Skip to main content

Advertisement

Log in

Gut Microbiome and Bone: to Build, Destroy, or Both?

  • Osteoimmunology (M Humphrey and M. Nakamura, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The gut microbiota can be considered a hidden organ that plays essential roles in host homeostasis. Exploration of the effects of microbiota on bone has just begun. Complimentary studies using germ-free mice, antibiotic, and probiotic treatments reveal a complicated relationship between microbiota and bone. Here, we review recent reports addressing the effect of gut microbiota on bone health, discuss potential reasons for discrepant findings, and explore potential mechanisms for these effects.

Recent Findings

Manipulation of microbiota by colonization of germ-free mice, antibiotics, or probiotic supplementation significantly alters bone remodeling, bone development and growth, as well as bone mechanical strength. Different experimental models reveal context-dependent effects of gut microbiota on bone.

Summary

By examining phenotypic effects, experimental context, and proposed mechanisms, revealed by recent reports, we hope to provide comprehensive and fresh insights into the many facets of microbiota and bone interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336:1268–73. doi:10.1126/science.1223490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nieuwdorp M, Gilijamse PW, Pai N, Kaplan LM. Role of the microbiome in energy regulation and metabolism. Gastroenterology. 2014;146:1525–33. doi:10.1053/j.gastro.2014.02.008.

    Article  CAS  PubMed  Google Scholar 

  3. Flint HJ. Obesity and the gut microbiota. J Clin Gastroenterol. 2011;45(Suppl):S128–32. doi:10.1097/MCG.0b013e31821f44c4.

    Article  CAS  PubMed  Google Scholar 

  4. Charles JF, Ermann J, Aliprantis AO. The intestinal microbiome and skeletal fitness: connecting bugs and bones. Clin Immunol. 2015;159:163–9. doi:10.1016/j.clim.2015.03.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weaver CM. Diet, gut microbiome, and bone health. Curr Osteoporos rep. 2015;13:125–30. doi:10.1007/s11914-015-0257-0.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Al-Asmakh M, Zadjali F. Use of germ-free animal models in microbiota-related research. J Microbiol Biotechnol. 2015;25:1583–8. doi:10.4014/jmb.1501.01039.

    Article  PubMed  Google Scholar 

  7. •• Sjogren K, et al. The gut microbiota regulates bone mass in mice. J Bone Miner res. 2012;27:1357–67. doi:10.1002/jbmr.1588. This is the first study using germ-free mice to investigate the effect of microbiota on bone remodeling and to suggest a link between microbiota-mediated effects on the immune system and a pro-osteoclastogenic bone marrow microenvironment.

    Article  CAS  PubMed  Google Scholar 

  8. •• Yan J, et al. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci U S a. 2016;113:E7554–63. doi:10.1073/pnas.1607235113. This study comprehensively evaluates the bone phenotype of both germ-free mice colonized with conventional microbiota and SPF mice treated with antibiotics and demonstrates that microbiota promote both bone formation and resorption with the net effect on bone depending on duration of colonization. These studies further suggest that the effects of microbiota on bone are mediated by induction of systemic IGF-1, possibly by SCFA.

    Article  CAS  Google Scholar 

  9. •• Li JY, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 2016;126:2049–63. doi:10.1172/JCI86062. This study demonstrates links between sex hormone deficiency, decreased gut permeability, and pro-osteoclastogenic cytokine production. It also provides data suggesting beneficial effects of probiotics on bone loss caused by sex steroid deprivation.

    Article  PubMed  PubMed Central  Google Scholar 

  10. •• Schwarzer M, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science. 2016;351:854–7. doi:10.1126/science.aad8588. This study demonstrated that neonatal growth and systemic IGF-1 are greater in SPF mice compared to germ-free mice. Further, they identified that monocolonization with a specific bacterial strain is sufficient to alter the growth hormone-IGF-1 axis and positively impact bone growth in mice under conditions of undernutrition.

    Article  CAS  PubMed  Google Scholar 

  11. Cox LM, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–21. doi:10.1016/j.cell.2014.05.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rausch P, et al. Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities. Int J med Microbiol. 2016;306:343–55. doi:10.1016/j.ijmm.2016.03.004.

    Article  PubMed  Google Scholar 

  13. Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat rev Immunol. 2004;4:478–85. doi:10.1038/nri1373.

    Article  CAS  PubMed  Google Scholar 

  14. Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017;18:2. doi:10.1186/s12865-016-0187-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cresci GA, Thangaraju M, Mellinger JD, Liu K, Ganapathy V. Colonic gene expression in conventional and germ-free mice with a focus on the butyrate receptor GPR109A and the butyrate transporter SLC5A8. J Gastrointest Surg. 2010;14:449–61. doi:10.1007/s11605-009-1045-x.

    Article  PubMed  Google Scholar 

  16. Laukens D, Brinkman BM, Raes J, De Vos M, Vandenabeele P. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol rev. 2016;40:117–32. doi:10.1093/femsre/fuv036.

    Article  CAS  PubMed  Google Scholar 

  17. Sommer F, Backhed F. The gut microbiota—masters of host development and physiology. Nat rev Microbiol. 2013;11:227–38. doi:10.1038/nrmicro2974.

    Article  CAS  PubMed  Google Scholar 

  18. Backhed F, et al. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe. 2012;12:611–22. doi:10.1016/j.chom.2012.10.012.

    Article  CAS  PubMed  Google Scholar 

  19. Morgun A, et al. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut. 2015;64:1732–43. doi:10.1136/gutjnl-2014-308820.

    Article  CAS  PubMed  Google Scholar 

  20. Cho I, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–6. doi:10.1038/nature11400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lundberg R, Toft MF, August B, Hansen AK, Hansen CH. Antibiotic-treated versus germ-free rodents for microbiota transplantation studies. Gut Microbes. 2016;7:68–74. doi:10.1080/19490976.2015.1127463.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nobel YR, et al. Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat Commun. 2015;6:7486. doi:10.1038/ncomms8486.

    Article  PubMed  Google Scholar 

  23. Guss JD, et al. Alterations to the gut microbiome impair bone strength and tissue material properties. J Bone Miner res. 2017; doi:10.1002/jbmr.3114.

    Article  CAS  PubMed  Google Scholar 

  24. Kim D, Yoo SA, Kim WU. Gut microbiota in autoimmunity: potential for clinical applications. Arch Pharm res. 2016;39:1565–76. doi:10.1007/s12272-016-0796-7.

    Article  CAS  PubMed  Google Scholar 

  25. McCabe LR, Irwin R, Schaefer L, Britton RA. Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol. 2013;228:1793–8. doi:10.1002/jcp.24340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Collins FL, et al. Lactobacillus reuteri 6475 increases bone density in intact females only under an inflammatory setting. PLoS One. 2016;11:e0153180. doi:10.1371/journal.pone.0153180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Britton RA, et al. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol. 2014;229:1822–30. doi:10.1002/jcp.24636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ohlsson C, et al. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One. 2014;9:e92368. doi:10.1371/journal.pone.0092368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Parvaneh K, et al. Probiotics (Bifidobacterium longum) increase bone mass density and upregulate Sparc and Bmp-2 genes in rats with bone loss resulting from ovariectomy. Biomed res Int. 2015;2015:897639. doi:10.1155/2015/897639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parvaneh K, Jamaluddin R, Karimi G, Erfani R. Effect of probiotics supplementation on bone mineral content and bone mass density. ScientificWorldJournal. 2014;2014:595962. doi:10.1155/2014/595962.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang J, et al. Loss of bone and Wnt10b expression in male type 1 diabetic mice is blocked by the probiotic Lactobacillus reuteri. Endocrinology. 2015;156:3169–82. doi:10.1210/EN.2015-1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Storelli G, et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 2011;14:403–14. doi:10.1016/j.cmet.2011.07.012.

    Article  CAS  PubMed  Google Scholar 

  33. Blanton, L. V. et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science. 2016; 351: doi:10.1126/science.aad3311.

    Article  PubMed  Google Scholar 

  34. Iwami K, Moriyama T. Effects of short chain fatty acid, sodium butyrate, on osteoblastic cells and osteoclastic cells. Int J BioChemiPhysics. 1993;25:1631–5.

    Article  CAS  Google Scholar 

  35. Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165:1332–45. doi:10.1016/j.cell.2016.05.041.

    Article  CAS  PubMed  Google Scholar 

  36. Jones D, Glimcher LH, Aliprantis AO. Osteoimmunology at the nexus of arthritis, osteoporosis, cancer, and infection. J Clin Invest. 2011;121:2534–42. doi:10.1172/JCI46262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu HJ, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32:815–27. doi:10.1016/j.immuni.2010.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tan TG, et al. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci U S a. 2016;113:E8141–50. doi:10.1073/pnas.1617460113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smith PM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73. doi:10.1126/science.1241165.

    Article  CAS  PubMed  Google Scholar 

  40. Arpaia N, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–5. doi:10.1038/nature12726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Furusawa Y, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50. doi:10.1038/nature12721.

    Article  CAS  PubMed  Google Scholar 

  42. Wesemann DR. Microbes and B cell development. Adv Immunol. 2015;125:155–78. doi:10.1016/bs.ai.2014.09.005.

    Article  CAS  PubMed  Google Scholar 

  43. Dinan TG, Cryan JF. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology. 2012;37:1369–78. doi:10.1016/j.psyneuen.2012.03.007.

    Article  CAS  PubMed  Google Scholar 

  44. Canalis E. Mechanisms of glucocorticoid action in bone. Curr Osteoporos rep. 2005;3:98–102.

    Article  PubMed  Google Scholar 

  45. Yano JM, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–76. doi:10.1016/j.cell.2015.02.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brommage R, et al. Adult Tph2 knockout mice without brain serotonin have moderately elevated spine trabecular bone but moderately low cortical bone thickness. Bonekey rep. 2015;4:718. doi:10.1038/bonekey.2015.87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chabbi-Achengli Y, et al. Decreased osteoclastogenesis in serotonin-deficient mice. Proc Natl Acad Sci U S a. 2012;109:2567–72. doi:10.1073/pnas.1117792109.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cui Y, et al. Lrp5 functions in bone to regulate bone mass. Nat med. 2011;17:684–91. doi:10.1038/nm.2388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hernandez CJ, Guss JD, Luna M, Goldring SR. Links between the microbiome and bone. J Bone Miner res. 2016;31:1638–46. doi:10.1002/jbmr.2887.

    Article  PubMed  Google Scholar 

  50. Clements, S. J. & Carding, S. R. Diet, the intestinal microbiota and immune health in ageing. Crit Rev Food Sci Nutr. 2016; 0: doi:10.1080/10408398.2016.1211086.

    Article  PubMed  Google Scholar 

  51. LeBlanc JG, et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24:160–8. doi:10.1016/j.copbio.2012.08.005.

    Article  CAS  PubMed  Google Scholar 

  52. Qin J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi:10.1038/nature08821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Human Microbiome Project. C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14. doi:10.1038/nature11234.

    Article  CAS  Google Scholar 

  54. Carlucci C, Petrof EO, Allen-Vercoe E. Fecal microbiota-based therapeutics for recurrent Clostridium Difficile infection, ulcerative colitis and obesity. EBioMedicine. 2016;13:37–45. doi:10.1016/j.ebiom.2016.09.029.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding Sources

This work was supported by NIH grants AG046257 from the NIA, AR062590 from the NIAMS, a Faculty Career Development Award from the Brigham and Women’s Hospital, and the Bettina Looram Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia F. Charles.

Ethics declarations

Conflict of Interest

Julia Charles and Jing Yan declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Osteoimmunology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Charles, J.F. Gut Microbiome and Bone: to Build, Destroy, or Both?. Curr Osteoporos Rep 15, 376–384 (2017). https://doi.org/10.1007/s11914-017-0382-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-017-0382-z

Keywords

Navigation