Current Osteoporosis Reports

, Volume 15, Issue 4, pp 376–384 | Cite as

Gut Microbiome and Bone: to Build, Destroy, or Both?

  • Jing Yan
  • Julia F. CharlesEmail author
Osteoimmunology (M Humphrey and M. Nakamura, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Osteoimmunology


Purpose of Review

The gut microbiota can be considered a hidden organ that plays essential roles in host homeostasis. Exploration of the effects of microbiota on bone has just begun. Complimentary studies using germ-free mice, antibiotic, and probiotic treatments reveal a complicated relationship between microbiota and bone. Here, we review recent reports addressing the effect of gut microbiota on bone health, discuss potential reasons for discrepant findings, and explore potential mechanisms for these effects.

Recent Findings

Manipulation of microbiota by colonization of germ-free mice, antibiotics, or probiotic supplementation significantly alters bone remodeling, bone development and growth, as well as bone mechanical strength. Different experimental models reveal context-dependent effects of gut microbiota on bone.


By examining phenotypic effects, experimental context, and proposed mechanisms, revealed by recent reports, we hope to provide comprehensive and fresh insights into the many facets of microbiota and bone interactions.


Microbiome Bone Germ-free Antibiotics Probiotics IGF-1 SCFA 


Funding Sources

This work was supported by NIH grants AG046257 from the NIA, AR062590 from the NIAMS, a Faculty Career Development Award from the Brigham and Women’s Hospital, and the Bettina Looram Fund.

Compliance with Ethical Standards

Conflict of Interest

Julia Charles and Jing Yan declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336:1268–73. doi: 10.1126/science.1223490.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nieuwdorp M, Gilijamse PW, Pai N, Kaplan LM. Role of the microbiome in energy regulation and metabolism. Gastroenterology. 2014;146:1525–33. doi: 10.1053/j.gastro.2014.02.008.CrossRefGoogle Scholar
  3. 3.
    Flint HJ. Obesity and the gut microbiota. J Clin Gastroenterol. 2011;45(Suppl):S128–32. doi: 10.1097/MCG.0b013e31821f44c4.CrossRefPubMedGoogle Scholar
  4. 4.
    Charles JF, Ermann J, Aliprantis AO. The intestinal microbiome and skeletal fitness: connecting bugs and bones. Clin Immunol. 2015;159:163–9. doi: 10.1016/j.clim.2015.03.019.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Weaver CM. Diet, gut microbiome, and bone health. Curr Osteoporos rep. 2015;13:125–30. doi: 10.1007/s11914-015-0257-0.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Al-Asmakh M, Zadjali F. Use of germ-free animal models in microbiota-related research. J Microbiol Biotechnol. 2015;25:1583–8. doi: 10.4014/jmb.1501.01039.CrossRefPubMedGoogle Scholar
  7. 7.
    •• Sjogren K, et al. The gut microbiota regulates bone mass in mice. J Bone Miner res. 2012;27:1357–67. doi: 10.1002/jbmr.1588. This is the first study using germ-free mice to investigate the effect of microbiota on bone remodeling and to suggest a link between microbiota-mediated effects on the immune system and a pro-osteoclastogenic bone marrow microenvironment. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    •• Yan J, et al. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci U S a. 2016;113:E7554–63. doi: 10.1073/pnas.1607235113. This study comprehensively evaluates the bone phenotype of both germ-free mice colonized with conventional microbiota and SPF mice treated with antibiotics and demonstrates that microbiota promote both bone formation and resorption with the net effect on bone depending on duration of colonization. These studies further suggest that the effects of microbiota on bone are mediated by induction of systemic IGF-1, possibly by SCFA. CrossRefGoogle Scholar
  9. 9.
    •• Li JY, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 2016;126:2049–63. doi: 10.1172/JCI86062. This study demonstrates links between sex hormone deficiency, decreased gut permeability, and pro-osteoclastogenic cytokine production. It also provides data suggesting beneficial effects of probiotics on bone loss caused by sex steroid deprivation. CrossRefGoogle Scholar
  10. 10.
    •• Schwarzer M, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science. 2016;351:854–7. doi: 10.1126/science.aad8588. This study demonstrated that neonatal growth and systemic IGF-1 are greater in SPF mice compared to germ-free mice. Further, they identified that monocolonization with a specific bacterial strain is sufficient to alter the growth hormone-IGF-1 axis and positively impact bone growth in mice under conditions of undernutrition. CrossRefPubMedGoogle Scholar
  11. 11.
    Cox LM, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–21. doi: 10.1016/j.cell.2014.05.052.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rausch P, et al. Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities. Int J med Microbiol. 2016;306:343–55. doi: 10.1016/j.ijmm.2016.03.004.CrossRefPubMedGoogle Scholar
  13. 13.
    Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat rev Immunol. 2004;4:478–85. doi: 10.1038/nri1373.CrossRefPubMedGoogle Scholar
  14. 14.
    Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017;18:2. doi: 10.1186/s12865-016-0187-3.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cresci GA, Thangaraju M, Mellinger JD, Liu K, Ganapathy V. Colonic gene expression in conventional and germ-free mice with a focus on the butyrate receptor GPR109A and the butyrate transporter SLC5A8. J Gastrointest Surg. 2010;14:449–61. doi: 10.1007/s11605-009-1045-x.CrossRefPubMedGoogle Scholar
  16. 16.
    Laukens D, Brinkman BM, Raes J, De Vos M, Vandenabeele P. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol rev. 2016;40:117–32. doi: 10.1093/femsre/fuv036.CrossRefPubMedGoogle Scholar
  17. 17.
    Sommer F, Backhed F. The gut microbiota—masters of host development and physiology. Nat rev Microbiol. 2013;11:227–38. doi: 10.1038/nrmicro2974.CrossRefPubMedGoogle Scholar
  18. 18.
    Backhed F, et al. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe. 2012;12:611–22. doi: 10.1016/j.chom.2012.10.012.CrossRefPubMedGoogle Scholar
  19. 19.
    Morgun A, et al. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut. 2015;64:1732–43. doi: 10.1136/gutjnl-2014-308820.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cho I, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–6. doi: 10.1038/nature11400.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lundberg R, Toft MF, August B, Hansen AK, Hansen CH. Antibiotic-treated versus germ-free rodents for microbiota transplantation studies. Gut Microbes. 2016;7:68–74. doi: 10.1080/19490976.2015.1127463.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nobel YR, et al. Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat Commun. 2015;6:7486. doi: 10.1038/ncomms8486.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Guss JD, et al. Alterations to the gut microbiome impair bone strength and tissue material properties. J Bone Miner res. 2017; doi: 10.1002/jbmr.3114.CrossRefGoogle Scholar
  24. 24.
    Kim D, Yoo SA, Kim WU. Gut microbiota in autoimmunity: potential for clinical applications. Arch Pharm res. 2016;39:1565–76. doi: 10.1007/s12272-016-0796-7.CrossRefPubMedGoogle Scholar
  25. 25.
    McCabe LR, Irwin R, Schaefer L, Britton RA. Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol. 2013;228:1793–8. doi: 10.1002/jcp.24340.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Collins FL, et al. Lactobacillus reuteri 6475 increases bone density in intact females only under an inflammatory setting. PLoS One. 2016;11:e0153180. doi: 10.1371/journal.pone.0153180.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Britton RA, et al. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol. 2014;229:1822–30. doi: 10.1002/jcp.24636.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ohlsson C, et al. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One. 2014;9:e92368. doi: 10.1371/journal.pone.0092368.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Parvaneh K, et al. Probiotics (Bifidobacterium longum) increase bone mass density and upregulate Sparc and Bmp-2 genes in rats with bone loss resulting from ovariectomy. Biomed res Int. 2015;2015:897639. doi: 10.1155/2015/897639.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Parvaneh K, Jamaluddin R, Karimi G, Erfani R. Effect of probiotics supplementation on bone mineral content and bone mass density. ScientificWorldJournal. 2014;2014:595962. doi: 10.1155/2014/595962.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang J, et al. Loss of bone and Wnt10b expression in male type 1 diabetic mice is blocked by the probiotic Lactobacillus reuteri. Endocrinology. 2015;156:3169–82. doi: 10.1210/EN.2015-1308.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Storelli G, et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 2011;14:403–14. doi: 10.1016/j.cmet.2011.07.012.CrossRefPubMedGoogle Scholar
  33. 33.
    Blanton, L. V. et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science. 2016; 351: doi: 10.1126/science.aad3311.CrossRefGoogle Scholar
  34. 34.
    Iwami K, Moriyama T. Effects of short chain fatty acid, sodium butyrate, on osteoblastic cells and osteoclastic cells. Int J BioChemiPhysics. 1993;25:1631–5.CrossRefGoogle Scholar
  35. 35.
    Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165:1332–45. doi: 10.1016/j.cell.2016.05.041.CrossRefPubMedGoogle Scholar
  36. 36.
    Jones D, Glimcher LH, Aliprantis AO. Osteoimmunology at the nexus of arthritis, osteoporosis, cancer, and infection. J Clin Invest. 2011;121:2534–42. doi: 10.1172/JCI46262.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wu HJ, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32:815–27. doi: 10.1016/j.immuni.2010.06.001.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tan TG, et al. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci U S a. 2016;113:E8141–50. doi: 10.1073/pnas.1617460113.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Smith PM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73. doi: 10.1126/science.1241165.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Arpaia N, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–5. doi: 10.1038/nature12726.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Furusawa Y, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50. doi: 10.1038/nature12721.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wesemann DR. Microbes and B cell development. Adv Immunol. 2015;125:155–78. doi: 10.1016/ Scholar
  43. 43.
    Dinan TG, Cryan JF. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology. 2012;37:1369–78. doi: 10.1016/j.psyneuen.2012.03.007.CrossRefPubMedGoogle Scholar
  44. 44.
    Canalis E. Mechanisms of glucocorticoid action in bone. Curr Osteoporos rep. 2005;3:98–102.CrossRefGoogle Scholar
  45. 45.
    Yano JM, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–76. doi: 10.1016/j.cell.2015.02.047.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Brommage R, et al. Adult Tph2 knockout mice without brain serotonin have moderately elevated spine trabecular bone but moderately low cortical bone thickness. Bonekey rep. 2015;4:718. doi: 10.1038/bonekey.2015.87.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Chabbi-Achengli Y, et al. Decreased osteoclastogenesis in serotonin-deficient mice. Proc Natl Acad Sci U S a. 2012;109:2567–72. doi: 10.1073/pnas.1117792109.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Cui Y, et al. Lrp5 functions in bone to regulate bone mass. Nat med. 2011;17:684–91. doi: 10.1038/nm.2388.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hernandez CJ, Guss JD, Luna M, Goldring SR. Links between the microbiome and bone. J Bone Miner res. 2016;31:1638–46. doi: 10.1002/jbmr.2887.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Clements, S. J. & Carding, S. R. Diet, the intestinal microbiota and immune health in ageing. Crit Rev Food Sci Nutr. 2016; 0: doi: 10.1080/10408398.2016.1211086.CrossRefGoogle Scholar
  51. 51.
    LeBlanc JG, et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24:160–8. doi: 10.1016/j.copbio.2012.08.005.CrossRefPubMedGoogle Scholar
  52. 52.
    Qin J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Human Microbiome Project. C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14. doi: 10.1038/nature11234.CrossRefGoogle Scholar
  54. 54.
    Carlucci C, Petrof EO, Allen-Vercoe E. Fecal microbiota-based therapeutics for recurrent Clostridium Difficile infection, ulcerative colitis and obesity. EBioMedicine. 2016;13:37–45. doi: 10.1016/j.ebiom.2016.09.029.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Division of Rheumatology, Immunology and AllergyBrigham and Women’s HospitalBostonUSA

Personalised recommendations