The Role of Matrix Composition in the Mechanical Behavior of Bone

Biomechanics (G Niebur and J Wallace, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Biomechanics

Abstract

Purpose of Review

While thinning of the cortices or trabeculae weakens bone, age-related changes in matrix composition also lower fracture resistance. This review summarizes how the organic matrix, mineral phase, and water compartments influence the mechanical behavior of bone, thereby identifying characteristics important to fracture risk.

Recent Findings

In the synthesis of the organic matrix, tropocollagen experiences various post-translational modifications that facilitate a highly organized fibril of collagen I with a preferred orientation giving bone extensibility and several toughening mechanisms. Being a ceramic, mineral is brittle but increases the strength of bone as its content within the organic matrix increases. With time, hydroxyapatite-like crystals experience carbonate substitutions, the consequence of which remains to be understood. Water participates in hydrogen bonding with organic matrix and in electrostatic attractions with mineral phase, thereby providing stability to collagen-mineral interface and ductility to bone.

Summary

Clinical tools sensitive to age- and disease-related changes in matrix composition that the affect mechanical behavior of bone could potentially improve fracture risk assessment.

Keywords

Mineral Type 1 collagen Bone quality Advanced glycation end-product Post-translation modifications Water 

Notes

Acknowledgements

We thank Dr. Mathilde Granke for developing the hierarchical figure of toughening mechanisms. Part of this material was supported by National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR067871). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or other funding agencies.

Compliance with Ethical Standards

Conflict of Interest

Jeffry Nyman reports grants for the following: NIH/NIAMS AR063157, NIH/NIAMS AR067871, VA BLR&D BX001018, and NSF 1068988, during the conduct of the study; non-financial support from ActiveLife Scientific, Inc.; and holds a patent, US Patent 8,923,948 System, pertaining to the measurement of bound water and pore water as an indicator of fracture risk (not licensed and no royalties received).

Amy Creecy reports grants from NIH/NIAMS and NIH/NIDDK, during the conduct of the study.

Mustafa Unal reports no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Nyman JS, Makowski AJ. The contribution of the extracellular matrix to the fracture resistance of bone. Curr Osteoporos Rep. 2012;10(2):169–77.CrossRefPubMedGoogle Scholar
  2. 2.
    Nyman JS, Granke M, Singleton RC, Pharr GM. Tissue-level mechanical properties of bone contributing to fracture risk. Curr Osteoporos Rep. Springer US. 2016;14(4):138–50.CrossRefGoogle Scholar
  3. 3.
    McCloskey EV, Oden A, Harvey NC, Leslie WD, Hans D, Johansson H, et al. A Meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Mineral Res. 2016;31(5):940–8.CrossRefGoogle Scholar
  4. 4.
    Siris ES, Chen Y-T, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164(10):1108–12.CrossRefPubMedGoogle Scholar
  5. 5.
    Manhard MK, Nyman JS, Does MD. Advances in imaging approaches to fracture risk evaluation. Transl Res. 2017;181:1–14.CrossRefPubMedGoogle Scholar
  6. 6.
    Sundh D, Nilsson AG, Nilsson M, Johansson L, Mellstrom D, Lorentzon M. Increased cortical porosity in women with hip fracture. J Intern Med. 2017;281(5):496–506.CrossRefPubMedGoogle Scholar
  7. 7.
    Kral R, Osima M, Borgen TT, Vestgaard R, Richardsen E, Bjørnerem Å. Increased cortical porosity and reduced cortical thickness of the proximal femur are associated with nonvertebral fracture independent of Fracture Risk Assessment Tool and Garvan estimates in postmenopausal women. Roeder RK, Ed. PLoS One. 2017;12(9):e0185363–15.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Liu XS, Stein EM, Zhou B, Zhang CA, Nickolas TL, Cohen A, et al. Individual trabecula segmentation (ITS)-based morphological analyses and micro finite element analysis of HR-pQCT images discriminate postmenopausal fragility fractures independent of DXA measurements. J Bone Miner Res. 2011;27(2):263–72.CrossRefGoogle Scholar
  9. 9.
    Díez-Pérez A, Bouxsein ML, Eriksen EF, Khosla S, Nyman JS, Papapoulos S, et al. Technical note: recommendations for a standard procedure to assess cortical bone at the tissue-level in vivo using impact microindentation. Bone Rep. 2016;5:181–5.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Allen MR, McNerny EM, Organ JM, Wallace JM. True gold or pyrite: a review of reference point indentation for assessing bone mechanical properties in vivo. J Bone Miner Res. 2015;30(9):1539–50.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Malgo F, Hamdy NAT, Papapoulos SE, Appelman-Dijkstra NM. Bone material strength as measured by microindentation in vivo is decreased in patients with fragility fractures independently of bone mineral density. J Clin Endocrinol Metab. 2015;100(5):2039–45.CrossRefPubMedGoogle Scholar
  12. 12.
    Sosa DD, Eriksen EF. Reduced bone material strength is associated with increased risk and severity of osteoporotic fractures. An impact microindentation study. Calcified Tissue Int. 2017;101(1):34–42.CrossRefGoogle Scholar
  13. 13.
    • Rozental TD, Walley KC, Demissie S, Caksa S, Martinez-Betancourt A, Parker AM, et al. Bone material strength index as measured by impact microindentation in postmenopausal women with distal radius and hip fractures. J Bone Miner Res. 2017;1-22. An independent study of the micro-indentation device called the OsteoProbe found that bone material properties are compromised in patients with distal radius fractures compared to age-match subjects without history of fragility fractures. Google Scholar
  14. 14.
    Rudäng R, Zoulakis M, Sundh D, Brisby H, Díez-Pérez A, Johansson L, et al. Bone material strength is associated with areal BMD but not with prevalent fractures in older women. Osteoporos Int. 2016;27(4):1585–92.CrossRefPubMedGoogle Scholar
  15. 15.
    Farr JN, Drake MT, Amin S, Melton LJ, McCready LK, Khosla S. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res. 2014;29(4):787–95.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Furst JR, Bandeira LC, Fan W-W, Agarwal S, Nishiyama KK, McMahon DJ, et al. Advanced glycation end products and bone material strength in Type 2 diabetes. J Clin Endocrinol Metab. 2016;101(6):2502–10.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Nilsson AG, Sundh D, Johansson L, Nilsson M, Mellström D, Rudäng R, et al. Type 2 diabetes mellitus is associated with better bone microarchitecture but lower bone material strength and poorer physical function in elderly women: a population-based study. J Bone Miner Res. 2017;86(9):32–10.Google Scholar
  18. 18.
    Schwartz AV. Epidemiology of fractures in type 2 diabetes. Elsevier B.V. Bone. 2016;82:2–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM. High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech. 2000;33(12):1575–83.CrossRefPubMedGoogle Scholar
  20. 20.
    Koester KJ, Ager JW, Ritchie RO. The true toughness of human cortical bone measured with realistically short cracks. Nat Mater. 2008;7(8):672–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Hansen U, Zioupos P, Simpson R, Currey JD, Hynd D. The effect of strain rate on the mechanical properties of human cortical bone. J Biomech Eng. 2008;130(1):011011.CrossRefPubMedGoogle Scholar
  22. 22.
    Landrigan MD, Roeder RK. Systematic error in mechanical measures of damage during four-point bending fatigue of cortical bone. J Biomech. 2009;42(9):1212–7.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yeni YN, Shaffer RR, Baker KC, Dong XN, Grimm MJ, Les CM, et al. The effect of yield damage on the viscoelastic properties of cortical bone tissue as measured by dynamic mechanical analysis. J Biomed Mater Res A. 2007;82(3):530–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Zimmermann EA, Busse B, Ritchie RO. The fracture mechanics of human bone: influence of disease and treatment. Bonekey Rep. 2015;4:743.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Terajima M, Perdivara I, Sricholpech M, Deguchi Y, Pleshko N, Tomer KB, et al. Glycosylation and cross-linking in bone type I collagen. J Biol Chem. 2014;289(33):22636–47.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Garnero P. The role of collagen organization on the properties of bone. Calcified Tissue Int. 2015;1–12.Google Scholar
  27. 27.
    Gautieri A, Vesentini S, Redaelli A, Buehler MJ. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 2011;11(2):757–66.CrossRefPubMedGoogle Scholar
  28. 28.
    • Nair AK, Gautieri A, Chang S-W, Buehler MJ. Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun. 2013;4:1724. Using a three-dimensional, full-atomistic model of mineralized collagen fibrils, this study found that the mineral phase of bone can assume four times more stress than the collagen network while collagen predominately confers extensibility of the mineralized fibrils. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gallant MA, Brown DM, Hammond M, Wallace JM, Du J, Deymier-Black AC, et al. Bone cell-independent benefits of raloxifene on the skeleton: a novel mechanism for improving bone material properties. Bone. 2014;61:191–200.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Burton B, Gaspar A, Josey D, Tupy J, Grynpas MD, Willett TL. Bone embrittlement and collagen modifications due to high-dose gamma-irradiation sterilization. Bone. 2014;61(C):71–81.CrossRefPubMedGoogle Scholar
  31. 31.
    Eyre DR, Weis MA. Bone collagen: new clues to its mineralization mechanism from recessive osteogenesis imperfecta. Calcified Tissue Int. 2013;93(4):338–47.CrossRefGoogle Scholar
  32. 32.
    Cabral WA, Perdivara I, Weis M, Terajima M, Blissett AR, Chang W, et al. Abnormal Type I Collagen Post-translational Modification and Crosslinking in a Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta. Cohn D, Ed. PLoS Genet. 2014;10(6):e1004465–17.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    • Schrof S, Varga P, Hesse B, Schöne M, Schütz R, Masic A, et al. Multimodal correlative investigation of the interplaying micro-architecture, chemical composition and mechanical properties of human cortical bone tissue reveals predominant role of fibrillar organization in determining microelastic tissue properties. Acta Biomater. 2016;44(C):51–64. Using scanning acoustic microscopy to image modulus across lamellae, synchrotron micro-compute tomography to assess mineral density of osteons, and Raman spectroscopy to map Amide I over lamellae, this study found that variations in elastic properties of lamellae in human cortical bone are due to shifting orientation of collagen fibrils, not to varying mineral density. CrossRefPubMedGoogle Scholar
  34. 34.
    Granke M, Gourrier A, Rupin F, Raum K, Peyrin F, Burghammer M, et al. Microfibril orientation dominates the microelastic properties of human bone tissue at the lamellar length scale. Roeder RK, Ed. PLoS One. 2013;8(3):e58043.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Peterlik H, Roschger P, Klaushofer K, Fratzl P. From brittle to ductile fracture of bone. Nat Mater. 2006;5(1):52–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Jimenez-Palomar I, Shipov A, Shahar R, Barber AH. Structural orientation dependent sub-lamellar bone mechanics. J Mech Behav Biomed Mater. Elsevier. 2015;52(C):63–71.CrossRefGoogle Scholar
  37. 37.
    Makowski AJ, Uppuganti S, Wadeer SA, Whitehead JM, Rowland BJ, Granke M, et al. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness. Elsevier B.V. Bone. 2014;62:1–9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Karunaratne A, Xi L, Bentley L, Sykes D, Boyde A, Esapa CT, et al. Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis. Bone. The Authors. 2016;84(C):15–24.Google Scholar
  39. 39.
    •• McNerny EMB, Gong B, Morris MD, Kohn DH. Bone Fracture Toughness and Strength Correlate With Collagen Cross-Link Maturity in a Dose-Controlled Lathyrism Mouse Model. J Bone Miner Res. 2015;30(3):446–55. This mouse study confirmed previous work showing the distribution of enzymatic collagen crosslinking with toxin lowers bone strength without affecting tissue mineral density, but also reported that accompanying decrease in fracture toughness was related to a decrease in the mature to immature enzymatic crosslink ratio. CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Berteau J-P, Gineyts E, Pithioux M, Baron C, Boivin G, Lasaygues P, et al. Ratio between mature and immature enzymatic cross-links correlates with post-yield cortical bone behavior: an insight into greenstick fractures of the child fibula. Bone. 2015;79:190–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Uppuganti S, Granke M, Makowski AJ, Does MD, Nyman JS. Age-related changes in the fracture resistance of male Fischer F344 rat bone. Bone. 2016;83:220–32.CrossRefPubMedGoogle Scholar
  42. 42.
    Schmidt FN, Zimmermann EA, Campbell GM, Sroga GE, Püschel K, Amling M, et al. Assessment of collagen quality associated with non-enzymatic cross-links in human bone using Fourier-transform infrared imaging. Bone. 2017;97:243–51.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Karim L, Tang SY, Sroga GE, Vashishth D. Differences in non-enzymatic glycation and collagen cross-links between human cortical and cancellous bone. Osteoporos Int. Springer: London. 2013;24(9):2441–7.CrossRefGoogle Scholar
  44. 44.
    Willett TL, Sutty S, Gaspar A, Avery N, Grynpas M. In vitro non-enzymatic ribation reduces post-yield strain accommodation in cortical bone. Bone. 2013;52(2):611–22.CrossRefPubMedGoogle Scholar
  45. 45.
    • Poundarik AA, Wu P-C, Evis Z, Sroga GE, Ural A, Rubin M, et al. A direct role of collagen glycation in bone fracture. J Mech Behav Biomed Mater. 2015;52:120–30. Unlike previous studies incubating bovine bone in ribose, this study glycated human cortical bone and reported lower crack growth toughness, but no difference in crack initiation toughness, with less microcrack density being generated during crack propagation for ribose incubated samples than for the control samples. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Willems NMBK, Langenbach GEJ, Stoop R, Toonder den JMJ, Mulder L, Zentner A, et al. Higher number of pentosidine cross-links induced by ribose does not alter tissue stiffness of cancellous bone. Mater Sci Eng C Mater Biol Appl. 2014;42:15–21.CrossRefPubMedGoogle Scholar
  47. 47.
    Rubin MR, Paschalis EP, Poundarik A, Sroga GE, McMahon DJ, Gamsjaeger S, et al. Advanced glycation endproducts and bone material properties in type 1 diabetic mice. Geoffroy V, Ed. PLoS One. Public Library of Science. 2016;11(5):e0154700.CrossRefGoogle Scholar
  48. 48.
    Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater. 2005;4(8):612–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Poundarik AA, Diab T, Sroga GE, Ural A, Boskey AL, Gundberg CM, et al. Dilatational band formation in bone. Proc Natl Acad Sci. 2012;109(47):19178–83.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Maruyama N, Shibata Y, Mochizuki A, Yamada A, Maki K, Inoue T, et al. Bone micro-fragility caused by the mimetic aging processes in alpha-klotho deficient mice: in situ nano-indentation assessment of dilatational bands. Biomaterials. 2015;47:62–71.CrossRefPubMedGoogle Scholar
  51. 51.
    Bailey S, Karsenty G, Gundberg C, Vashishth D. Osteocalcin and osteopontin influence bone morphology and mechanical properties. Sun HB, Ed. Ann New York Acad Sci. 2017;1409(1):79–84.CrossRefGoogle Scholar
  52. 52.
    Pasteris JD, Yoder CH, Wopenka B. Molecular water in nominally unhydrated carbonated hydroxylapatite: the key to a better understanding of bone mineral. Am Mineralogist. 2014;99(1):16–27.CrossRefGoogle Scholar
  53. 53.
    Stock SR. The mineral–collagen interface in bone. Springer: US; 2015;15:1–19.Google Scholar
  54. 54.
    Pasteris JD. A mineralogical view of apatitic biomaterials. Am Mineralogist. 2016;101(12):2594–610.CrossRefGoogle Scholar
  55. 55.
    Currey JD. The mechanical consequences of variation in the mineral content of bone. J Biomech. 1969;2(1):1–11.CrossRefPubMedGoogle Scholar
  56. 56.
    Bala Y, Seeman E. Bone’s material constituents and their contribution to bone strength in health, disease, and treatment. Calcif Tissue Int. 2015;97(3):308–26.CrossRefPubMedGoogle Scholar
  57. 57.
    Almer JD, Stock SR. Micromechanical response of mineral and collagen phases in bone. J Struct Biol. 2007;157(2):365–70.CrossRefPubMedGoogle Scholar
  58. 58.
    Deymier-Black AC, Yuan F, Singhal A, Almer JD, Brinson LC, Dunand DC. Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone. Acta Biomater. 2012;8(1):253–61.CrossRefPubMedGoogle Scholar
  59. 59.
    Donnelly E. Methods for assessing bone quality: a review. Clin Orthop Relat Res. 2011;469(8):2128–38.CrossRefPubMedGoogle Scholar
  60. 60.
    Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporosis Int. 2017;1–17.Google Scholar
  61. 61.
    Akkus O, Adar F, Schaffler MB. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone. 2004;34(3):443–53.CrossRefPubMedGoogle Scholar
  62. 62.
    Donnelly E, Chen DX, Boskey AL, Baker SP, van der Meulen MCH. Contribution of mineral to bone structural behavior and tissue mechanical properties. Calcified Tissue Int. 2010;87(5):450–60.CrossRefGoogle Scholar
  63. 63.
    Zhang R, Gong H, Zhu D, Ma R, Fang J, Fan Y. Multi-level femoral morphology and mechanical properties of rats of different ages. Bone. 2015;76:76–87.CrossRefPubMedGoogle Scholar
  64. 64.
    Roschger P, Misof B, Paschalis E, Fratzl P, Klaushofer K. Changes in the Degree of Mineralization with Osteoporosis and its Treatment. Curr Osteoporos Rep. 2014;12(3):338–50.CrossRefPubMedGoogle Scholar
  65. 65.
    Vennin S, Desyatova A, Turner JA, Watson PA, Lappe JM, Recker RR, et al. Intrinsic material property differences in bone tissue from patients suffering low-trauma osteoporotic fractures, compared to matched non-fracturing women. Bone. 2017;97(C):233–42.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    •• Lloyd AA, Gludovatz B, Riedel C, Luengo EA, Saiyed R, Marty E, et al. Atypical fracture with long-term bisphosphonate therapy is associated with altered cortical composition and reduced fracture resistance. Proc Natl Acad Sci USA. 2017;114(33):8722–7. The study provides that the first evidence that atypical fractures associated with long-term bisphosphonate use involves an increase in the mineral-to-matrix ratio, a decrease in collagen maturity, and decrease in fracture toughness of human cortical bone. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Roschger P, Fratzl-Zelman N, Misof BM, Glorieux FH, Klaushofer K, Rauch F. Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations. Calcified Tissue Int. 2008;82(4):263–70.CrossRefGoogle Scholar
  68. 68.
    Fratzl-Zelman N, Schmidt I, Roschger P, Glorieux FH, Klaushofer K, Fratzl P, et al. Mineral particle size in children with osteogenesis imperfecta type I is not increased independently of specific collagen mutations. Bone. 2014;60:122–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Imbert L, Aurégan J-C, Pernelle K, Hoc T. Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level. Bone. 2014;65:18–24.CrossRefPubMedGoogle Scholar
  70. 70.
    Vanleene M, Porter A, Guillot P-V, Boyde A, Oyen M, Shefelbine S. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice. Bone. 2012;50(6):1317–23.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    •• Carriero A, Zimmermann EA, Paluszny A, Tang SY, Bale H, Busse B, et al. How tough is brittle bone? Investigating osteogenesis imperfecta in mouse bone. J Bone Miner Res. 2014;29(6):1392–401. This study assessed bone from wild-type, +/oim, and oim/oim mice across multiple length scales, and found that the brittle bone phenotype (low fracture toughness) of one type of osteogenesis imperfecta can be explain by a reduction in the capacity of fibrils to sustain large deformation likely due to high mineralization and high AGEs. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Fratzl-Zelman N, Bächinger HP, Vranka JA, Roschger P, Klaushofer K, Rauch F. Bone matrix hypermineralization in prolyl-3 hydroxylase 1 deficient mice. Bone. 2016;85:15–22.CrossRefPubMedGoogle Scholar
  73. 73.
    Vranka JA, Pokidysheva E, Hayashi L, Zientek K, Mizuno K, Ishikawa Y, et al. Prolyl 3-hydroxylase 1 null mice display abnormalities in fibrillar collagen-rich tissues such as tendons, skin, and bones. J Biol Chem. 2010;285(22):17253–62.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bousson V, Bergot C, Wu Y, Jolivet E, Zhou LQ, Laredo J-D. Greater tissue mineralization heterogeneity in femoral neck cortex from hip-fractured females than controls. A microradiographic study. Bone. 2011;48(6):1252–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Tamminen IS, Misof BM, Roschger P, Mäyränpää MK, Turunen MJ, Isaksson H, et al. Increased heterogeneity of bone matrix mineralization in pediatric patients prone to fractures: a biopsy study. J Bone Miner Res. 2014;29(5):1110–7.CrossRefPubMedGoogle Scholar
  76. 76.
    Gourion-Arsiquaud S, Lukashova L, Power J, Loveridge N, Reeve J, Boskey AL. Fourier transform infrared imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls. J Bone Miner Res. 2013;28(1):150–61.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Milovanovic P, Rakocevic Z, Djonic D, Zivkovic V, Hahn M, Nikolic S, et al. Nano-structural, compositional and micro-architectural signs of cortical bone fragility at the superolateral femoral neck in elderly hip fracture patients vs healthy aged controls. Exp Gerontol. 2014;55:19–28.CrossRefPubMedGoogle Scholar
  78. 78.
    Demirtas A, Curran E, Ural A. Assessment of the effect of reduced compositional heterogeneity on fracture resistance of human cortical bone using finite element modeling. Bone. 2016;91:92–101.CrossRefPubMedGoogle Scholar
  79. 79.
    • Granke M, Makowski AJ, Uppuganti S, Nyman JS. Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone. J Biomech. 2016;49(13):2748–55. Analyzing mineralization of single-edge notched beam specimens of human cortical bone with quantitative backscattered electron imaging, this study found that cortical porosity and cement line density were dominant predictors of fracture toughness over heterogeneity. CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    • Torres AM, Matheny JB, Keaveny TM, Taylor D, Rimnac CM, Hernandez CJ. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure. Proc Natl Acad Sci USA. 2016;201520539–6. Upon fluorescent labeling damage after 2 bouts of fatigue loading of trabecular bone, existing damage size, not local stress, dictated additional fatigue damage propagation indicating that the heterogeneity in matrix composition favors the formation damage within the center of trabeculae. Google Scholar
  81. 81.
    Farlay D, Panczer G, Rey C, Delmas PD, Boivin G. Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J Bone Miner Metab. 2010;28(4):433–45.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Bala Y, Farlay D, Boivin G. Bone mineralization: from tissue to crystal in normal and pathological contexts. Osteoporos Int. 2013;24(8):2153–66.CrossRefPubMedGoogle Scholar
  83. 83.
    Bi X, Patil CA, Lynch CC, Pharr GM, Mahadevan-Jansen A, Nyman JS. Raman and mechanical properties correlate at whole bone- and tissue-levels in a genetic mouse model. J Biomech. 2011;44(2):297–303.CrossRefPubMedGoogle Scholar
  84. 84.
    Yerramshetty JS, Akkus O. The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone. 2008;42(3):476–82.CrossRefPubMedGoogle Scholar
  85. 85.
    Hanschin RG, Stern WB. X-ray diffraction studies on the lattice perfection of human bone apatite (Crista iliaca). Bone. 1995;16(4 Suppl):355S–63S.CrossRefPubMedGoogle Scholar
  86. 86.
    Bala Y, Depalle B, Farlay D, Douillard T, Meille S, Follet H, et al. Bone micromechanical properties are compromised during long-term alendronate therapy independently of mineralization. J Bone Miner Res. 2012;27(4):825–34.CrossRefPubMedGoogle Scholar
  87. 87.
    Boskey A. Bone mineral crystal size. Osteoporos Int. 2003;14(Suppl 5):S16–20.Google Scholar
  88. 88.
    Pasteris JD, Wopenka B, Valsami-Jones E. Bone and tooth mineralization: why apatite? Elements. 2008;4(2):97–104.CrossRefGoogle Scholar
  89. 89.
    Makowski AJ, Granke M, Ayala OD, Uppuganti S, Mahadevan-Jansen A, Nyman JS. Applying full spectrum analysis to a Raman spectroscopic assessment of fracture toughness of human cortical bone. Appl Spectrosc. 2017;84(21):3702817718149.Google Scholar
  90. 90.
    Granke M, Does MD, Nyman JS. The role of water compartments in the material properties of cortical bone. Calcif Tissue Int. 2015;97(3):292–307.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Granke M, Makowski AJ, Uppuganti S, Does MD, Nyman JS. Identifying novel clinical surrogates to assess human bone fracture toughness. J Bone Miner Res. 2015;30(7):1290–300.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Manhard MK, Uppuganti S, Granke M, Gochberg DF, Nyman JS, Does MD. MRI-derived bound and pore water concentrations as predictors of fracture resistance. Bone. 2016;87:1–10.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Horch RA, Gochberg DF, Nyman JS, Does MD. Noninvasive predictors of human cortical bone mechanical properties: T2-discriminated 1H NMR compared with high resolution X-ray. PLoS One. 2011;6(1):e16359.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Bae WC, Chen PC, Chung CB, Masuda K, D'Lima D, Du J. Quantitative ultrashort echo time (UTE) MRI of human cortical bone: Correlation with porosity and biomechanical properties. J Bone Miner Res. 2012;27(4):848–57.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Unal M, Yang S, Akkus O. Molecular spectroscopic identification of the water compartments in bone. Bone. 2014;67:228–36.CrossRefPubMedGoogle Scholar
  96. 96.
    Unal M, Akkus O. Raman spectral classification of mineral- and collagen-bound water's associations to elastic and post-yield mechanical properties of cortical bone. Bone. 2015;81:315–26.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Bae WC, Patil S, Biswas R, Li S, Chang EY, Statum S, et al. Magnetic resonance imaging assessed cortical porosity is highly correlated with μCT porosity. Bone. 2014;66C:56–61.CrossRefGoogle Scholar
  98. 98.
    Wang X, Xu H, Huang Y, Gu S, Jiang JX. Coupling Effect of Water and Proteoglycans on the In Situ Toughness of Bone. J Bone Miner Res. 2016;31(5):1026–9.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Flanagan CD, Unal M, Akkus O, Rimnac CM. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage. J Mech Behav Biomed Mater. 2017;75:314–21.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mustafa Unal
    • 1
    • 2
    • 3
  • Amy Creecy
    • 1
    • 2
    • 4
  • Jeffry S. Nyman
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Department of Orthopaedic Surgery & RehabilitationVanderbilt University Medical CenterNashvilleUSA
  2. 2.Center for Bone BiologyVanderbilt University Medical CenterNashvilleUSA
  3. 3.Vanderbilt Biophotonics CenterVanderbilt UniversityNashvilleUSA
  4. 4.Department of Biomedical EngineeringVanderbilt UniversityNashvilleUSA
  5. 5.Vanderbilt Orthopedic InstituteMedical Center East, South TowerNashvilleUSA

Personalised recommendations