In Situ Sensor Advancements for Osteoporosis Prevention, Diagnosis, and Treatment

Abstract

Osteoporosis is still a serious issue in healthcare, and will continue to increase due to the aging and growth of the population. Early diagnosis is the key to successfully treating many diseases. The earlier the osteoporosis is diagnosed, the more quickly people can take action to stop bone deterioration. Motivated by this, researchers and companies have begun developing smart in situ bone sensors in order to dramatically help people to monitor their bone mass density (BMD), bone strain or bone turnover markers (BTMs); promptly track early signs of osteoporosis; and even monitor the healing process following surgery or antiresorptive therapy. This paper focuses on the latest advancements in the field of bone biosensing materials and sensor technologies and how they can help now and in the future to detect disease and monitor bone health.

This is a preview of subscription content, log in to check access.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Office of the Surgeon General (US). Bone health and osteoporosis: a report of the surgeon general. Rockville: Office of the Surgeon General (US); 2004. Available from: http://www.ncbi.nlm.nih.gov/books/NBK45513/.

    Google Scholar 

  2. 2.

    Ma NS, Gordon CM. Pediatric osteoporosis: where are we now? J Pediatr. 2012;161:983–90.

    Article  PubMed  Google Scholar 

  3. 3.

    • Cosman F, Beur SJD, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25:2359–81. The clinician’s guide to prevention and treatment of osteoporosis developed by several experts in the field of bone health offers concise recommendations regarding prevention, risk assessment, diagnosis, and treatment of osteoporosis in postmenopausal women and men based on the most common existing diagnostic and treatment methods.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res. 2007;22:465–75.

    Article  PubMed  Google Scholar 

  5. 5.

    Sunyecz JA. The use of calcium and vitamin D in the management of osteoporosis. Ther Clin Risk Manag. 2008;4:827–36.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Barozzi N, Peeters GM, Tett SE. Actions following adverse drug events—how do these influence uptake and utilisation of newer and/or similar medications? BMC Health Serv Res. 2015;15:498.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Singh K, Kim KC (2012). Early detection techniques for osteoporosis, osteoporosis, PhD. Dionyssiotis Y (ed.), ISBN: 978-953-51-0026-3, InTech, Available from: http://www.intechopen.com/books/osteoporosis/early-detection-techniques-for-osteoporosis.

  8. 8.

    López-López J, Estrugo-Devesa A, Jane-Salas E, Ayuso-Montero R, Gómez-Vaquero C. Early diagnosis of osteoporosis by means of orthopantomograms and oral x-rays: a systematic review. Med Oral Patol Oral Cir Bucal. 2011;16:e905–13.

    Article  PubMed  Google Scholar 

  9. 9.

    Bartl R, Frisch B. Osteoporosis: diagnosis, prevention, therapy. Berlin: Springer; 2009. ISBN: 978-3-540-79526-1 (Print) 978-3-540-79527-8 (Online).

    Google Scholar 

  10. 10.

    Miller PD, Zapalowski C, Kulak CA, Bilezikian JP. Bone densitometry: the best way to detect osteoporosis and to monitor therapy. J Clin Endocrinol Metab. 1999;84:1867–71.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom. 2008;11:123–62.

    Article  PubMed  Google Scholar 

  12. 12.

    Szwedowski D, Nitek Ż, Walecki J. Evaluation of transient osteoporosis of the hip in magnetic resonance imaging. Pol J Radiol. 2014;79:36–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Majumdar S. Magnetic resonance imaging for osteoporosis. Skelet Radiol. 2008;37:95–7.

    Article  Google Scholar 

  14. 14.

    Benitez CL, Schneider DL, Barrett-Connor E, Sartoris DJ. Hand ultrasound for osteoporosis screening in postmenopausal women. Osteoporos Int. 2000;11:203–10.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    •• Khashayar P, Amoabediny G, Larijani B, Vanfleteren J. Bone biosensors: knowing the present and predicting the future. J Micromech Microeng. 2016;26:023002. Paper reviews the latest advancements in the field of bone biosensing technologies in three main categories: biomechanical sensors, multiplex automated assays, label-free biosensors.

    Article  Google Scholar 

  16. 16.

    Ledet EH, D’Lima D, Westerhoff P, Szivek JA, Wachs RA, Bergmann G. Implantable sensor technology: from research to clinical practice. J Am Acad Orthop Surg. 2012;20:383–92.

    Article  PubMed  Google Scholar 

  17. 17.

    Sattler M, Clauss J, Schmidhuber M, Belsky J, Wolf B. Implantable sensor system for the monitoring of bone healing. IFMBE Proc. 2009;25:281–4.

    Article  Google Scholar 

  18. 18.

    Bassi AS, Knopf GK. Smart biosensor technology. Boca Raton: CRC Press; 2006. ISBN: 978-0-8493-3759-8 (print) 978-1-4200-1950-6 (online).

    Google Scholar 

  19. 19.

    Malik P, Katyal V, Malik V, Asatkar A, Inwati G, Mukherjee TK. Nanobiosensors: concepts and variations. ISRN Nanomaterials. 2013; 327435.

  20. 20.

    Yun YH, Eteshola E, Bhattacharya A, Dong Z, Shim JS, Conforti L, et al. Tiny medicine: nanomaterial-based biosensors. Sensors. 2009;9:9275–99.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Webster TJ. Nanotechnology enabled in situ sensors for monitoring health. New York: Springer; 2011. ISBN: 978-1-4419-7290-3 (Print) 978-1-4419-7291-0 (Online).

    Google Scholar 

  22. 22.

    Tran N, Webster TJ. Nanotechnology for bone materials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:336–51.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest. 2005;115:3318–25.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Feng X, McDonald JM. Disorders of bone remodeling. Annu Rev Pathol. 2011;6:121–45.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Lee J, Vasikaran S. Current recommendations for laboratory testing and use of bone turnover markers in management of osteoporosis. Ann Lab Med. 2012;32:105–12.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Bieglmayer C, Dimai HP, Gasser RW, Kudlacek S, Obermayer-Pietsch B, Woloszczuk W, et al. Biomarkers of bone turnover in diagnosis and therapy of osteoporosis: a consensus advice from an Austrian working group. Wien Med Wochenschr. 2012;162:464–77.

    Article  PubMed  Google Scholar 

  27. 27.

    Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S. Mechanosensation and transduction in osteocytes. Bone. 2013;54:182–90.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    • Wheater G, Elshahaly M, Tuck SP, Datta HK, van Laar JM. The clinical utility of bone marker measurements in osteoporosis. J Transl Med. 2013;11:201. This paper focuses on identification of specific biomarkers (i.e. specific marker of bone resorption (CTX) and bone formation (P1NP)) and utilization of bone marker measurements for the clinical management of osteoporosis and other bone diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical biosensors—sensor principles and architectures. Sensors. 2008;8:1400–58.

    CAS  Article  PubMed Central  Google Scholar 

  30. 30.

    Wang Y, Vaddiraju S, Gu B, Papadimitrakopoulos F, Burgess DJ. Foreign body reaction to implantable biosensors: effects of tissue trauma and implant size. J Diabetes Sci Technol. 2015;9:966–77.

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Karp FB, Bernotski NA, Valdes TI, Bohringer KF. Foreign body response investigated with an implanted biosensor by in situ electrical impedance spectroscopy. IEEE Sensors J. 2008;8:104–12.

    CAS  Article  Google Scholar 

  32. 32.

    •• Luz RAS, Iost RM, Crespilho FN. Nanomaterials for biosensors and implantable biodevices. Nanobioelectrochemistry. Berlin Heidelberg: Springer; 2013. p. 27–48. This book chapter focuses on utilization of biological molecules (i.e. enzymes, nucleotides, antigens, DNA, aminoacids) in conjunction with nanostructured materials (i.e. nanoparticlebased materials and carbon materials) for development of miniaturized devices and implantable biosensors for real time monitoring.

    Google Scholar 

  33. 33.

    Eastell R, Hannon RA. Biomarkers of bone health and osteoporosis risk. Proc Nutr Soc. 2008;67:157–62.

    Article  PubMed  Google Scholar 

  34. 34.

    Halleen JM, Alatalo SL, Janckila AJ, Woitge HW, Seibel MJ, Väänänen HK. Serum tartrate-resistant acid phosphatase 5b is a specific and sensitive marker of bone resorption. Clin Chem. 2001;47:597–600.

    CAS  PubMed  Google Scholar 

  35. 35.

    Hysi L, Rexha T. Serum osteocalcin as a specific marker of bone turnover in postmenopausal women. Albanian J Agric Sci Suppl Special Edition. 2014:341-344.

  36. 36.

    Jagtap VR, Ganu JV, Nagane NS. BMD and serum intact osteocalcin in postmenopausal osteoporosis women. Indian J Clin Biochem. 2011;26:70–3.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    • Ji X, Chen X, Yu X. MicroRNAs in osteoclastogenesis and function: potential therapeutic targets for osteoporosis. Int J Mol Sci. 2016;17:349. This paper containts a summary of microRNAs, presents our current understanding of how microRNAs regulate osteoclastogenesis, and discusses their potential clinical implications, such as biomarkers and the development of new drugs for osteoporosis.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Wang Y, Li L, Moore BT, Peng X-H, Fang X, Lappe JM, et al. MiR-133a in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. PLoS One. 2012;7:e34641.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Cao Z, Moore BT, Wang Y, Peng XH, Lappe JM, Recker RR, et al. MiR-422a as a potential cellular microRNA biomarker for postmenopausal osteoporosis. PLoS One. 2014;9:e97098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Purroy J, Spurr NK. Molecular genetics of calcium sensing in bone cells. Mol Genet. 2002;11:2377–84.

    CAS  Google Scholar 

  41. 41.

    Marie PJ. The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone. 2010;46:571–6.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    McCormick RK. Osteoporosis: integrating biomarkers and other diagnostic correlates into the management of bone fragility. Altern Med Rev. 2007;12:113–45.

    PubMed  Google Scholar 

  43. 43.

    Melik R, Perkgoz NK, Unal E, Puttlitz C, Demir HV. Bio-implantable passive on-chip RF-MEMS strain sensing resonators for orthopaedic applications. J Micromech Microeng. 2008;18:115017.

    Article  Google Scholar 

  44. 44.

    Domb AJ, Khan W. Focal controlled drug delivery. Adv Deliv Sci Tech. 2014; 33-59. ISBN: 978-1-4614-9433-1 (Print) 978-1-4614-9434-8 (Online).

  45. 45.

    Hermawan H, Ramdan D, Djuansjah JRP. Metals for biomedical applications, biomedical engineering - from theory to applications, Prof. Reza Fazel (Ed.), InTech. 2011; 412-430. ISBN 978-953-307-637-9.

  46. 46.

    Thamaraiselvi TV, Rajeswari S. Biological evaluation of bioceramic materials—a review. Trends Biomater Artif Organs. 2004;18:9–17.

    Google Scholar 

  47. 47.

    Qina Y, Howladera MMR, Deena MJ, Haddaraa YM, Selvaganapathyb PR. Polymer integration for packaging of implantable sensors. Sensors Actuat B. 2014;202:758–78.

    Article  CAS  Google Scholar 

  48. 48.

    Albert K, Schledjewski R, Harbaugh M, Bleser S, Jamison R, Friedrich K. Characterization of wear in composite material orthopaedic implants. Part II: the implant/bone interface. Biomed Mater Eng. 1994;4:199–211.

    CAS  PubMed  Google Scholar 

  49. 49.

    •• Wujcik EK, Monty CN. Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine. WIREs Nanomed Nanobiotechnol. 2013;5:233–49. This paper specifically focuses on implantable sensors equipped with nanostructured carbon allotropes, such as carbon nanotubes or graphene for nanomedicine and nanobiotechnology.

    CAS  Article  Google Scholar 

  50. 50.

    Tîlmaciu C-M, Morris MC. Carbon nanotube biosensors. Front Chem. 2015;3:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Patil M, Ramanathan M, Shanov V, Kumta PN. Carbon nanotube-based impedimetric biosensors for bone marker detection. In: Matyáš J, Ohji T, Pickrell G, Wong-Ng W, Kanakala R, editors. Advances in materials science for environmental and energy technologies IV: ceramic transactions, vol. 253. Hoboken: Wiley; 2015. doi:10.1002/9781119190042.ch18.

    Google Scholar 

  52. 52.

    Sirivisoot S, Webster TJ. In situ bone growth detection using carbon nanotubes-titanium sensors. Bio Nano Sci. 2013;3:184–91.

    Google Scholar 

  53. 53.

    Bao Q, Loh KP. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano. 2012;6:3677–94.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Sirivisoot S, Parcharoen Y, Webster TJ. Electrochemical detection of bacteria using graphene oxide electrodeposited on titanium implants. Adv Sci Tech. 2014;96:45–53.

    Article  CAS  Google Scholar 

  55. 55.

    Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron. 2009;25:901–5.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Heo C, Yoo J, Lee S, Jo A, Jung S, Yoo H, et al. The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials. 2011;32:19–27.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Haque A-MJ, Park H, Sung D, Jon S, Choi SY, Kim K. An electrochemically reduced graphene oxidebased electrochemical immunosensing platform for ultrasensitive antigen detection. Anal Chem. 2012;84:1871–8.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Sroga GE, Vashishth D. Effects of bone matrix proteins on fracture and fragility in osteoporosis. Curr Osteoporos Rep. 2012;10:141–50.

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Chung YM, Liu YC. Biosensor and method for bone mineral density measurement. U.S. Patent 7544327 B2, 2009.

  60. 60.

    Kuballa J, Schüzb J, Gamma H, Webera M. Bone marrow punctures and pain. Acute Pain. 2004;6:9–14.

    Article  Google Scholar 

  61. 61.

    Parmar BJ, Longsine W, Sabonghy EP, Han A, Tasciotti E, Weiner BK, et al. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques. Phys Med Biol. 2010;55:4839–59.

    Article  PubMed  Google Scholar 

  62. 62.

    Alfaro F, Weiss L, Campbell P, Miller M, Fedder GK. Design of a multi-axis implantable MEMS sensor for intraosseous bone stress monitoring. J Micromech Microeng. 2009;19:085016.

    Article  CAS  Google Scholar 

  63. 63.

    Tan EL, Pereles BD, Horton B, Shao R, Zourob M, Ong KG. Implantable biosensors for real-time strain and pressure monitoring. Sensors. 2008;8:6396–406.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Alamusi, Hu N, Fukunaga H, Atobe S, Liu Y, Li J. Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors. 2011;11:10691–723.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Wen YH, Yang GY, Bailey VJ, Lin G, Tang WC, Keyak JH. Mechanically robust micro-fabricated strain gauges for use on bones. Proc. 3rd Annual Int. IEEE EMBS Special Topic Conf. Microtechnologies in Med. and Biol. 2005; 302-304.

  66. 66.

    Pang C, Lee GY, Kim T, Kim SM, Kim HN, Ahn SH, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater. 2012;11:795–801.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Dharap P, Li Z, Nagarajaiah S, Barrera EV. Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology. 2004;15:379–82.

    CAS  Article  Google Scholar 

  68. 68.

    Singh P, Rai HM. Performance analysis of photometric strain biosensor for bones using artificial neural network. Int J Comput Appl. 2012;54:8.

    Google Scholar 

  69. 69.

    Singh P, Shrivastava A. Optical biosensor based on microbendings technique: an optimized mean to measure the bone strength. Adv Opt Technol. 2014; 853725.

  70. 70.

    Fresvig T, Ludvigsen P, Steen H, Reikerås O. Fibre optic Bragg grating sensors: an alternative method to strain gauges for measuring deformation in bone. Med Eng Phys. 2008;30:104–8.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Shrivastava S, Prakash R. Assessment of bone condition by acoustic emission technique: a review. J Biomed Sci Eng. 2009;2:144–54.

    Article  Google Scholar 

  72. 72.

    Lentle BC, Aldrich JE, Akhtar A. Diagnosis of osteoporosis using acoustic emissions. U.S. Patent 6024711 A, 2000.

  73. 73.

    Aggelis DG, Strantza M, Louis O, Boulpaep F, Polyzos D, Hemelrijck DV. Fracture of human femur tissue monitored by acoustic emission sensors. Sensors. 2015;15:5803–19.

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Yun YH, Bhattacharya A, Watts NB, Schulz MJ. A label-free electronic biosensor for detection of bone turnover markers. Sensors. 2009;9:7957–69.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Lerner UH. Bone remodeling in post-menopausal osteoporosis. J Dent Res. 2006;85:584–95.

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Li CM, Dong H, Cao X, Luong JH, Zhang X. Implantable electrochemical sensors for biomedical and clinical applications: progress, problems, and future possibilities. Curr Med Chem. 2007;14:937–51.

    Article  PubMed  Google Scholar 

  77. 77.

    Sirivisoot S, Webster TJ. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation. Nanotechnology. 2008;19:295101.

    Article  CAS  PubMed  Google Scholar 

  78. 78.

    Sirivisoot S, Pareta R, Webster TJ. Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Nanotechnology. 2011;22:085101.

    Article  CAS  PubMed  Google Scholar 

  79. 79.

    Dvorak MM, Siddiqua A, Ward DT, Carter DH, Dallas SL, Nemeth EF, et al. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci U S A. 2004;101:5140–5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Caglar P, Tuncel SA, Malcik N, Landers JP, Ferrance JP. A microchip sensor for calcium determination. Anal Bioanal Chem. 2006;386:1303–12.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Widler L. Calcilytics: antagonists of the calcium-sensing receptor for the treatment of osteoporosis. Future Med Chem. 2011;3:535–47.

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Zhang L, Liu L, Xia N. Electrochemical sensing of alkaline phosphatase activity based on difference of surface charge of electrode. Int J Electrochem Sci. 2013;8:8311–9.

    CAS  Google Scholar 

  83. 83.

    Ozcivici E, Luu YK, Adler B, Qin YX, Rubin J, Judex S, et al. Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol. 2010;6:50–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Bhalla S, Baja S. Bone characterization using piezotransducers as biomedical sensors. Strain. 2008;44:475–8.

    Article  Google Scholar 

  85. 85.

    Levine AG. Biosystems nanotechnology: big opportunities in the science of the small. Science. 2014;346:870–3.

    Article  Google Scholar 

  86. 86.

    Service RF. Can sensors make a home in the body? Science. 2002;297:962–3.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Department of Chemical Engineering, Northeastern University, for funding and support. The authors thank Dr. David Burr, Editor in Chief, for reviewing this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Webster.

Ethics declarations

Conflict of Interest

Thomas Webster and Luting Liu declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Regenerative Biology and Medicine in Osteoporosis

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Webster, T.J. In Situ Sensor Advancements for Osteoporosis Prevention, Diagnosis, and Treatment. Curr Osteoporos Rep 14, 386–395 (2016). https://doi.org/10.1007/s11914-016-0339-7

Download citation

Keywords

  • Biosensor
  • Biomarker
  • Bone
  • Nanotechnology
  • Osteoporosis