Skip to main content

Advertisement

Log in

Bone Disease in Patients with Ehlers–Danlos Syndromes

  • Epidemiology and Pathophysiology (D Shoback and G El-Hajj Fuleihan, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To summarize the bone findings, mainly bone mass and fracture risk, in Ehlers–Danlos syndromes (EDS).

Recent Findings

Low bone mineral density and fractures seem to be frequent in some of the rare EDS types (kyphoscoliotic, arthrochalasia, spondylodysplastic, and classic-like EDS). For the more prevalent hypermobile and classic EDS types, some case–control studies found mildly decreased bone mineral density, but it was not clear that fracture rates were increased. Nevertheless, abnormalities in vertebral shape seem to be common in classical and hypermobile EDS types. In a cohort of individuals with EDS followed since birth, no fractures were observed during infancy.

Summary

Bone mineral density varies widely among the different types of EDS, and vertebral abnormalities seem to be common in classical and hypermobile EDS. It might be justified to perform spine radiographs and bone mineral density assessments in newly diagnosed EDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Malfait F, Francomano C, Byers P, Belmont J, Berglund B, Black J, et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet. 2017;175:8–26. The most recent international classification of Ehlers-Danlos syndromes.

  2. Ghali N, Sobey G, Burrows N. Ehlers-Danlos syndromes. BMJ. 2019;366:l4966.

    PubMed  Google Scholar 

  3. Tinkle B, Castori M, Berglund B, Cohen H, Grahame R, Kazkaz H, et al. Hypermobile Ehlers-Danlos syndrome (a.k.a. Ehlers-Danlos syndrome type III and Ehlers-Danlos syndrome hypermobility type): clinical description and natural history. Am J Med Genet C Semin Med Genet. 2017;175:48–69.

    PubMed  Google Scholar 

  4. Clinch J, Deere K, Sayers A, Palmer S, Riddoch C, Tobias JH, et al. Epidemiology of generalized joint laxity (hypermobility) in fourteen-year-old children from the UK: a population-based evaluation. Arthritis Rheum. 2011;63:2819–27.

    PubMed  PubMed Central  Google Scholar 

  5. Morris SL, O'Sullivan PB, Murray KJ, Bear N, Hands B, Smith AJ. Hypermobility and musculoskeletal pain in adolescents. J Pediatr. 2017;181:213–21 e1.

    PubMed  Google Scholar 

  6. Bowen JM, Sobey GJ, Burrows NP, Colombi M, Lavallee ME, Malfait F, et al. Ehlers-Danlos syndrome, classical type. Am J Med Genet C Semin Med Genet. 2017;175:27–39.

    PubMed  Google Scholar 

  7. • Brady AF, Demirdas S, Fournel-Gigleux S, Ghali N, Giunta C, Kapferer-Seebacher I, et al. The Ehlers-Danlos syndromes, rare types. Am J Med Genet C Semin Med Genet. 2017;175:70–115. This is an extensive review of the rare types of Ehlers-Danslos syndrome based on the 2017 international classification. It estimates the prevalence of each clinical feature, including bone findings, based on the all the reported cases in the litrature.

  8. Byers PH, Belmont J, Black J, De Backer J, Frank M, Jeunemaitre X, et al. Diagnosis, natural history, and management in vascular Ehlers-Danlos syndrome. Am J Med Genet C Semin Med Genet. 2017;175:40–7.

    PubMed  Google Scholar 

  9. Fukada T, Civic N, Furuichi T, Shimoda S, Mishima K, Higashiyama H, et al. The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS One. 2008;3:e3642.

    PubMed  PubMed Central  Google Scholar 

  10. Galli GG, Honnens de Lichtenberg K, Carrara M, Hans W, Wuelling M, Mentz B, et al. Prdm5 regulates collagen gene transcription by association with RNA polymerase II in developing bone. PLoS Genet. 2012;8:e1002711.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nielsen RH, Couppe C, Jensen JK, Olsen MR, Heinemeier KM, Malfait F, et al. Low tendon stiffness and abnormal ultrastructure distinguish classic Ehlers-Danlos syndrome from benign joint hypermobility syndrome in patients. FASEB J. 2014;28:4668–76.

    CAS  PubMed  Google Scholar 

  12. Rombaut L, Malfait F, De Wandele I, Mahieu N, Thijs Y, Segers P, et al. Muscle-tendon tissue properties in the hypermobility type of Ehlers-Danlos syndrome. Arthritis Care Res (Hoboken). 2012;64:766–72.

    Google Scholar 

  13. Nygaard RH, Jensen JK, Voermans NC, Heinemeier KM, Schjerling P, Holm L, et al. Skeletal muscle morphology, protein synthesis, and gene expression in Ehlers-Danlos syndrome. J Appl Physiol (1985). 2017;123:482–8.

    CAS  Google Scholar 

  14. Scheper MC, Nicholson LL, Adams RD, Tofts L, Pacey V. The natural history of children with joint hypermobility syndrome and Ehlers-Danlos hypermobility type: a longitudinal cohort study. Rheumatology (Oxford). 2017;56:2073–83.

    Google Scholar 

  15. Simmonds JV, Herbland A, Hakim A, Ninis N, Lever W, Aziz Q, et al. Exercise beliefs and behaviours of individuals with joint hypermobility syndrome/Ehlers-Danlos syndrome—hypermobility type. Disabil Rehabil. 2019;41:445–55.

    PubMed  Google Scholar 

  16. Robbins SM, Cossette-Levasseur M, Kikuchi K, Sarjeant J, Shiu YG, Azar C, et al. Neuromuscular activation differences during gait in patients with Ehlers-Danlos syndrome and healthy adults. Arthritis Care Res (Hoboken). 2019. https://doi.org/10.1002/acr.24067.

  17. Ma D, Morley R, Jones G. Risk-taking, coordination and upper limb fractures in children: a population based case-control study. Osteoporos Int. 2004;15:633–8.

    PubMed  Google Scholar 

  18. Lusardi MM, Fritz S, Middleton A, Allison L, Wingood M, Phillips E, et al. Determining risk of falls in community dwelling older adults: a systematic review and meta-analysis using posttest probability. J Geriatr Phys Ther. 2017;40:1–36.

    PubMed  Google Scholar 

  19. Dolan AL, Hart DJ, Doyle DV, Grahame R, Spector TD. The relationship of joint hypermobility, bone mineral density, and osteoarthritis in the general population: the Chingford study. J Rheumatol. 2003;30:799–803.

    PubMed  Google Scholar 

  20. Gulbahar S, Sahin E, Baydar M, Bircan C, Kizil R, Manisali M, et al. Hypermobility syndrome increases the risk for low bone mass. Clin Rheumatol. 2006;25:511–4.

    PubMed  Google Scholar 

  21. McVeigh JA, Howie EK, Zhu K, Walsh JP, Straker L. Organized sport participation from childhood to adolescence is associated with bone mass in young adults from the Raine study. J Bone Miner Res. 2019;34:67–74.

    CAS  PubMed  Google Scholar 

  22. Ireland A, Maden-Wilkinson T, McPhee J, Cooke K, Narici M, Degens H, et al. Upper limb muscle-bone asymmetries and bone adaptation in elite youth tennis players. Med Sci Sports Exerc. 2013;45:1749–58.

    PubMed  Google Scholar 

  23. Deodhar AA, Woolf AD. Ehlers Danlos syndrome and osteoporosis. Ann Rheum Dis. 1994;53:841–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Coelho PC, Santos RA, Gomes JA. Osteoporosis and Ehlers-Danlos syndrome. Ann Rheum Dis. 1994;53:212–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Theodorou SJ, Theodorou DJ, Kakitsubata Y, Adams JE. Low bone mass in Ehlers-Danlos syndrome. Intern Med. 2012;51:3225–6.

    PubMed  Google Scholar 

  26. Formenti AM, Doga M, Frara S, Ritelli M, Colombi M, Banfi G, et al. Skeletal fragility: an emerging complication of Ehlers-Danlos syndrome. Endocrine. 2019;63:225–30.

    CAS  PubMed  Google Scholar 

  27. Dolan AL, Arden NK, Grahame R, Spector TD. Assessment of bone in Ehlers Danlos syndrome by ultrasound and densitometry. Ann Rheum Dis. 1998;57:630–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Carbone L, Tylavsky FA, Bush AJ, Koo W, Orwoll E, Cheng S. Bone density in Ehlers-Danlos syndrome. Osteoporos Int. 2000;11:388–92.

    CAS  PubMed  Google Scholar 

  29. Banica T, Coussens M, Verroken C, Calders P, De Wandele I, Malfait F, et al. Higher fracture prevalence and smaller bone size in patients with hEDS/HSD-a prospective cohort study. Osteoporos Int. 2019. https://doi.org/10.1007/s00198-019-05269-z.

  30. Beighton P, Horan F. Orthopaedic aspects of the Ehlers-Danlos syndrome. J Bone Joint Surg Br. 1969;51:444–53.

    CAS  PubMed  Google Scholar 

  31. • Mazziotti G, Dordoni C, Doga M, Galderisi F, Venturini M, Calzavara-Pinton P, et al. High prevalence of radiological vertebral fractures in adult patients with Ehlers-Danlos syndrome. Bone. 2016;84:88–92. This is a cross-sectional study that evaluates the prevalence of vertebral shape abnormalities and bone mineral density in 52 patients with different types of Ehlers-Danlos syndrome. Abnormal vertebral morphometry was more prevalent in EDS.

  32. • Eller-Vainicher C, Bassotti A, Imeraj A, Cairoli E, Ulivieri FM, Cortini F, et al. Bone involvement in adult patients affected with Ehlers-Danlos syndrome. Osteoporos Int. 2016;27:2525–31. This is a retrospective study of 50 patients with classic and hypermobile EDS. The EDS group had lower bone mineral density and a higher prevalence of abnormal vertebral morphometry results than an age-matched control group.

  33. Yen JL, Lin SP, Chen MR, Niu DM. Clinical features of Ehlers-Danlos syndrome. J Formos Med Assoc. 2006;105:475–80.

    PubMed  Google Scholar 

  34. Bishop N, Arundel P, Clark E, Dimitri P, Farr J, Jones G, et al. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 pediatric official positions. J Clin Densitom. 2014;17:275–80.

    PubMed  Google Scholar 

  35. Stern CM, Pepin MJ, Stoler JM, Kramer DE, Spencer SA, Stein CJ. Musculoskeletal conditions in a pediatric population with Ehlers-Danlos syndrome. J Pediatr. 2017;181:261–6.

    PubMed  Google Scholar 

  36. Moon RJ, Harvey NC, Curtis EM, de Vries F, van Staa T, Cooper C. Ethnic and geographic variations in the epidemiology of childhood fractures in the United Kingdom. Bone. 2016;85:9–14.

    PubMed  PubMed Central  Google Scholar 

  37. Holick MF, Hossein-Nezhad A, Tabatabaei F. Multiple fractures in infants who have Ehlers-Danlos/hypermobility syndrome and or vitamin D deficiency: a case series of 72 infants whose parents were accused of child abuse and neglect. Dermatoendocrinol. 2017;9:e1279768.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. • Rolfes MC, Deyle DR, King KS, Hand JL, Graff AH, Derauf C. Fracture incidence in Ehlers-Danlos syndrome—a population-based case-control study. Child Abuse Negl. 2019;91:95–101. This is a well-conducted population-based case-control study of fracture incidence in Ehlers Danlos syndrome in infancy and childhood. It finds no evidence that infants with commom types of EDS are predisposed to fractures.

  39. Van Damme T, Pang X, Guillemyn B, Gulberti S, Syx D, De Rycke R, et al. Biallelic B3GALT6 mutations cause spondylodysplastic Ehlers-Danlos syndrome. Hum Mol Genet. 2018;27:3475–87.

    PubMed  Google Scholar 

  40. Salter CG, Davies JH, Moon RJ, Fairhurst J, Bunyan D, Foulds N. Further defining the phenotypic spectrum of B4GALT7 mutations. Am J Med Genet A. 2016;170:1556–63.

    CAS  PubMed  Google Scholar 

  41. Ritelli M, Dordoni C, Cinquina V, Venturini M, Calzavara-Pinton P, Colombi M. Expanding the clinical and mutational spectrum of B4GALT7-spondylodysplastic Ehlers-Danlos syndrome. Orphanet J Rare Dis. 2017;12:153.

    PubMed  PubMed Central  Google Scholar 

  42. Sandler-Wilson C, Wambach JA, Marshall BA, Wegner DJ, McAlister W, Cole FS, et al. Phenotype and response to growth hormone therapy in siblings with B4GALT7 deficiency. Bone. 2019;124:14–21.

    CAS  PubMed  Google Scholar 

  43. Giunta C, Baumann M, Fauth C, Lindert U, Abdalla EM, Brady AF, et al. A cohort of 17 patients with kyphoscoliotic Ehlers-Danlos syndrome caused by biallelic mutations in FKBP14: expansion of the clinical and mutational spectrum and description of the natural history. Genet Med. 2018;20:42–54.

    CAS  PubMed  Google Scholar 

  44. Duong J, Rideout A, MacKay S, Beis J, Parkash S, Schwarze U, et al. A family with classical Ehlers-Danlos Syndrome (cEDS), mild bone fragility and without vascular complications, caused by the p.Arg312Cys mutation in COL1A1. Eur J Med Genet. 2019;63:103730.

    PubMed  Google Scholar 

  45. Colombi M, Dordoni C, Chiarelli N, Ritelli M. Differential diagnosis and diagnostic flow chart of joint hypermobility syndrome/ehlers-danlos syndrome hypermobility type compared to other heritable connective tissue disorders. Am J Med Genet C Semin Med Genet. 2015;169c:6–22.

    PubMed  Google Scholar 

  46. Cabral WA, Makareeva E, Colige A, Letocha AD, Ty JM, Yeowell HN, et al. Mutations near amino end of alpha1(I) collagen cause combined osteogenesis imperfecta/Ehlers-Danlos syndrome by interference with N-propeptide processing. J Biol Chem. 2005;280:19259–69.

    CAS  PubMed  Google Scholar 

  47. Malfait F, Symoens S, Goemans N, Gyftodimou Y, Holmberg E, Lopez-Gonzalez V, et al. Helical mutations in type I collagen that affect the processing of the amino-propeptide result in an osteogenesis imperfecta/Ehlers-Danlos syndrome overlap syndrome. Orphanet J Rare Dis. 2013;8:78.

    PubMed  PubMed Central  Google Scholar 

  48. Bardai G, Moffatt P, Glorieux FH, Rauch F. DNA sequence analysis in 598 individuals with a clinical diagnosis of osteogenesis imperfecta: diagnostic yield and mutation spectrum. Osteoporos Int. 2016;27:3607–13.

    CAS  PubMed  Google Scholar 

  49. Lu Y, Wang Y, Rauch F, Li H, Zhang Y, Zhai N, et al. Osteogenesis imperfecta type III/Ehlers-Danlos overlap syndrome in a Chinese man. Intractable Rare Dis Res. 2018;7:37–41.

    PubMed  PubMed Central  Google Scholar 

  50. Weerakkody RA, Vandrovcova J, Kanonidou C, Mueller M, Gampawar P, Ibrahim Y, et al. Targeted next-generation sequencing makes new molecular diagnoses and expands genotype-phenotype relationship in Ehlers-Danlos syndrome. Genet Med. 2016;18:1119–27.

    CAS  PubMed  Google Scholar 

  51. Vandersteen AM, Lund AM, Ferguson DJ, Sawle P, Pollitt RC, Holder SE, et al. Four patients with Sillence type I osteogenesis imperfecta and mild bone fragility, complicated by left ventricular cardiac valvular disease and cardiac tissue fragility caused by type I collagen mutations. Am J Med Genet A. 2014;164A:386–91.

    PubMed  Google Scholar 

  52. Budsamongkol T, Intarak N, Theerapanon T, Yodsanga S, Porntaveetus T, Shotelersuk V. A novel mutation in COL1A2 leads to osteogenesis imperfecta/Ehlers-Danlos overlap syndrome with brachydactyly. Genes Dis. 2019;6:138–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Faqeih E, Roughley P, Glorieux FH, Rauch F. Osteogenesis imperfecta type III with intracranial hemorrhage and brachydactyly associated with mutations in exon 49 of COL1A2. Am J Med Genet A. 2009;149A:461–5.

    CAS  PubMed  Google Scholar 

  54. Mackenroth L, Fischer-Zirnsak B, Egerer J, Hecht J, Kallinich T, Stenzel W, et al. An overlapping phenotype of Osteogenesis imperfecta and Ehlers-Danlos syndrome due to a heterozygous mutation in COL1A1 and biallelic missense variants in TNXB identified by whole exome sequencing. Am J Med Genet A. 2016;170a:1080–5.

    PubMed  Google Scholar 

  55. Symoens S, Steyaert W, Demuynck L, De Paepe A, Diderich KE, Malfait F, et al. Tissue-specific mosaicism for a lethal osteogenesis imperfecta COL1A1 mutation causes mild OI/EDS overlap syndrome. Am J Med Genet A. 2017;173:1047–50.

    CAS  PubMed  Google Scholar 

  56. Trejo P, Rauch F. Osteogenesis imperfecta in children and adolescents—new developments in diagnosis and treatment. Osteoporos Int. 2016;27:3427–37.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Rauch.

Ethics declarations

Conflict of Interest

Shuaa Basalom and Frank Rauch declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Epidemiology and Pathophysiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basalom, S., Rauch, F. Bone Disease in Patients with Ehlers–Danlos Syndromes. Curr Osteoporos Rep 18, 95–102 (2020). https://doi.org/10.1007/s11914-020-00568-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-020-00568-5

Keywords

Navigation