Human Genetics of Sclerosing Bone Disorders

  • Raphaël De Ridder
  • Eveline Boudin
  • Geert Mortier
  • Wim Van Hul
Genetics (M Johnson and S Ralston, Section Editors)
  • 10 Downloads
Part of the following topical collections:
  1. Topical Collection on Genetics

Abstract

Purpose of Review

The group of sclerosing bone disorders encompasses a variety of disorders all marked by increased bone mass. In this review, we give an overview of the genetic causes of this heterogeneous group of disorders and briefly touch upon the value of these findings for the development of novel therapeutic agents.

Recent Findings

Advances in the next-generation sequencing technologies are accelerating the molecular dissection of the pathogenic mechanisms underlying skeletal dysplasias.

Summary

Throughout the years, the genetic cause of these disorders has been extensively studied which resulted in the identification of a variety of disease-causing genes and pathways that are involved in bone formation by osteoblasts, bone resorption by osteoclasts, or both processes. Due to this rapidly increasing knowledge, the insights into the regulatory mechanisms of bone metabolism are continuously improving resulting in the identification of novel therapeutic targets for disorders with reduced bone mass and increased bone fragility.

Keywords

Sclerosing bone disorders Osteopetrosis Paget’s disease of bone Craniotubular hyperostosis 

Notes

Compliance with Ethical Standards

Conflict of Interest

Raphaël De Ridder, Eveline Boudin, Geert Mortier, and Wim Van Hul declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Roodman GD. Cell biology of the osteoclast. Exp Hematol. 1999;27(8):1229–41.PubMedGoogle Scholar
  2. 2.
    Bruzzaniti A, Baron R. Molecular regulation of osteoclast activity. Rev Endocr Metab Disord. 2006;7(1–2):123–39.  https://doi.org/10.1007/s11154-006-9009-x.PubMedGoogle Scholar
  3. 3.
    Balemans W, Van Wesenbeeck L, Van Hul W. A clinical and molecular overview of the human osteopetroses. Calcif Tissue Int. 2005;77(5):263–74.  https://doi.org/10.1007/s00223-005-0027-6.PubMedGoogle Scholar
  4. 4.
    de Vernejoul MC. Sclerosing bone disorders. Best Pract Res Clin Rheumatol. 2008;22(1):71–83.  https://doi.org/10.1016/j.berh.2007.12.011.PubMedGoogle Scholar
  5. 5.
    Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone. 2008;42(1):19–29.  https://doi.org/10.1016/j.bone.2007.08.029.PubMedGoogle Scholar
  6. 6.
    Aker M, Rouvinski A, Hashavia S, Ta-Shma A, Shaag A, Zenvirt S, et al. An SNX10 mutation causes malignant osteopetrosis of infancy. J Med Genet. 2012;49(4):221–6.  https://doi.org/10.1136/jmedgenet-2011-100520. PubMedGoogle Scholar
  7. 7.
    Chalhoub N, Benachenhou N, Rajapurohitam V, Pata M, Ferron M, Frattini A, et al. Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med. 2003;9(4):399–406.  https://doi.org/10.1038/nm842.PubMedGoogle Scholar
  8. 8.
    Cleiren E, Benichou O, Van Hul E, Gram J, Bollerslev J, Singer FR, et al. Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet. 2001;10(25):2861–7.PubMedGoogle Scholar
  9. 9.
    Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A, et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet. 2008;83(1):64–76.  https://doi.org/10.1016/j.ajhg.2008.06.015.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001;104(2):205–15.PubMedGoogle Scholar
  11. 11.
    Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, et al. Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet. 2000;9(13):2059–63.PubMedGoogle Scholar
  12. 12.
    Pangrazio A, Fasth A, Sbardellati A, Orchard PJ, Kasow KA, Raza J, et al. SNX10 mutations define a subgroup of human autosomal recessive osteopetrosis with variable clinical severity. J Bone Miner Res. 2013;28(5):1041–9.  https://doi.org/10.1002/jbmr.1849.PubMedGoogle Scholar
  13. 13.
    Pangrazio A, Poliani PL, Megarbane A, Lefranc G, Lanino E, Di Rocco M, et al. Mutations in OSTM1 (grey lethal) define a particularly severe form of autosomal recessive osteopetrosis with neural involvement. J Bone Miner Res. 2006;21(7):1098–105.  https://doi.org/10.1359/jbmr.060403.PubMedGoogle Scholar
  14. 14.
    Sly WS, Whyte MP, Sundaram V, Tashian RE, Hewett-Emmett D, Guibaud P, et al. Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N Engl J Med. 1985;313(3):139–45.  https://doi.org/10.1056/NEJM198507183130302.PubMedGoogle Scholar
  15. 15.
    Smahi A, Courtois G, Rabia SH, Doffinger R, Bodemer C, Munnich A, et al. The NF-kappaB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum Mol Genet. 2002;11(20):2371–5.PubMedGoogle Scholar
  16. 16.
    Frattini A, Pangrazio A, Susani L, Sobacchi C, Mirolo M, Abinun M, et al. Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J Bone Miner Res. 2003;18(10):1740–7.  https://doi.org/10.1359/jbmr.2003.18.10.1740.PubMedGoogle Scholar
  17. 17.
    Van Hul E, Gram J, Bollerslev J, Van Wesenbeeck L, Mathysen D, Andersen PE, et al. Localization of the gene causing autosomal dominant osteopetrosis type I to chromosome 11q12-13. J Bone Miner Res. 2002;17(6):1111–7.  https://doi.org/10.1359/jbmr.2002.17.6.1111.PubMedGoogle Scholar
  18. 18.
    Waguespack SG, Koller DL, White KE, Fishburn T, Carn G, Buckwalter KA, et al. Chloride channel 7 (ClCN7) gene mutations and autosomal dominant osteopetrosis, type II. J Bone Miner Res. 2003;18(8):1513–8.  https://doi.org/10.1359/jbmr.2003.18.8.1513.PubMedGoogle Scholar
  19. 19.
    Van Wesenbeeck L, Odgren PR, Coxon FP, Frattini A, Moens P, Perdu B, et al. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest. 2007;117(4):919–30.  https://doi.org/10.1172/JCI30328. PubMedPubMedCentralGoogle Scholar
  20. 20.
    Palagano E, Menale C, Sobacchi C, Villa A. Genetics of osteopetrosis. Curr Osteoporos Rep. 2018;16(1):13–25.  https://doi.org/10.1007/s11914-018-0415-2.PubMedGoogle Scholar
  21. 21.
    Marks SC Jr. Osteopetrosis—multiple pathways for the interception of osteoclast function. Appl Pathol. 1987;5(3):172–83.PubMedGoogle Scholar
  22. 22.
    Teti A, Econs MJ. Osteopetroses, emphasizing potential approaches to treatment. Bone. 2017;102:50–9.  https://doi.org/10.1016/j.bone.2017.02.002.PubMedGoogle Scholar
  23. 23.
    Sugiura Y, Yamada Y, Ko J. Pycnodysostosis in Japan: report of six cases and a review of Japaneses literature. Birth Defects Orig Artic Ser. 1974;10(12):78–98.PubMedGoogle Scholar
  24. 24.
    Maroteaux P, Lamy M. Pyknodysostosis. Presse Med. 1962;70:999–1002.PubMedGoogle Scholar
  25. 25.
    Donnarumma M, Regis S, Tappino B, Rosano C, Assereto S, Corsolini F, et al. Molecular analysis and characterization of nine novel CTSK mutations in twelve patients affected by pycnodysostosis. Mutation in brief #961. Online. Hum Mutat. 2007;28(5):524.  https://doi.org/10.1002/humu.9490.PubMedGoogle Scholar
  26. 26.
    Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273(5279):1236–8.PubMedGoogle Scholar
  27. 27.
    Bromme D, Okamoto K, Wang BB, Biroc S. Human cathepsin O2, a matrix protein-degrading cysteine protease expressed in osteoclasts. Functional expression of human cathepsin O2 in Spodoptera frugiperda and characterization of the enzyme. J Biol Chem. 1996;271(4):2126–32.PubMedGoogle Scholar
  28. 28.
    Inaoka T, Bilbe G, Ishibashi O, Tezuka K, Kumegawa M, Kokubo T. Molecular cloning of human cDNA for cathepsin K: novel cysteine proteinase predominantly expressed in bone. Biochem Biophys Res Commun. 1995;206(1):89–96.  https://doi.org/10.1006/bbrc.1995.1013.PubMedGoogle Scholar
  29. 29.
    Li YP, Alexander M, Wucherpfennig AL, Yelick P, Chen W, Stashenko P. Cloning and complete coding sequence of a novel human cathepsin expressed in giant cells of osteoclastomas. J Bone Miner Res. 1995;10(8):1197–202.  https://doi.org/10.1002/jbmr.5650100809. PubMedGoogle Scholar
  30. 30.
    Shi GP, Chapman HA, Bhairi SM, DeLeeuw C, Reddy VY, Weiss SJ. Molecular cloning of human cathepsin O, a novel endoproteinase and homologue of rabbit OC2. FEBS Lett. 1995;357(2):129–34.PubMedGoogle Scholar
  31. 31.
    Everts V, Aronson DC, Beertsen W. Phagocytosis of bone collagen by osteoclasts in two cases of pycnodysostosis. Calcif Tissue Int. 1985;37(1):25–31.PubMedGoogle Scholar
  32. 32.
    Nishimura G, Kozlowski K. Osteosclerotic metaphyseal dysplasia. Pediatr Radiol. 1993;23(6):450–2.PubMedGoogle Scholar
  33. 33.
    • Iida A, Xing W, Docx MK, Nakashima T, Wang Z, Kimizuka M, et al. Identification of biallelic LRRK1 mutations in osteosclerotic metaphyseal dysplasia and evidence for locus heterogeneity. J Med Genet. 2016;53:568–74.  https://doi.org/10.1136/jmedgenet-2016-103756. Using WES, the authors identified the disease-causing gene for OSMD and deliver functional evidence. PubMedPubMedCentralGoogle Scholar
  34. 34.
    van Lierop AH, Appelman-Dijkstra NM, Papapoulos SE. Sclerostin deficiency in humans. Bone. 2017;96:51–62.  https://doi.org/10.1016/j.bone.2016.10.010.PubMedGoogle Scholar
  35. 35.
    Balemans W, Van Hul W. Human genetics of SOST. J Musculoskelet Neuronal Interact. 2006;6(4):355–6.PubMedGoogle Scholar
  36. 36.
    Balemans W, Patel N, Ebeling M, Van Hul E, Wuyts W, Lacza C, et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet. 2002;39(2):91–7.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Collette NM, Genetos DC, Economides AN, Xie L, Shahnazari M, Yao W, et al. Targeted deletion of Sost distal enhancer increases bone formation and bone mass. Proc Natl Acad Sci U S A. 2012;109(35):14092–7.  https://doi.org/10.1073/pnas.1207188109.PubMedPubMedCentralGoogle Scholar
  38. 38.
    van Lierop AH, Hamdy NA, van Egmond ME, Bakker E, Dikkers FG, Papapoulos SE. Van Buchem disease: clinical, biochemical, and densitometric features of patients and disease carriers. J Bone Miner Res. 2013;28(4):848–54.  https://doi.org/10.1002/jbmr.1794.PubMedGoogle Scholar
  39. 39.
    Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10(5):537–43.PubMedGoogle Scholar
  40. 40.
    Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. 2001;68(3):577–89.PubMedPubMedCentralGoogle Scholar
  41. 41.
    van Lierop AH, Hamdy NA, Hamersma H, van Bezooijen RL, Power J, Loveridge N, et al. Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. J Bone Miner Res. 2011;26(12):2804–11.  https://doi.org/10.1002/jbmr.474.PubMedGoogle Scholar
  42. 42.
    • Fijalkowski I, Geets E, Steenackers E, Van Hoof V, Ramos FJ, Mortier G, et al. A novel domain-specific mutation in a sclerosteosis patient suggests a role of LRP4 as an anchor for sclerostin in human bone. J Bone Miner Res. 2016;31(4):874–81.  https://doi.org/10.1002/jbmr.2782. In this study, the authors delivered evidence for the functional implications of mutations in the cavity of the third b-propeller domain in the pathogenesis of sclerosteosis. PubMedGoogle Scholar
  43. 43.
    Leupin O, Piters E, Halleux C, Hu S, Kramer I, Morvan F, et al. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem. 2011;286(22):19489–500.  https://doi.org/10.1074/jbc.M110.190330.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280(20):19883–7.  https://doi.org/10.1074/jbc.M413274200.PubMedGoogle Scholar
  45. 45.
    Boudin E, Yorgan TA, Fijalkowski I, Sonntag S, Steenackers E, Hendrickx G, et al. The Lrp4 R1170Q homozygous knock-in mouse recapitulates the bone phenotype of sclerosteosis in humans. J Bone Miner Res. 2017;32(8):1739–49.  https://doi.org/10.1002/jbmr.3160.PubMedGoogle Scholar
  46. 46.
    Balemans W, Van Hul W. The genetics of low-density lipoprotein receptor-related protein 5 in bone: a story of extremes. Endocrinology. 2007;148(6):2622–9.  https://doi.org/10.1210/en.2006-1352.PubMedGoogle Scholar
  47. 47.
    Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346(20):1513–21.  https://doi.org/10.1056/NEJMoa013444.PubMedGoogle Scholar
  48. 48.
    Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70(1):11–9.  https://doi.org/10.1086/338450.PubMedGoogle Scholar
  49. 49.
    Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Benichou O, Scopelliti D, et al. Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet. 2003;72(3):763–71.  https://doi.org/10.1086/368277.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Boudin E, Fijalkowski I, Piters E, Van Hul W. The role of extracellular modulators of canonical Wnt signaling in bone metabolism and diseases. Semin Arthritis Rheum. 2013;43(2):220–40.  https://doi.org/10.1016/j.semarthrit.2013.01.004.PubMedGoogle Scholar
  51. 51.
    Balemans W, Devogelaer JP, Cleiren E, Piters E, Caussin E, Van Hul W. Novel LRP5 missense mutation in a patient with a high bone mass phenotype results in decreased DKK1-mediated inhibition of Wnt signaling. J Bone Miner Res. 2007;22(5):708–16.  https://doi.org/10.1359/jbmr.070211.PubMedGoogle Scholar
  52. 52.
    Balemans W, Piters E, Cleiren E, Ai M, Van Wesenbeeck L, Warman ML, et al. The binding between sclerostin and LRP5 is altered by DKK1 and by high-bone mass LRP5 mutations. Calcif Tissue Int. 2008;82(6):445–53.  https://doi.org/10.1007/s00223-008-9130-9.PubMedGoogle Scholar
  53. 53.
    Ellies DL, Viviano B, McCarthy J, Rey JP, Itasaki N, Saunders S, et al. Bone density ligand, sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Miner Res. 2006;21(11):1738–49.  https://doi.org/10.1359/jbmr.060810.PubMedGoogle Scholar
  54. 54.
    Glass DA 2nd, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8(5):751–64.  https://doi.org/10.1016/j.devcel.2005.02.017.PubMedGoogle Scholar
  55. 55.
    Kim SJ, Bieganski T, Sohn YB, Kozlowski K, Semenov M, Okamoto N, et al. Identification of signal peptide domain SOST mutations in autosomal dominant craniodiaphyseal dysplasia. Hum Genet. 2011;129(5):497–502.  https://doi.org/10.1007/s00439-011-0947-3.PubMedGoogle Scholar
  56. 56.
    Bieganski T, Baranska D, Miastkowska I, Kobielski A, Gorska-Chrzastek M, Kozlowski K. A boy with severe craniodiaphyseal dysplasia and apparently normal mother. Am J Med Genet A. 2007;143A(20):2435–43.  https://doi.org/10.1002/ajmg.a.31938.PubMedGoogle Scholar
  57. 57.
    Hurt RL. Osteopathia striata-Voorhoeve’s disease: report of a case presenting the features of osteopathia striata and osteopetrosis. J Bone Joint Surg Br. 1953;35-B(1):89–96.PubMedGoogle Scholar
  58. 58.
    Ward LM, Rauch F, Travers R, Roy M, Montes J, Chabot G, et al. Osteopathia striata with cranial sclerosis: clinical, radiological, and bone histological findings in an adolescent girl. Am J Med Genet A. 2004;129A(1):8–12.  https://doi.org/10.1002/ajmg.a.30107.PubMedGoogle Scholar
  59. 59.
    Jenkins ZA, van Kogelenberg M, Morgan T, Jeffs A, Fukuzawa R, Pearl E, et al. Germline mutations in WTX cause a sclerosing skeletal dysplasia but do not predispose to tumorigenesis. Nat Genet. 2009;41(1):95–100.  https://doi.org/10.1038/ng.270.PubMedGoogle Scholar
  60. 60.
    Perdu B, de Freitas F, Frints SG, Schouten M, Schrander-Stumpel C, Barbosa M, et al. Osteopathia striata with cranial sclerosis owing to WTX gene defect. J Bone Miner Res. 2010;25(1):82–90.  https://doi.org/10.1359/jbmr.090707.PubMedGoogle Scholar
  61. 61.
    Perdu B, Lakeman P, Mortier G, Koenig R, Lachmeijer AM, Van Hul W. Two novel WTX mutations underscore the unpredictability of male survival in osteopathia striata with cranial sclerosis. Clin Genet. 2011;80(4):383–8.  https://doi.org/10.1111/j.1399-0004.2010.01553.x.PubMedGoogle Scholar
  62. 62.
    Tanneberger K, Pfister AS, Kriz V, Bryja V, Schambony A, Behrens J. Structural and functional characterization of the Wnt inhibitor APC membrane recruitment 1 (Amer1). J Biol Chem. 2011;286(22):19204–14.  https://doi.org/10.1074/jbc.M111.224881.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Major MB, Camp ND, Berndt JD, Yi X, Goldenberg SJ, Hubbert C, et al. Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science. 2007;316(5827):1043–6.  https://doi.org/10.1126/science/1141515.PubMedGoogle Scholar
  64. 64.
    Martin K, Nathwani S, Bunyan R. Craniometaphyseal dysplasia: a review and novel oral manifestation. J Oral Biol Craniofac Res. 2017;7(2):134–6.  https://doi.org/10.1016/j.jobcr.2017.04.007.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Mughal MZ, Padidela R. Miscellaneous bone disorders. Endocr Dev. 2015;28:226–46.  https://doi.org/10.1159/000381048.PubMedGoogle Scholar
  66. 66.
    Reichenberger E, Tiziani V, Watanabe S, Park L, Ueki Y, Santanna C, et al. Autosomal dominant craniometaphyseal dysplasia is caused by mutations in the transmembrane protein ANK. Am J Hum Genet. 2001;68(6):1321–6.  https://doi.org/10.1086/320612.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Hu Y, Chen IP, de Almeida S, Tiziani V, Do Amaral CM, Gowrishankar K, et al. A novel autosomal recessive GJA1 missense mutation linked to craniometaphyseal dysplasia. PLoS One. 2013;8(8):e73576.  https://doi.org/10.1371/journal.pone.0073576.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Gurley KA, Reimer RJ, Kingsley DM. Biochemical and genetic analysis of ANK in arthritis and bone disease. Am J Hum Genet. 2006;79(6):1017–29.  https://doi.org/10.1086/509881.PubMedPubMedCentralGoogle Scholar
  69. 69.
    • Chen IP, Luxmi R, Kanaujiya J, Hao Z, Reichenberger EJ. Craniometaphyseal dysplasia mutations in ANKH negatively affect human induced pluripotent stem cell differentiation into osteoclasts. Stem Cell Rep. 2017;9(5):1369–76.  https://doi.org/10.1016/j.stemcr.2017.09.016. This study explores the use of hiPSCs in in vitro functional analyses of osteoclast biology and offers a new tool for investigating molecular mechanisms in diseases as demonstrated by the results on ANKH mutations to study craniometaphyseal dysplasia. Google Scholar
  70. 70.
    Chen IP, Wang L, Jiang X, Aguila HL, Reichenberger EJ. A Phe377del mutation in ANK leads to impaired osteoblastogenesis and osteoclastogenesis in a mouse model for craniometaphyseal dysplasia (CMD). Hum Mol Genet. 2011;20(5):948–61.  https://doi.org/10.1093/hmg/ddq541.PubMedGoogle Scholar
  71. 71.
    Stains JP, Civitelli R. Connexins in the skeleton. Semin Cell Dev Biol. 2016;50:31–9.  https://doi.org/10.1016/j.semcdb.2015.12.017.PubMedGoogle Scholar
  72. 72.
    Ya J, Erdtsieck-Ernste EB, de Boer PA, van Kempen MJ, Jongsma H, Gros D, et al. Heart defects in connexin43-deficient mice. Circ Res. 1998;82(3):360–6.PubMedGoogle Scholar
  73. 73.
    Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, et al. Cardiac malformation in neonatal mice lacking connexin43. Science. 1995;267(5205):1831–4.PubMedGoogle Scholar
  74. 74.
    Lecanda F, Warlow PM, Sheikh S, Furlan F, Steinberg TH, Civitelli R. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol. 2000;151(4):931–44.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Chung DJ, Castro CH, Watkins M, Stains JP, Chung MY, Szejnfeld VL, et al. Low peak bone mass and attenuated anabolic response to parathyroid hormone in mice with an osteoblast-specific deletion of connexin43. J Cell Sci. 2006;119(Pt 20):4187–98.  https://doi.org/10.1242/jcs.03162. PubMedGoogle Scholar
  76. 76.
    Watkins M, Grimston SK, Norris JY, Guillotin B, Shaw A, Beniash E, et al. Osteoblast connexin43 modulates skeletal architecture by regulating both arms of bone remodeling. Mol Biol Cell. 2011;22(8):1240–51.  https://doi.org/10.1091/mbc.E10-07-0571.PubMedPubMedCentralGoogle Scholar
  77. 77.
    • Moorer MC, Hebert C, Tomlinson RE, Iyer SR, Chason M, Stains JP. Defective signaling, osteoblastogenesis and bone remodeling in a mouse model of connexin 43 C-terminal truncation. J Cell Sci. 2017;130(3):531–40.  https://doi.org/10.1242/jcs.197285. The results reported in this work expand on the knowledge on connexin 43 in the regulation of cell function and bone acquisition using a truncated connexin 43 mouse model. PubMedPubMedCentralGoogle Scholar
  78. 78.
    Moorer MC, Stains JP. Connexin43 and the intercellular signaling network regulating skeletal remodeling. Curr Osteoporos Rep. 2017;15(1):24–31.  https://doi.org/10.1007/s11914-017-0345-4.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Janssens K, Vanhoenacker F, Bonduelle M, Verbruggen L, Van Maldergem L, Ralston S, et al. Camurati-Engelmann disease: review of the clinical, radiological, and molecular data of 24 families and implications for diagnosis and treatment. J Med Genet. 2006;43(1):1–11.  https://doi.org/10.1136/jmg.2005.033522. PubMedPubMedCentralGoogle Scholar
  80. 80.
    Di Carlo M, Silveri F, Tardella M, Carotti M, Salaffi F. Multiple diaphyseal sclerosis (Ribbing disease): what about neridronate? Osteoporos Int. 2016;27(10):3127–31.  https://doi.org/10.1007/s00198-016-3604-9.PubMedGoogle Scholar
  81. 81.
    Janssens K, Gershoni-Baruch R, Guanabens N, Migone N, Ralston S, Bonduelle M, et al. Mutations in the gene encoding the latency-associated peptide of TGF-beta 1 cause Camurati-Engelmann disease. Nat Genet. 2000;26(3):273–5.  https://doi.org/10.1038/81563.PubMedGoogle Scholar
  82. 82.
    Kinoshita A, Saito T, Tomita H, Makita Y, Yoshida K, Ghadami M, et al. Domain-specific mutations in TGFB1 result in Camurati-Engelmann disease. Nat Genet. 2000;26(1):19–20.  https://doi.org/10.1038/79128. PubMedGoogle Scholar
  83. 83.
    Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15(7):757–65.  https://doi.org/10.1038/nm.1979.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Whyte MP, Totty WG, Novack DV, Zhang X, Wenkert D, Mumm S. Camurati-Engelmann disease: unique variant featuring a novel mutation in TGFbeta1 encoding transforming growth factor beta 1 and a missense change in TNFSF11 encoding RANK ligand. J Bone Miner Res. 2011;26(5):920–33.  https://doi.org/10.1002/jbmr.283.PubMedGoogle Scholar
  85. 85.
    Nishimura G, Nishimura H, Tanaka Y, Makita Y, Ikegawa S, Ghadami M, et al. Camurati-Engelmann disease type II: progressive diaphyseal dysplasia with striations of the bones. Am J Med Genet. 2002;107(1):5–11.PubMedGoogle Scholar
  86. 86.
    Seeger LL, Hewel KC, Yao L, Gold RH, Mirra JM, Chandnani VP, et al. Ribbing disease (multiple diaphyseal sclerosis): imaging and differential diagnosis. AJR Am J Roentgenol. 1996;167(3):689–94.  https://doi.org/10.2214/ajr.167.3.8751682.PubMedGoogle Scholar
  87. 87.
    Nieminen P, Lukinmaa PL, Alapulli H, Methuen M, Suojarvi T, Kivirikko S, et al. DLX3 homeodomain mutations cause tricho-dento-osseous syndrome with novel phenotypes. Cells Tissues Organs. 2011;194(1):49–59.  https://doi.org/10.1159/000322561. PubMedGoogle Scholar
  88. 88.
    Li Y, Han D, Zhang H, Liu H, Wong S, Zhao N, et al. Morphological analyses and a novel de novo DLX3 mutation associated with tricho-dento-osseous syndrome in a Chinese family. Eur J Oral Sci. 2015;123(4):228–34.  https://doi.org/10.1111/eos.12197.PubMedGoogle Scholar
  89. 89.
    Price JA, Wright JT, Kula K, Bowden DW, Hart TC. A common DLX3 gene mutation is responsible for tricho-dento-osseous syndrome in Virginia and North Carolina families. J Med Genet. 1998;35(10):825–8.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Price JA, Bowden DW, Wright JT, Pettenati MJ, Hart TC. Identification of a mutation in DLX3 associated with tricho-dento-osseous (TDO) syndrome. Hum Mol Genet. 1998;7(3):563–9.PubMedGoogle Scholar
  91. 91.
    Zhao N, Han D, Liu H, Li Y, Wong SW, Cao Z, et al. Senescence: novel insight into DLX3 mutations leading to enhanced bone formation in tricho-dento-osseous syndrome. Sci Rep. 2016;6:38680.  https://doi.org/10.1038/srep38680.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Lenz WD, Majewski F. A generalized disorders of the connective tissues with progeria, choanal atresia, symphalangism, hypoplasia of dentine and craniodiaphyseal hypostosis. Birth Defects Orig Artic Ser. 1974;10(12):133–6.PubMedGoogle Scholar
  93. 93.
    Majewski F. Lenz-Majewski hyperostotic dwarfism: reexamination of the original patient. Am J Med Genet. 2000;93(4):335–8.PubMedGoogle Scholar
  94. 94.
    Sousa SB, Jenkins D, Chanudet E, Tasseva G, Ishida M, Anderson G, et al. Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome. Nat Genet. 2014;46(1):70–6.  https://doi.org/10.1038/ng.2829.PubMedGoogle Scholar
  95. 95.
    Wattanasirichaigoon D, Visudtibhan A, Jaovisidha S, Laothamatas J, Chunharas A. Expanding the phenotypic spectrum of Lenz-Majewski syndrome: facial palsy, cleft palate and hydrocephalus. Clin Dysmorphol. 2004;13(3):137–42.PubMedGoogle Scholar
  96. 96.
    Whyte MP, Blythe A, McAlister WH, Nenninger AR, Bijanki VN, Mumm S. Lenz-Majewski hyperostotic dwarfism with hyperphosphoserinuria from a novel mutation in PTDSS1 encoding phosphatidylserine synthase 1. J Bone Miner Res. 2015;30(4):606–14.  https://doi.org/10.1002/jbmr.2398.PubMedGoogle Scholar
  97. 97.
    Xu C, Zheng Z, Fang L, Zhao N, Lin Z, Liang T, et al. Phosphatidylserine enhances osteogenic differentiation in human mesenchymal stem cells via ERK signal pathways. Mater Sci Eng C Mater Biol Appl. 2013;33(3):1783–8.  https://doi.org/10.1016/j.msec.2013.01.005.PubMedGoogle Scholar
  98. 98.
    Ozdemirel AE, Cakit BD, Erdem HR, Koc B. A rare benign disorder mimicking metastasis on radiographic examination: a case report of osteopoikilosis. Rheumatol Int. 2011;31(8):1113–6.  https://doi.org/10.1007/s00296-010-1664-2.PubMedGoogle Scholar
  99. 99.
    Mahbouba J, Mondher G, Amira M, Walid M, Naceur B. Osteopoikilosi: a rare cause of bone pain. Caspian J Intern Med. 2015;6(3):177–9.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Hellemans J, Preobrazhenska O, Willaert A, Debeer P, Verdonk PC, Costa T, et al. Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nat Genet. 2004;36(11):1213–8.  https://doi.org/10.1038/ng1453.PubMedGoogle Scholar
  101. 101.
    Ehrig T, Cockerell CJ. Buschke-Ollendorff syndrome: report of a case and interpretation of the clinical phenotype as a type 2 segmental manifestation of an autosomal dominant skin disease. J Am Acad Dermatol. 2003;49(6):1163–6.  https://doi.org/10.1016/S0190. PubMedGoogle Scholar
  102. 102.
    Mumm S, Wenkert D, Zhang X, McAlister WH, Mier RJ, Whyte MP. Deactivating germline mutations in LEMD3 cause osteopoikilosis and Buschke-Ollendorff syndrome, but not sporadic melorheostosis. J Bone Miner Res. 2007;22(2):243–50.  https://doi.org/10.1359/jbmr.061102. PubMedGoogle Scholar
  103. 103.
    Kotwal A, Clarke BL. Melorheostosis: a rare sclerosing bone dysplasia. Curr Osteoporos Rep. 2017;15(4):335–42.  https://doi.org/10.1007/s11914-017-0375-y.PubMedGoogle Scholar
  104. 104.
    Hellemans J, Debeer P, Wright M, Janecke A, Kjaer KW, Verdonk PC, et al. Germline LEMD3 mutations are rare in sporadic patients with isolated melorheostosis. Hum Mutat. 2006;27(3):290.  https://doi.org/10.1002/humu.9403.PubMedGoogle Scholar
  105. 105.
    Whyte MP, Griffith M, Trani L, Mumm S, Gottesman GS, McAlister WH, et al. Melorheostosis: exome sequencing of an associated dermatosis implicates postzygotic mosaicism of mutated KRAS. Bone. 2017;101:145–55.  https://doi.org/10.1016/j.bone.2017.04.010.PubMedGoogle Scholar
  106. 106.
    Alonso N, Calero-Paniagua I, Del Pino-Montes J. Clinical and genetic advances in Paget’s disease of bone: a review. Clin Rev Bone Miner Metab. 2017;15(1):37–48.  https://doi.org/10.1007/s12018-016-9226-0.PubMedGoogle Scholar
  107. 107.
    Hocking LJ, Lucas GJ, Daroszewska A, Mangion J, Olavesen M, Cundy T, et al. Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget’s disease. Hum Mol Genet. 2002;11(22):2735–9.PubMedGoogle Scholar
  108. 108.
    Laurin N, Brown JP, Morissette J, Raymond V. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet. 2002;70(6):1582–8.  https://doi.org/10.1086/340731.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Albagha OM, Visconti MR, Alonso N, Langston AL, Cundy T, Dargie R, et al. Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget’s disease of bone. Nat Genet. 2010;42(6):520–4.  https://doi.org/10.1038/ng.562.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Albagha OM, Wani SE, Visconti MR, Alonso N, Goodman K, Brandi ML, et al. Genome-wide association identifies three new susceptibility loci for Paget’s disease of bone. Nat Genet. 2011;43(7):685–9.  https://doi.org/10.1038/ng.845.PubMedGoogle Scholar
  111. 111.
    Gianfrancesco F, Rendina D, Di Stefano M, Mingione A, Esposito T, Merlotti D, et al. A nonsynonymous TNFRSF11A variation increases NFkappaB activity and the severity of Paget’s disease. J Bone Miner Res. 2012;27(2):443–52.  https://doi.org/10.1002/jbmr.542.PubMedGoogle Scholar
  112. 112.
    • Vallet M, Soares DC, Wani S, Sophocleous A, Warner J, Salter DM, et al. Targeted sequencing of the Paget’s disease associated 14q32 locus identifies several missense coding variants in RIN3 that predispose to Paget’s disease of bone. Hum Mol Genet. 2015;24(11):3286–95.  https://doi.org/10.1093/hmg/ddv068. The sequencing effort reported in this study was the first to look into the genetic variation in the RIN3 gene in the context of human disease. This gene has been implicated in bone research following GWAS on Paget’s disease and bone and BMD. PubMedPubMedCentralGoogle Scholar
  113. 113.
    Obaid R, Wani SE, Azfer A, Hurd T, Jones R, Cohen P, et al. Optineurin negatively regulates osteoclast differentiation by modulating NF-kappaB and interferon signaling: implications for Paget’s disease. Cell Rep. 2015;13(6):1096–102.  https://doi.org/10.1016/j.celrep.2015.09.071.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Laurier E, Amiable N, Gagnon E, Brown JP, Michou L. Effect of a rare genetic variant of TM7SF4 gene on osteoclasts of patients with Paget’s disease of bone. BMC Med Genet. 2017;18(1):133.  https://doi.org/10.1186/s12881-017-0495-3.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Watts GDJ, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004;36:377–81. https://doi.org/10.1038/ng1332 https://www.nature.com/articles/ng1332#supplementary-information.Google Scholar
  116. 116.
    Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature. 2013;495(7442):467–73.  https://doi.org/10.1038/nature11922.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Qi X, Pang Q, Wang J, Zhao Z, Wang O, Xu L, et al. Familial early-onset Paget’s disease of bone associated with a novel hnRNPA2B1 mutation. Calcif Tissue Int. 2017;101(2):159–69.  https://doi.org/10.1007/s00223-017-0269-0.PubMedGoogle Scholar
  118. 118.
    Chung PY, Beyens G, de Freitas F, Boonen S, Geusens P, Vanhoenacker F, et al. Indications for a genetic association of a VCP polymorphism with the pathogenesis of sporadic Paget’s disease of bone, but not for TNFSF11 (RANKL) and IL-6 polymorphisms. Mol Genet Metab. 2011;103(3):287–92.  https://doi.org/10.1016/j.ymgme.2011.03.021.PubMedGoogle Scholar
  119. 119.
    Usategui-Martin R, Calero-Paniagua I, Garcia-Aparicio J, Corral-Gudino L, Del Pino Montes J, Gonzalez Sarmiento R. VAV3 gene polymorphism is associated with Paget’s disease of bone. Genet Test Mol Biomarkers. 2016;20(6):335–7.  https://doi.org/10.1089/gtmb.2015.0292.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Faccio R, Teitelbaum SL, Fujikawa K, Chappel J, Zallone A, Tybulewicz VL, et al. Vav3 regulates osteoclast function and bone mass. Nat Med. 2005;11(3):284–90.  https://doi.org/10.1038/nm1194.PubMedGoogle Scholar
  121. 121.
    Usategui-Martin R, Garcia-Aparicio J, Corral-Gudino L, Calero-Paniagua I, Del Pino-Montes J, Gonzalez Sarmiento R. Polymorphisms in autophagy genes are associated with Paget disease of bone. PLoS One. 2015;10(6):e0128984.  https://doi.org/10.1371/journal.pone.0128984.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456(7219):264–8.  https://doi.org/10.1038/nature07383.PubMedGoogle Scholar
  123. 123.
    Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432(7020):1032–6.  https://doi.org/10.1038/nature03029.PubMedGoogle Scholar
  124. 124.
    • Lu B, Jiao Y, Wang Y, Dong J, Wei M, Cui B, et al. A FKBP5 mutation is associated with Paget’s disease of bone and enhances osteoclastogenesis. Exp Mol Med. 2017;49(5):e336.  https://doi.org/10.1038/emm.2017.64. Using WES, the authors identified mutations in a previously unreported gene for Paget’s disease of bone and deliver functional evidence for its potential involvement. PubMedPubMedCentralGoogle Scholar
  125. 125.
    Divisato G, Formicola D, Esposito T, Merlotti D, Pazzaglia L, Del Fattore A, et al. ZNF687 mutations in severe Paget disease of bone associated with giant cell tumor. Am J Hum Genet. 2016;98(2):275–86.  https://doi.org/10.1016/j.ajhg.2015.12.016.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Divisato G, di Carlo FS, Petrillo N, Esposito T, Gianfrancesco F. ZNF687 mutations are frequently found in pagetic patients from South Italy: implication in the pathogenesis of Paget’s disease of bone. Clin Genet. 2018;  https://doi.org/10.1111/cge.13247.
  127. 127.
    Divisato G, Scotto di Carlo F, Pazzaglia L, Rizzo R, Coviello DA, Benassi MS, et al. The distinct clinical features of giant cell tumor of bone in pagetic and non-pagetic patients are associated with genetic, biochemical and histological differences. Oncotarget. 2017;8(38):63121–31.  https://doi.org/10.18632/oncotarget.18670. PubMedPubMedCentralGoogle Scholar
  128. 128.
    Greenblatt MB, Park KH, Oh H, Kim JM, Shin DY, Lee JM, et al. CHMP5 controls bone turnover rates by dampening NF-kappaB activity in osteoclasts. J Exp Med. 2015;212(8):1283–301.  https://doi.org/10.1084/jem.20150407.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Michou L, Conceicao N, Morissette J, Gagnon E, Miltenberger-Miltenyi G, Siris ES, et al. Genetic association study of UCMA/GRP and OPTN genes (PDB6 locus) with Paget’s disease of bone. Bone. 2012;51(4):720–8.  https://doi.org/10.1016/j.bone.2012.06.028.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Beyens G, Daroszewska A, de Freitas F, Fransen E, Vanhoenacker F, Verbruggen L, et al. Identification of sex-specific associations between polymorphisms of the osteoprotegerin gene, TNFRSF11B, and Paget’s disease of bone. J Bone Miner Res. 2007;22(7):1062–71.  https://doi.org/10.1359/jbmr.070333.PubMedGoogle Scholar
  131. 131.
    Cundy T, Hegde M, Naot D, Chong B, King A, Wallace R, et al. A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum Mol Genet. 2002;11(18):2119–27.PubMedGoogle Scholar
  132. 132.
    Nakatsuka K, Nishizawa Y, Ralston SH. Phenotypic characterization of early onset Paget’s disease of bone caused by a 27-bp duplication in the TNFRSF11A gene. J Bone Miner Res. 2003;18(8):1381–5.  https://doi.org/10.1359/jbmr.2003.18.8.1381.PubMedGoogle Scholar
  133. 133.
    Whyte MP, Hughes AE. Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J Bone Miner Res. 2002;17(1):26–9.  https://doi.org/10.1359/jbmr.2002.17.1.26.PubMedGoogle Scholar
  134. 134.
    Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet. 2000;24(1):45–8.  https://doi.org/10.1038/71667.PubMedGoogle Scholar
  135. 135.
    Whyte MP, Tau C, McAlister WH, Zhang X, Novack DV, Preliasco V, et al. Juvenile Paget’s disease with heterozygous duplication within TNFRSF11A encoding RANK. Bone. 2014;68:153–61.  https://doi.org/10.1016/j.bone.2014.07.019.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Donath J, Speer G, Kosa JP, Arvai K, Balla B, Juhasz P, et al. Polymorphisms of CSF1 and TM7SF4 genes in a case of mild juvenile Paget’s disease found using next-generation sequencing. Croat Med J. 2015;56(2):145–51.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Troen BR. The role of cathepsin K in normal bone resorption. Drug News Perspect. 2004;17(1):19–28.PubMedGoogle Scholar
  138. 138.
    Bromme D, Lecaille F. Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opin Investig Drugs. 2009;18(5):585–600.  https://doi.org/10.1517/13543780902832661.PubMedPubMedCentralGoogle Scholar
  139. 139.
    • Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M, Thomas T, et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med. 2017;377(15):1417–27.  https://doi.org/10.1056/NEJMoa1708322. The authors demonstrate that preceeding alendronate treatment with romosozumab administration decreases the risk of fracture more significantly than that of alendronate treatment alone in postmenopausal patients with high risk of fracture. PubMedGoogle Scholar
  140. 140.
    McClung MR. Sclerostin antibodies in osteoporosis: latest evidence and therapeutic potential. Ther Adv Musculoskelet Dis. 2017;9(10):263–70.  https://doi.org/10.1177/1759720X17726744.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Raphaël De Ridder
    • 1
  • Eveline Boudin
    • 1
  • Geert Mortier
    • 1
  • Wim Van Hul
    • 1
  1. 1.Centre of Medical GeneticsUniversity of Antwerp & University Hospital AntwerpAntwerpBelgium

Personalised recommendations