280-2.

    Article  Google Scholar 

  40. Mokhtari Z, Karbaschian Z, Pazouki A, Kabir A, Hedayati M, Mirmiran P, et al. The effects of probiotic supplements on blood markers of endotoxin and lipid peroxidation in patients undergoing gastric bypass surgery; a randomized, double-blind, placebo-controlled, clinical trial with 13 months follow-up. Obes Surg. 2019;29(4):1248–58. https://doi.org/10.1007/s11695-018-03667-6.

    Article  PubMed  Google Scholar 

  41. Agustina R, Bovee-Oudenhoven IM, Lukito W, Fahmida U, van de Rest O, Zimmermann MB, et al. Probiotics Lactobacillus reuteri DSM 17938 and Lactobacillus casei CRL 431 modestly increase growth, but not iron and zinc status, among Indonesian children aged 1-6 years. J Nutr. 2013;143(7):1184–93. https://doi.org/10.3945/jn.112.166397.

    Article  CAS  PubMed  Google Scholar 

  42. Jafarnejad S, Djafarian K, Fazeli MR, Yekaninejad MS, Rostamian A, Keshavarz SA. Effects of a multispecies probiotic supplement on bone health in osteopenic postmenopausal women: a randomized, double-blind. Controlled Trial J Am Coll Nutr. 2017;36(7):497–506. https://doi.org/10.1080/07315724.2017.1318724.

    Article  CAS  PubMed  Google Scholar 

  43. Lambert MNT, Thybo CB, Lykkeboe S, Rasmussen LM, Frette X, Christensen LP, et al. Combined bioavailable isoflavones and probiotics improve bone status and estrogen metabolism in postmenopausal osteopenic women: a randomized controlled trial. Am J Clin Nutr. 2017;106(3):909–20. https://doi.org/10.3945/ajcn.117.153353.

    Article  CAS  PubMed  Google Scholar 

  44. Nilsson AG, Sundh D, Backhed F, Lorentzon M. Lactobacillus reuteri reduces bone loss in older women with low bone mineral density: a randomized, placebo-controlled, double-blind, clinical trial. J Intern Med. 2018. https://doi.org/10.1111/joim.12805.

    Article  CAS  PubMed  Google Scholar 

  45. Takimoto T, Hatanaka M, Hoshino T, Takara T, Tanaka K, Shimizu A, et al. s Effect of Bacillus subtilis C-3102 on bone mineral density in healthy postmenopausal Japanese women: a randomized, placebo-controlled, double-blind clinical trial. Biosci Microbiota Food Health. 2018;37(4):87–96. https://doi.org/10.12938/bmfh.18-006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jansson P-A, Curiac D, Lazou Ahrén I, Hansson F, Martinsson Niskanen T, Sjögren K, et al. Probiotic treatment using a mix of three Lactobacillus strains for lumbar spine bone loss in postmenopausal women: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet Rheumatol. 2019;1(3):e154–e62. https://doi.org/10.1016/S2665-9913(19)30068-2.

    Article  Google Scholar 

  47. Ohlsson C, Curiac D, Sjogren K, Jansson PA. Probiotic treatment using a mix of three Lactobacillus strains protects againts lumbar spine bone loss in healthy early postmenopausal women. Journal of Bone and Mienral Research. 2018;33:S24.

    Google Scholar 

  48. Hauselmann HJ, Rizzoli R. A comprehensive review of treatments for postmenopausal osteoporosis. Osteoporos Int. 2003;14(1):2–12. https://doi.org/10.1007/s00198-002-1301-3.

    Article  CAS  PubMed  Google Scholar 

  49. Lei M, Hua LM, Wang DW. The effect of probiotic treatment on elderly patients with distal radius fracture: a prospective double-blind, placebo-controlled randomised clinical trial. Benef Microbes. 2016;7(5):631–7. https://doi.org/10.3920/bm2016.0067.

    Article  CAS  PubMed  Google Scholar 

  50. McNulty NP, Yatsunenko T, Hsiao A, Faith JJ, Muegge BD, Goodman AL, et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med. 2011;3(106):106ra. https://doi.org/10.1126/scitranslmed.3002701.

    Article  CAS  Google Scholar 

  51. • Rizzoli R, Biver E. Effects of fermented milk products on bone. Calcif Tissue Int. 2018;102(4):489–500. https://doi.org/10.1007/s00223-017-0317-9Fermented dairy products are providing probiotics, protein, mineral and various micronutrients, and their effects on bone represent an example of the role of food matrix.

    Article  CAS  PubMed  Google Scholar 

  52. Alvaro E, Andrieux C, Rochet V, Rigottier-Gois L, Lepercq P, Sutren M, et al. Composition and metabolism of the intestinal microbiota in consumers and non-consumers of yogurt. Br J Nutr. 2007;97(1):126–33. https://doi.org/10.1017/s0007114507243065.

    Article  CAS  PubMed  Google Scholar 

  53. Laird E, Molloy AM, McNulty H, Ward M, McCarroll K, Hoey L, et al. Greater yogurt consumption is associated with increased bone mineral density and physical function in older adults. Osteoporos Int. 2017;28(8):2409–19. https://doi.org/10.1007/s00198-017-4049-5.

    Article  CAS  PubMed  Google Scholar 

  54. Biver E, Durosier-Izart C, Merminod F, Chevalley T, van Rietbergen B, Ferrari SL, et al. Fermented dairy products consumption is associated with attenuated cortical bone loss independently of total calcium, protein, and energy intakes in healthy postmenopausal women. Osteoporos Int. 2018;29(8):1771–82. https://doi.org/10.1007/s00198-018-4535-4.

    Article  CAS  PubMed  Google Scholar 

  55. Sahni S, Tucker KL, Kiel DP, Quach L, Casey VA, Hannan MT. Milk and yogurt consumption are linked with higher bone mineral density but not with hip fracture: the Framingham Offspring Study. Arch Osteoporos. 2013;8:119. https://doi.org/10.1007/s11657-013-0119-2.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Michaëlsson K, Wolk A, Langenskiöld S, Basu S, Warensjö Lemming E, Melhus H, et al. Milk intake and risk of mortality and fractures in women and men: cohort studies. BMJ. 2014;349:g6015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tilg H, Zmora N, Adolph TE, Elinav E. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol. 2020;20(1):40–54. https://doi.org/10.1038/s41577-019-0198-4.

    Article  CAS  PubMed  Google Scholar 

  58. Collins FL, Schepper JD, Rios-Arce ND, Steury MD, Kang HJ, Mallin H, et al. Immunology of gut-bone signaling. Adv Exp Med Biol. 2017;1033:59–94. https://doi.org/10.1007/978-3-319-66653-2_5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Raehtz S, Hargis BM, Kuttappan VA, Pamukcu R, Bielke LR, McCabe LR. High molecular weight polymer promotes bone health and prevents bone loss under Salmonella challenge in broiler chickens. Front Physiol. 2018;9:384. https://doi.org/10.3389/fphys.2018.00384.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Whisner CM, Castillo LF. Prebiotics, bone and mineral metabolism. Calcif Tissue Int. 2018;102(4):443–79. https://doi.org/10.1007/s00223-017-0339-3.

    Article  CAS  PubMed  Google Scholar 

  61. Bindels LB, Delzenne NM, Cani PD, Walter J. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol. 2015;12(5):303–10. https://doi.org/10.1038/nrgastro.2015.47.

    Article  CAS  PubMed  Google Scholar 

  62. Weaver CM. Diet, gut microbiome, and bone health. Curr Osteoporos Rep. 2015;13(2):125–30. https://doi.org/10.1007/s11914-015-0257-0.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Druart C, Alligier M, Salazar N, Neyrinck AM, Delzenne NM. Modulation of the gut microbiota by nutrients with prebiotic and probiotic properties. Adv Nutr. 2014, 5(5):624s–33s. https://doi.org/10.3945/an.114.005835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mitsou EK, Kakali A, Antonopoulou S, Mountzouris KC, Yannakoulia M, Panagiotakos DB, et al. Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. Br J Nutr. 2017;117(12):1645–55. https://doi.org/10.1017/s0007114517001593.

    Article  CAS  PubMed  Google Scholar 

  65. De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812–21. https://doi.org/10.1136/gutjnl-2015-309957.

    Article  CAS  PubMed  Google Scholar 

  66. Tosti V, Bertozzi B, Fontana L. Health benefits of the Mediterranean diet: metabolic and molecular mechanisms. J Gerontol A Biol Sci Med Sci. 2018;73(3):318–26. https://doi.org/10.1093/gerona/glx227.

    Article  CAS  PubMed  Google Scholar 

  67. Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, et al. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr. 2005;82(2):471–6. https://doi.org/10.1093/ajcn.82.2.471.

    Article  CAS  PubMed  Google Scholar 

  68. Abrams SA, Griffin IJ, Hawthorne KM. Young adolescents who respond to an inulin-type fructan substantially increase total absorbed calcium and daily calcium accretion to the skeleton. J Nutr. 2007;137(11 Suppl):2524s–6s. https://doi.org/10.1093/jn/137.11.2524S.

    Article  CAS  PubMed  Google Scholar 

  69. Kim Y-Y, Jang K-H, Lee E-Y, Cho Y-H, Kang S-A, Ha W-K, et al. The effect of chicory fructan fiber on calcium absorption and bone metabolism in Korean postmenopausal women. Nutritional sciences. 2004;7(3):151–7.

    CAS  Google Scholar 

  70. Slevin MM, Allsopp PJ, Magee PJ, Bonham MP, Naughton VR, Strain JJ, et al. Supplementation with calcium and short-chain fructo-oligosaccharides affects markers of bone turnover but not bone mineral density in postmenopausal women. J Nutr. 2014;144(3):297–304. https://doi.org/10.3945/jn.113.188144.

    Article  CAS  PubMed  Google Scholar 

  71. Tu MY, Chen HL, Tung YT, Kao CC, Hu FC, Chen CM. Short-term effects of kefir-fermented milk consumption on bone mineral density and bone metabolism in a randomized clinical trial of osteoporotic patients. PLoS One. 2015;10(12):e0144231. https://doi.org/10.1371/journal.pone.0144231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Garcia-Vieyra MI, Del Real A, Lopez MG. Agave fructans: their effect on mineral absorption and bone mineral content. J Med Food. 2014;17(11):1247–55. https://doi.org/10.1089/jmf.2013.0137.

    Article  CAS  PubMed  Google Scholar 

  73. Weaver CM, Martin BR, Nakatsu CH, Armstrong AP, Clavijo A, McCabe LD, et al. Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation. J Agric Food Chem. 2011;59(12):6501–10. https://doi.org/10.1021/jf2009777.

    Article  CAS  PubMed  Google Scholar 

  74. Zaiss MM, Jones RM, Schett G, Pacifici R. The gut-bone axis: how bacterial metabolites bridge the distance. J Clin Invest. 2019;129(8):3018–28. https://doi.org/10.1172/jci128521.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13(5):517–26. https://doi.org/10.1016/j.cmet.2011.02.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lucas S, Omata Y, Hofmann J, Bottcher M, Iljazovic A, Sarter K, et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun. 2018;9(1):55. https://doi.org/10.1038/s41467-017-02490-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee HW, Suh JH, Kim AY, Lee YS, Park SY, Kim JB. Histone deacetylase 1-mediated histone modification regulates osteoblast differentiation. Mol Endocrinol. 2006;20(10):2432–43. https://doi.org/10.1210/me.2006-0061.

    Article  CAS  PubMed  Google Scholar 

  78. Katono T, Kawato T, Tanabe N, Suzuki N, Iida T, Morozumi A, et al. Sodium butyrate stimulates mineralized nodule formation and osteoprotegerin expression by human osteoblasts. Arch Oral Biol. 2008;53(10):903–9. https://doi.org/10.1016/j.archoralbio.2008.02.016.

    Article  CAS  PubMed  Google Scholar 

  79. Terashima A, Takayanagi H. Overview of osteoimmunology. Calcif Tissue Int. 2018;102(5):503–11. https://doi.org/10.1007/s00223-018-0417-1.

    Article  CAS  PubMed  Google Scholar 

  80. Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004;4(6):478–85. https://doi.org/10.1038/nri1373.

    Article  CAS  PubMed  Google Scholar 

  81. Collins FL, Rios-Arce ND, Schepper JD, Jones AD, Schaefer L, Britton RA, et al. Beneficial effects of Lactobacillus reuteri 6475 on bone density in male mice is dependent on lymphocytes. Sci Rep. 2019;9(1):14708. https://doi.org/10.1038/s41598-019-51293-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li JY, Tawfeek H, Bedi B, Yang X, Adams J, Gao KY, et al. Ovariectomy disregulates osteoblast and osteoclast formation through the T-cell receptor CD40 ligand. Proc Natl Acad Sci U S A. 2011;108(2):768–73. https://doi.org/10.1073/pnas.1013492108.

    Article  PubMed  Google Scholar 

  83. Ammann P, Rizzoli R, Bonjour JP, Bourrin S, Meyer JM, Vassalli P, et al. Transgenic mice expressing soluble tumor necrosis factor-receptor are protected against bone loss caused by estrogen deficiency. J Clin Invest. 1997;99(7):1699–703. https://doi.org/10.1172/jci119333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kimble RB, Bain S, Pacifici R. The functional block of TNF but not of IL-6 prevents bone loss in ovariectomized mice. J Bone Miner Res. 1997;12(6):935–41. https://doi.org/10.1359/jbmr.1997.12.6.935.

    Article  CAS  PubMed  Google Scholar 

  85. Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and 'Garb-aging'. Trends Endocrinol Metab. 2017;28(3):199–212. https://doi.org/10.1016/j.tem.2016.09.005.

    Article  CAS  PubMed  Google Scholar 

  86. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576–90. https://doi.org/10.1038/s41574-018-0059-4.

    Article  CAS  PubMed  Google Scholar 

  87. Cox-York KA, Sheflin AM, Foster MT, Gentile CL, Kahl A, Koch LG, et al. Ovariectomy results in differential shifts in gut microbiota in low versus high aerobic capacity rats. Physiol Rep. 2015, 3(8). https://doi.org/10.14814/phy2.12488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kong J, Zhang Z, Musch MW, Ning G, Sun J, Hart J, et al. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol Gastrointest Liver Physiol. 2008;294(1):G208–16. https://doi.org/10.1152/ajpgi.00398.2007.

    Article  CAS  PubMed  Google Scholar 

  89. Jin D, Wu S, Zhang YG, Lu R, Xia Y, Dong H, et al. Lack of vitamin D receptor causes dysbiosis and changes the functions of the murine intestinal microbiome. Clin Ther. 2015, 37(5):996–1009.e7. https://doi.org/10.1016/j.clinthera.2015.04.004.

    Article  CAS  PubMed  Google Scholar 

  90. Luthold RV, Fernandes GR, Franco-de-Moraes AC, Folchetti LG, Ferreira SR. Gut microbiota interactions with the immunomodulatory role of vitamin D in normal individuals. Metabolism. 2017;69:76–86. https://doi.org/10.1016/j.metabol.2017.01.007.

    Article  CAS  PubMed  Google Scholar 

  91. Charoenngam N, Shirvani A, Kalajian TA, Song A, Holick MF. The effect of various doses of oral vitamin D3 supplementation on gut microbiota in healthy adults: a randomized, double-blinded, dose-response study. Anticancer Res. 2020;40(1):551–6. https://doi.org/10.21873/anticanres.13984.

    Article  PubMed  CAS  Google Scholar 

  92. Kanhere M, He J, Chassaing B, Ziegler TR, Alvarez JA, Ivie EA, et al. Bolus weekly vitamin D3 supplementation impacts gut and airway microbiota in adults with cystic fibrosis: a double-blind, randomized, placebo-controlled clinical trial. J Clin Endocrinol Metab. 2018;103(2):564–74. https://doi.org/10.1210/jc.2017-01983.

    Article  PubMed  Google Scholar 

  93. Bashir M, Prietl B, Tauschmann M, Mautner SI, Kump PK, Treiber G, et al. Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract. Eur J Nutr. 2016;55(4):1479–89. https://doi.org/10.1007/s00394-015-0966-2.

    Article  CAS  PubMed  Google Scholar 

  94. Wu S, Yoon S, Zhang YG, Lu R, Xia Y, Wan J, et al. Vitamin D receptor pathway is required for probiotic protection in colitis. Am J Physiol Gastrointest Liver Physiol. 2015;309(5):G341–9. https://doi.org/10.1152/ajpgi.00105.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1–24. https://doi.org/10.1007/s00394-017-1445-8.

    Article  CAS  PubMed  Google Scholar 

  96. Ammann P, Rizzoli R, Fleisch H. Influence of the disaccharide lactitol on intestinal absorption and body retention of calcium in rats. J Nutr. 1988;118(6):793–5.

    Article  CAS  PubMed  Google Scholar 

  97. Mineo H, Amano M, Minaminida K, Chiji H, Shigematsu N, Tomita F, et al. Two-week feeding of difructose anhydride III enhances calcium absorptive activity with epithelial cell proliferation in isolated rat cecal mucosa. Nutrition. 2006;22(3):312–20. https://doi.org/10.1016/j.nut.2005.06.015.

    Article  CAS  PubMed  Google Scholar 

  98. Rizzoli RB, Bonjour JP. In: Seibel MJ, Robins SP, Bilezikian JP, editors. Physiology of calcium and phosphate homeostasis. Dynamics of bone and cartilage metabolism: principles and clinical applications. San Diego: Academic Press; 2006. p. 345–60.

    Chapter  Google Scholar 

  99. Zhang F, Ye J, Zhu X, Wang L, Gao P, Shu G, et al. Anti-obesity effects of dietary calcium: the evidence and possible mechanisms. Int J Mol Sci. 2019;20(12). https://doi.org/10.3390/ijms20123072.

    Article  CAS  PubMed Central  Google Scholar 

  100. Chaplin A, Parra P, Laraichi S, Serra F, Palou A. Calcium supplementation modulates gut microbiota in a prebiotic manner in dietary obese mice. Mol Nutr Food Res. 2016;60(2):468–80. https://doi.org/10.1002/mnfr.201500480.

    Article  CAS  PubMed  Google Scholar 

  101. Yu M, Malik Tyagi A, Li JY, Adams J, Denning TL, Weitzmann MN, et al. PTH induces bone loss via microbial-dependent expansion of intestinal TNF(+) T cells and Th17 cells. Nat Commun. 2020;11(1):468. https://doi.org/10.1038/s41467-019-14148-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li JY, Yu M, Pal S, Tyagi AM, Dar H, Adams J, et al. Microbiota dependent production of butyrate is required for the bone anabolic activity of PTH. J Clin Invest. 2020. https://doi.org/10.1172/jci133473.

    Article  CAS  PubMed  Google Scholar 

  103. Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA, Schutz G, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell. 2008;135(5):825–37. https://doi.org/10.1016/j.cell.2008.09.059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Rizzoli.

Ethics declarations

Conflict of Interest

Dr. Rizzoli reports personal fees from Abiogen, Amgen, EuropeanMilkForum, Danone, Echolight, Mylan, Radius Health, Nestlé, Rejuvenate, Sandoz, and Theramex, outside the submitted work.

Dr. Biver reports fees from Nestle paid to the institution.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nutrition, Exercise and Lifestyle in Osteoporosis

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizzoli, R., Biver, E. Are Probiotics the New Calcium and Vitamin D for Bone Health?. Curr Osteoporos Rep 18, 273–284 (2020). https://doi.org/10.1007/s11914-020-00591-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-020-00591-6

Keywords

Navigation