Skip to main content

Advertisement

Log in

Mechanisms Underlying Bone and Joint Pain

  • Bone and Joint Pain (T King and S Amin, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal of this review is to provide a broad overview of the current understanding of mechanisms underlying bone and joint pain.

Recent Findings

Bone or joint pathology is generally accompanied by local release of pro-inflammatory cytokines, growth factors, and neurotransmitters that activate and sensitize sensory nerves resulting in an amplified pain signal. Modulation of the pain signal within the spinal cord and brain that result in net increased facilitation is proposed to contribute to the development of chronic pain.

Summary

Great strides have been made in our understanding of mechanisms underlying bone and joint pain that will guide development of improved therapeutic options for these patients. Continued research is required for improved understanding of mechanistic differences driving different components of bone and/or joint pain such as movement related pain compared to persistent background pain. Advances will guide development of more individualized and comprehensive therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Hawker GA, Stewart L, French MR, Cibere J, Jordan JM, March L, et al. Understanding the pain experience in hip and knee osteoarthritis--an OARSI/OMERACT initiative. Osteoarthr Cartil. 2008;16(4):415–22. https://doi.org/10.1016/j.joca.2007.12.017.

    Article  CAS  Google Scholar 

  2. Hawker GA, Stanaitis I. Osteoarthritis year in review 2014: clinical. Osteoarthr Cartil. 2014;22(12):1953–7. https://doi.org/10.1016/j.joca.2014.06.018.

    Article  CAS  Google Scholar 

  3. Paice JA, Ferrell B. The management of cancer pain. CA Cancer J Clin. 2011;61(3):157–82. https://doi.org/10.3322/caac.20112.

    Article  PubMed  Google Scholar 

  4. Mercadante S. Breakthrough pain in cancer patients: prevalence, mechanisms and treatment options. Curr Opin Anaesthesiol. 2015;28(5):559–64. https://doi.org/10.1097/ACO.0000000000000224.

    Article  CAS  PubMed  Google Scholar 

  5. Eitner A, Hofmann GO, Schaible HG. Mechanisms of osteoarthritic pain. Studies in Humans and Experimental Models. Front Mol Neurosci. 2017;10:349. https://doi.org/10.3389/fnmol.2017.00349.

    Article  PubMed  PubMed Central  Google Scholar 

  6. •• Ivanusic JJ. Molecular mechanisms that contribute to bone marrow pain. Front Neurol. 2017;8:458. https://doi.org/10.3389/fneur.2017.00458. This recent review gives a nice update on what is known regarding peripheral mechanisms driving bone pain.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jimenez-Andrade JM, Mantyh WG, Bloom AP, Ferng AS, Geffre CP, Mantyh PW. Bone cancer pain. Ann N Y Acad Sci. 2010;1198:173–81. https://doi.org/10.1111/j.1749-6632.2009.05429.x.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alliston T, Hernandez CJ, Findlay DM, Felson DT, Kennedy OD. Bone marrow lesions in osteoarthritis: what lies beneath. J Orthop Res. 2017;36:1818–25. https://doi.org/10.1002/jor.23844.

    Article  Google Scholar 

  9. Schaible HG, Schmidt RF. Activation of groups III and IV sensory units in medial articular nerve by local mechanical stimulation of knee joint. J Neurophysiol. 1983;49(1):35–44. https://doi.org/10.1152/jn.1983.49.1.35.

    Article  CAS  PubMed  Google Scholar 

  10. Schaible HG, Schmidt RF. Responses of fine medial articular nerve afferents to passive movements of knee joints. J Neurophysiol. 1983;49(5):1118–26. https://doi.org/10.1152/jn.1983.49.5.1118.

    Article  CAS  PubMed  Google Scholar 

  11. Cavanaugh DJ, Lee H, Lo L, Shields SD, Zylka MJ, Basbaum AI, et al. Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci U S A. 2009;106(22):9075–80. https://doi.org/10.1073/pnas.0901507106.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Woller SA, Eddinger KA, Corr M, Yaksh TL. An overview of pathways encoding nociception. Clin Exp Rheumatol. 2018;36(1):172.

    PubMed  Google Scholar 

  13. Usoskin D, Furlan A, Islam S, Abdo H, Lonnerberg P, Lou D, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci. 2015;18(1):145–53. https://doi.org/10.1038/nn.3881.

    Article  CAS  PubMed  Google Scholar 

  14. Zylka MJ, Rice FL, Anderson DJ. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron. 2005;45(1):17–25. https://doi.org/10.1016/j.neuron.2004.12.015.

    Article  CAS  PubMed  Google Scholar 

  15. Scherrer G, Imamachi N, Cao YQ, Contet C, Mennicken F, O’Donnell D, et al. Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell. 2009;137(6):1148–59. https://doi.org/10.1016/j.cell.2009.04.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Okun A, DeFelice M, Eyde N, Ren J, Mercado R, King T, et al. Transient inflammation-induced ongoing pain is driven by TRPV1 sensitive afferents. Mol Pain. 2011;7:4. https://doi.org/10.1186/1744-8069-7-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. King T, Qu C, Okun A, Mercado R, Ren J, Brion T, et al. Contribution of afferent pathways to nerve injury-induced spontaneous pain and evoked hypersensitivity. Pain. 2011;152(9):1997–2005. https://doi.org/10.1016/j.pain.2011.04.020.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Barabas ME, Kossyreva EA, Stucky CL. TRPA1 is functionally expressed primarily by IB4-binding, non-peptidergic mouse and rat sensory neurons. PLoS One. 2012;7(10):e47988. https://doi.org/10.1371/journal.pone.0047988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Havelin J, Imbert I, Sukhtankar D, Remeniuk B, Pelletier I, Gentry J, et al. Mediation of movement-induced breakthrough cancer pain by IB4-binding nociceptors in rats. J Neurosci. 2017;37(20):5111–22. https://doi.org/10.1523/JNEUROSCI.1212-16.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abraira VE, Ginty DD. The sensory neurons of touch. Neuron. 2013;79(4). https://doi.org/10.1016/j.neuron.2013.07.051.

    Article  CAS  PubMed  Google Scholar 

  21. Bourane S, Duan B, Koch SC, Dalet A, Britz O, Garcia-Campmany L, et al. Gate control of mechanical itch by a subpopulation of spinal cord interneurons. Science. 2015;350(6260):550–4. https://doi.org/10.1126/science.aac8653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. •• Duan B, Cheng L, Ma Q. Spinal circuits transmitting mechanical pain and itch. Neurosci Bull. 2017. https://doi.org/10.1007/s12264-017-0136-z. This recent review outlines the gains in our understanding of processing and modulation of pain and itch within the spinal cord.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li L, Rutlin M, Abraira Victoria E, Cassidy C, Kus L, Gong S, et al. The functional organization of cutaneous low-threshold mechanosensory neurons. Cell. 2011;147(7):1615–27. https://doi.org/10.1016/j.cell.2011.11.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma Q. Labeled lines meet and talk: population coding of somatic sensations. J Clin Invest. 2010;120(11):3773–8. https://doi.org/10.1172/JCI43426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Todd AJ. Identifying functional populations among the interneurons in laminae I-III of the spinal dorsal horn. Mol Pain. 2017;13:1744806917693003. https://doi.org/10.1177/1744806917693003.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bonin RP, Wang F, Desrochers-Couture M, Ga Secka A, Boulanger ME, Cote DC, et al. Epidural optogenetics for controlled analgesia. Mol Pain. 2016;12:174480691662905. https://doi.org/10.1177/1744806916629051.

    Article  CAS  Google Scholar 

  27. Duan B, Cheng L, Bourane S, Britz O, Padilla C, Garcia-Campmany L, et al. Identification of spinal circuits transmitting and gating mechanical pain. Cell. 2014;159(6):1417–32. https://doi.org/10.1016/j.cell.2014.11.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. •• Koch SC, Acton D, Goulding M. Spinal circuits for touch, pain, and itch. Annu Rev Physiol. 2018;80:189–217. https://doi.org/10.1146/annurev-physiol-022516-034303. An in depth review of spinal circuits mediating touch pain and itch.

    Article  CAS  PubMed  Google Scholar 

  29. •• Tracey I. Neuroimaging mechanisms in pain: from discovery to translation. Pain. 2017;158(Suppl 1):S115–S22. https://doi.org/10.1097/j.pain.0000000000000863. A recent review covering advances in our understanding of pain perception within the brain that have been made using neuroimaging.

    Article  PubMed  Google Scholar 

  30. Navratilova E, Morimura K, Xie JY, Atcherley CW, Ossipov MH, Porreca F. Positive emotions and brain reward circuits in chronic pain. J Comp Neurol. 2016;524(8):1646–52. https://doi.org/10.1002/cne.23968.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Navratilova E, Atcherley CW, Porreca F. Brain circuits encoding reward from pain relief. Trends Neurosci. 2015;38(11):741–50. https://doi.org/10.1016/j.tins.2015.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. •• Porreca F, Navratilova E. Reward, motivation and emotion of pain and its relief. Pain. 2017;158(Suppl 1):S43–S9. https://doi.org/10.1097/j.pain.0000000000000798. A review on recent advances in our understanding of the motivational aspects of pain and pain relief.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Davis KD, Seminowicz DA. Insights for clinicians from brain imaging studies of pain. Clin J Pain. 2017;33(4):291–4. https://doi.org/10.1097/ajp.0000000000000439.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kuner R, Flor H. Structural plasticity and reorganisation in chronic pain. Nat Rev Neurosci. 2016;18:20–30. https://doi.org/10.1038/nrn.2016.162.

    Article  CAS  PubMed  Google Scholar 

  35. Smith A, López-Solà M, McMahon K, Pedler A, Sterling M. Multivariate pattern analysis utilizing structural or functional MRI-in individuals with musculoskeletal pain and healthy controls: a systematic review. Semin Arthritis Rheum. 2017;47(3):418–31. https://doi.org/10.1016/j.semarthrit.2017.06.005.

    Article  PubMed  Google Scholar 

  36. Mansour AR, Farmer MA, Baliki MN, Apkarian AV. Chronic pain: the role of learning and brain plasticity. Restor Neurol Neurosci. 2014;32(1):129–39. https://doi.org/10.3233/RNN-139003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Apkarian AV, Sosa Y, Krauss BR, Thomas PS, Fredrickson BE, Levy RE, et al. Chronic pain patients are impaired on an emotional decision-making task. Pain. 2004;108(1–2):129–36. https://doi.org/10.1016/j.pain.2003.12.015.

    Article  PubMed  Google Scholar 

  38. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004;24(46):10410–5. https://doi.org/10.1523/JNEUROSCI.2541-04.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Langford LA, Schmidt RF. Afferent and efferent axons in the medial and posterior articular nerves of the cat. Anat Rec. 1983;206(1):71–8. https://doi.org/10.1002/ar.1092060109.

    Article  CAS  PubMed  Google Scholar 

  40. Coggeshall RE, Hong KA, Langford LA, Schaible HG, Schmidt RF. Discharge characteristics of fine medial articular afferents at rest and during passive movements of inflamed knee joints. Brain Res. 1983;272(1):185–8.

    Article  CAS  PubMed  Google Scholar 

  41. Grigg P, Schaible HG, Schmidt RF. Mechanical sensitivity of group III and IV afferents from posterior articular nerve in normal and inflamed cat knee. J Neurophysiol. 1986;55(4):635–43. https://doi.org/10.1152/jn.1986.55.4.635.

    Article  CAS  PubMed  Google Scholar 

  42. Schaible HG, Schmidt RF, Willis WD. Enhancement of the responses of ascending tract cells in the cat spinal cord by acute inflammation of the knee joint. Exp Brain Res. 1987;66(3):489–99.

    Article  CAS  PubMed  Google Scholar 

  43. Schaible HG, Schmidt RF. Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J Neurophysiol. 1985;54(5):1109–22. https://doi.org/10.1152/jn.1985.54.5.1109.

    Article  CAS  PubMed  Google Scholar 

  44. Jimenez-Andrade JM, Mantyh WG, Bloom AP, Xu H, Ferng AS, Dussor G, et al. A phenotypically restricted set of primary afferent nerve fibers innervate the bone versus skin: therapeutic opportunity for treating skeletal pain. Bone. 2010;46(2):306–13. https://doi.org/10.1016/j.bone.2009.09.013.

    Article  PubMed  Google Scholar 

  45. Guedon JM, Longo G, Majuta LA, Thomspon ML, Fealk MN, Mantyh PW. Dissociation between the relief of skeletal pain behaviors and skin hypersensitivity in a model of bone cancer pain. Pain. 2016;157(6):1239–47. https://doi.org/10.1097/j.pain.0000000000000514.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience. 2002;113(1):155–66.

    Article  CAS  PubMed  Google Scholar 

  47. Mantyh PW. The neurobiology of skeletal pain. Eur J Neurosci. 2014;39(3):508–19. https://doi.org/10.1111/ejn.12462.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ivanusic JJ. The evidence for the spinal segmental innervation of bone. Clin Anat. 2007;20(8):956–60. https://doi.org/10.1002/ca.20555.

    Article  PubMed  Google Scholar 

  49. Kaan TK, Yip PK, Patel S, Davies M, Marchand F, Cockayne DA, et al. Systemic blockade of P2X3 and P2X2/3 receptors attenuates bone cancer pain behaviour in rats. Brain. 2010;133(9):2549–64. https://doi.org/10.1093/brain/awq194.

    Article  PubMed  Google Scholar 

  50. Price TJ, Flores CM. Critical evaluation of the colocalization between calcitonin gene-related peptide, substance P, transient receptor potential vanilloid subfamily type 1 immunoreactivities, and isolectin B4 binding in primary afferent neurons of the rat and mouse. J Pain. 2007;8(3):263–72. https://doi.org/10.1016/j.jpain.2006.09.005.

    Article  CAS  PubMed  Google Scholar 

  51. Molliver DC, Snider WD. Nerve growth factor receptor TrkA is down-regulated during postnatal development by a subset of dorsal root ganglion neurons. J Comp Neurol. 1997;381(4):428–38.

    Article  CAS  PubMed  Google Scholar 

  52. Molliver DC, Wright DE, Leitner ML, Parsadanian AS, Doster K, Wen D, et al. IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron. 1997;19(4):849–61.

    Article  CAS  PubMed  Google Scholar 

  53. Laedermann CJ, Pertin M, Suter MR, Decosterd I. Voltage-gated sodium channel expression in mouse DRG after SNI leads to re-evaluation of projections of injured fibers. Mol Pain. 2014;10:19. https://doi.org/10.1186/1744-8069-10-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Abraira VE, Kuehn ED, Chirila AM, Springel MW, Toliver AA, Zimmerman AL, et al. The cellular and synaptic architecture of the mechanosensory dorsal horn. Cell. 2017;168(1–2):295–310 e19. https://doi.org/10.1016/j.cell.2016.12.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rutlin M, Ho CY, Abraira VE, Cassidy C, Bai L, Woodbury CJ, et al. The cellular and molecular basis of direction selectivity of Adelta-LTMRs. Cell. 2014;159(7):1640–51. https://doi.org/10.1016/j.cell.2014.11.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zimmerman A, Bai L, Ginty DD. The gentle touch receptors of mammalian skin. Science. 2014;346(6212):950–4. https://doi.org/10.1126/science.1254229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jeon OH, David N, Campisi J, Elisseeff JH. Senescent cells and osteoarthritis: a painful connection. J Clin Invest. 2018;128(4):1229–37. https://doi.org/10.1172/JCI95147.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Syx D, Tran PB, Miller RE, Malfait AM. Peripheral mechanisms contributing to osteoarthritis pain. Curr Rheumatol Rep. 2018;20(2):9. https://doi.org/10.1007/s11926-018-0716-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Krustev E, Rioux D, McDougall JJ. Mechanisms and mediators that drive arthritis pain. Curr Osteoporos Rep. 2015;13(4):216–24. https://doi.org/10.1007/s11914-015-0275-y.

    Article  PubMed  Google Scholar 

  60. Braun T, Schett G. Pathways for bone loss in inflammatory disease. Curr Osteoporos Rep. 2012;10(2):101–8. https://doi.org/10.1007/s11914-012-0104-5.

    Article  PubMed  Google Scholar 

  61. Cook AD, Christensen AD, Tewari D, McMahon SB, Hamilton JA. Immune cytokines and their receptors in inflammatory pain. Trends Immunol. 2018;39(3):240–55. https://doi.org/10.1016/j.it.2017.12.003.

    Article  CAS  PubMed  Google Scholar 

  62. Felson DT. The sources of pain in knee osteoarthritis. Curr Opin Rheumatol. 2005;17(5):624–8.

    Article  PubMed  Google Scholar 

  63. Denk F, Bennett DL, McMahon SB. Nerve growth factor and pain mechanisms. Annu Rev Neurosci. 2017;40(1):307–25. https://doi.org/10.1146/annurev-neuro-072116-031121.

    Article  CAS  PubMed  Google Scholar 

  64. Jimenez-Andrade JM, Mantyh WG, Bloom AP, Freeman KT, Ghilardi JR, Kuskowski MA, et al. The effect of aging on the density of the sensory nerve fiber innervation of bone and acute skeletal pain. Neurobiol Aging. 2012;33(5):921–32. https://doi.org/10.1016/j.neurobiolaging.2010.08.008.

    Article  CAS  PubMed  Google Scholar 

  65. Chartier SR, Thompson ML, Longo G, Fealk MN, Majuta LA, Mantyh PW. Exuberant sprouting of sensory and sympathetic nerve fibers in nonhealed bone fractures and the generation and maintenance of chronic skeletal pain. Pain. 2014;155(11):2323–36. https://doi.org/10.1016/j.pain.2014.08.026.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jimenez-Andrade JM, Martin CD, Koewler NJ, Freeman KT, Sullivan LJ, Halvorson KG, et al. Nerve growth factor sequestering therapy attenuates non-malignant skeletal pain following fracture. Pain. 2007;133(1–3):183–96. https://doi.org/10.1016/j.pain.2007.06.016.

    Article  CAS  PubMed  Google Scholar 

  67. Falk S, Bannister K, Dickenson AH. Cancer pain physiology. Br J Pain. 2014;8(4):154–62. https://doi.org/10.1177/2049463714545136.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Falk S, Dickenson AH. Pain and nociception: mechanisms of cancer-induced bone pain. J Clin Oncol. 2014;32(16):1647–54. https://doi.org/10.1200/JCO.2013.51.7219.

    Article  CAS  PubMed  Google Scholar 

  69. Thakur M, Rahman W, Hobbs C, Dickenson AH, Bennett DL. Characterisation of a peripheral neuropathic component of the rat monoiodoacetate model of osteoarthritis. PLoS One. 2012;7(3):e33730. https://doi.org/10.1371/journal.pone.0033730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Thakur M, Dickenson AH, Baron R. Osteoarthritis pain: nociceptive or neuropathic? Nat Rev Rheumatol. 2014;10(6):374–80. https://doi.org/10.1038/nrrheum.2014.47.

    Article  PubMed  Google Scholar 

  71. King T, Vardanyan A, Majuta L, Melemedjian O, Nagle R, Cress AE, et al. Morphine treatment accelerates sarcoma-induced bone pain, bone loss, and spontaneous fracture in a murine model of bone cancer. Pain. 2007;132(1–2):154–68. https://doi.org/10.1016/j.pain.2007.06.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Peters CM, Ghilardi JR, Keyser CP, Kubota K, Lindsay TH, Luger NM, et al. Tumor-induced injury of primary afferent sensory nerve fibers in bone cancer pain. Exp Neurol. 2005;193(1):85–100. https://doi.org/10.1016/j.expneurol.2004.11.028.

    Article  PubMed  Google Scholar 

  73. Sabino MA, Mantyh PW. Pathophysiology of bone cancer pain. J Support Oncol. 2005;3(1):15–24.

    CAS  PubMed  Google Scholar 

  74. Jimenez-Andrade JM, Bloom AP, Stake JI, Mantyh WG, Taylor RN, Freeman KT, et al. Pathological sprouting of adult nociceptors in chronic prostate cancer-induced bone pain. J Neurosci. 2010;30(44):14649–56. https://doi.org/10.1523/JNEUROSCI.3300-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Okun A, Liu P, Davis P, Ren J, Remeniuk B, Brion T, et al. Afferent drive elicits ongoing pain in a model of advanced osteoarthritis. Pain. 2012;153(4):924–33. https://doi.org/10.1016/j.pain.2012.01.022.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Remeniuk B, Sukhtankar D, Okun A, Navratilova E, Xie JY, King T, et al. Behavioral and neurochemical analysis of ongoing bone cancer pain in rats. Pain. 2015;156(10):1864–73. https://doi.org/10.1097/j.pain.0000000000000218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Havelin J, Imbert I, Cormier J, Allen J, Porreca F, King T. Central sensitization and neuropathic features of ongoing pain in a rat model of advanced osteoarthritis. J Pain. 2016;17(3):374–82. https://doi.org/10.1016/j.jpain.2015.12.001.

    Article  PubMed  Google Scholar 

  78. Arendt-Nielsen L, Egsgaard LL, Petersen KK, Eskehave TN, Graven-Nielsen T, Hoeck HC, et al. A mechanism-based pain sensitivity index to characterize knee osteoarthritis patients with different disease stages and pain levels. Eur J Pain. 2015;19(10):1406–17. https://doi.org/10.1002/ejp.651.

    Article  CAS  PubMed  Google Scholar 

  79. Pujol J, Martinez-Vilavella G, Llorente-Onaindia J, Harrison BJ, Lopez-Sola M, Lopez-Ruiz M, et al. Brain imaging of pain sensitization in patients with knee osteoarthritis. Pain. 2017;158(9):1831–8. https://doi.org/10.1097/j.pain.0000000000000985.

    Article  PubMed  Google Scholar 

  80. •• Schaible HG. Osteoarthritis pain. Recent advances and controversies. Curr Opin Support Palliat Care. 2018. https://doi.org/10.1097/SPC.0000000000000334. A recent review on osteoarthritis pain.

  81. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2–15. https://doi.org/10.1016/j.pain.2010.09.030.

    Article  PubMed  Google Scholar 

  82. Lee A, Ellman MB, Yan D, Kroin JS, Cole BJ, van Wijnen AJ, et al. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene. 2013;527(2):440–7. https://doi.org/10.1016/j.gene.2013.05.069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Devor M. Sodium channels and mechanisms of neuropathic pain. J Pain. 2006;7(1 Suppl 1):S3–S12. https://doi.org/10.1016/j.jpain.2005.09.006.

    Article  CAS  PubMed  Google Scholar 

  84. Bao L. Trafficking regulates the subcellular distribution of voltage-gated sodium channels in primary sensory neurons. Mol Pain. 2015;11:61. https://doi.org/10.1186/s12990-015-0065-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Devor M. Ectopic discharge in Abeta afferents as a source of neuropathic pain. Exp Brain Res. 2009;196(1):115–28. https://doi.org/10.1007/s00221-009-1724-6.

    Article  CAS  PubMed  Google Scholar 

  86. Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895–926. https://doi.org/10.1016/j.jpain.2009.06.012.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Schwei MJ, Honore P, Rogers SD, Salak-Johnson JL, Finke MP, Ramnaraine ML, et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci. 1999;19(24):10886–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Clark AK, Old EA, Malcangio M. Neuropathic pain and cytokines: current perspectives. J Pain Res. 2013;6:803–14. https://doi.org/10.2147/JPR.S53660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gao YJ, Ji RR. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther. 2010;126(1):56–68. https://doi.org/10.1016/j.pharmthera.2010.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. De Koninck Y. Altered chloride homeostasis in neurological disorders: a new target. Curr Opin Pharmacol. 2007;7(1):93–9. https://doi.org/10.1016/j.coph.2006.11.005.

    Article  CAS  PubMed  Google Scholar 

  91. Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438(7070):1017–21. https://doi.org/10.1038/nature04223.

    Article  CAS  PubMed  Google Scholar 

  92. Mapplebeck JC, Beggs S, Salter MW. Sex differences in pain: a tale of two immune cells. Pain. 2016;157(Suppl 1):S2–6. https://doi.org/10.1097/j.pain.0000000000000389.

    Article  PubMed  Google Scholar 

  93. Lai J, Luo MC, Chen Q, Porreca F. Pronociceptive actions of dynorphin via bradykinin receptors. Neurosci Lett. 2008;437(3):175–9. https://doi.org/10.1016/j.neulet.2008.03.088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain. 2013;154(Suppl 1):S10–28. https://doi.org/10.1016/j.pain.2013.06.022.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Beggs S, Salter MW. The known knowns of microglia-neuronal signalling in neuropathic pain. Neurosci Lett. 2013;557(Pt A):37–42. https://doi.org/10.1016/j.neulet.2013.08.037.

    Article  CAS  PubMed  Google Scholar 

  96. Trang T, Beggs S, Salter MW. Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain. Neuron Glia Biol. 2011;7(1):99–108. https://doi.org/10.1017/S1740925X12000087.

    Article  PubMed  Google Scholar 

  97. Zhou YQ, Liu Z, Liu HQ, Liu DQ, Chen SP, Ye DW, et al. Targeting glia for bone cancer pain. Expert Opin Ther Targets. 2016;20(11):1365–74. https://doi.org/10.1080/14728222.2016.1214716.

    Article  CAS  PubMed  Google Scholar 

  98. Tran PB, Miller RE, Ishihara S, Miller RJ, Malfait AM. Spinal microglial activation in a murine surgical model of knee osteoarthritis. Osteoarthritis Cart. 2017;25(5):718–26. https://doi.org/10.1016/j.joca.2016.09.007.

    Article  CAS  Google Scholar 

  99. Prescott SA, Ma Q, De Koninck Y. Normal and abnormal coding of somatosensory stimuli causing pain. Nat Neurosci. 2014;17(2):183–91. https://doi.org/10.1038/nn.3629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Suzuki R, Rahman W, Hunt SP, Dickenson AH. Descending facilitatory control of mechanically evoked responses is enhanced in deep dorsal horn neurones following peripheral nerve injury. Brain Res. 2004;1019(1–2):68–76. https://doi.org/10.1016/j.brainres.2004.05.108.

    Article  CAS  PubMed  Google Scholar 

  101. Ossipov MH, Dussor GO, Porreca F. Central modulation of pain. J Clin Invest. 2010;120(11):3779–87. https://doi.org/10.1172/JCI43766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Burgess SE, Gardell LR, Ossipov MH, Malan TP Jr, Vanderah TW, Lai J, et al. Time-dependent descending facilitation from the rostral ventromedial medulla maintains, but does not initiate, neuropathic pain. J Neurosci. 2002;22(12):5129–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bannister K, Qu C, Navratilova E, Oyarzo J, Xie JY, King T, et al. Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain. Pain. 2017;158(12):2386–95. https://doi.org/10.1097/j.pain.0000000000001040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. King T, Qu C, Okun A, Melemedjian OK, Mandell EK, Maskaykina IY, et al. Contribution of PKMzeta-dependent and independent amplification to components of experimental neuropathic pain. Pain. 2012;153(6):1263–73. https://doi.org/10.1016/j.pain.2012.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Qu C, King T, Okun A, Lai J, Fields HL, Porreca F. Lesion of the rostral anterior cingulate cortex eliminates the aversiveness of spontaneous neuropathic pain following partial or complete axotomy. Pain. 2011;152(7):1641–8. https://doi.org/10.1016/j.pain.2011.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bajic D, Craig MM, Mongerson CRL, Borsook D, Becerra L. Identifying rodent resting-state brain networks with independent component analysis. Front Neurosci. 2017;11:685. https://doi.org/10.3389/fnins.2017.00685.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Borsook D, Hargreaves R, Becerra L. Can functional magnetic resonance imaging improve success rates in CNS drug discovery? Expert Opin Drug Discov. 2011;6(6):597–617. https://doi.org/10.1517/17460441.2011.584529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Colon E, Bittner EA, Kussman B, McCann ME, Soriano S, Borsook D. Anesthesia, brain changes, and behavior: insights from neural systems biology. Prog Neurobiol. 2017;153:121–60. https://doi.org/10.1016/j.pneurobio.2017.01.005.

    Article  PubMed  Google Scholar 

  109. Peng K, Steele SC, Becerra L, Borsook D. Brodmann area 10: collating, integrating and high level processing of nociception and pain. Prog Neurobiol. 2018;161:1–22. https://doi.org/10.1016/j.pneurobio.2017.11.004.

    Article  PubMed  Google Scholar 

  110. Parks EL, Geha PY, Baliki MN, Katz J, Schnitzer TJ, Apkarian AV. Brain activity for chronic knee osteoarthritis: dissociating evoked pain from spontaneous pain. Eur J Pain. 2011;15(8):843 e1–14. https://doi.org/10.1016/j.ejpain.2010.12.007.

    Article  Google Scholar 

  111. Tetreault P, Mansour A, Vachon-Presseau E, Schnitzer TJ, Apkarian AV, Baliki MN. Brain connectivity predicts placebo response across chronic pain clinical trials. PLoS Biol. 2016;14(10):e1002570. https://doi.org/10.1371/journal.pbio.1002570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara King.

Ethics declarations

Conflict of Interest

Joshua Havelin and Tamara King declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Bone and Joint Pain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Havelin, J., King, T. Mechanisms Underlying Bone and Joint Pain. Curr Osteoporos Rep 16, 763–771 (2018). https://doi.org/10.1007/s11914-018-0493-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-018-0493-1

Keywords

Navigation