Skip to main content

Vitamin D Level Between Calcium-Phosphorus Homeostasis and Immune System: New Perspective in Osteoporosis

Abstract

Vitamin D is a key molecule in calcium and phosphate homeostasis; however, increasing evidence has recently shown that it also plays a crucial role in the immune system, both innate and adaptive. A deregulation of vitamin D levels, due also to mutations and polymorphisms in the genes of the vitamin D pathway, determines severe alterations in the homeostasis of the organism, resulting in a higher risk of onset of some diseases, including osteoporosis. This review gives an overview of the influence of vitamin D levels on the pathogenesis of osteoporosis, between bone homeostasis and immune system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bonjour P, Clark P, Cooper C, Dawson-Hughes B, De Laet C, Delmas P, et al. WHO scientific group on the assessment of osteoporosis at primary health care level. Summary meeting report. 2004. Brussels, Belgium, 5–7 May 2004.

  2. Van den Bergh JP, van Geel TA, Geusens PP. Osteoporosis, frailty and fracture: implications for case finding and therapy. Nat Rev Rheumatol. 2012;8:163–72.

    PubMed  Article  CAS  Google Scholar 

  3. Fini M, Salamanna F, Veronesi F, Torricelli P, Nicolini A, Benedicenti S, et al. Role of obesity, alcohol and smoking on bone health. Front Biosci (Elite Ed). 2012;4:2686–706.

    Google Scholar 

  4. Engelke K, Gluer CC. Quality and performance measures in bone densitometry. I. Errors and diagnosis. Osteoporos Int. 2006;17:1283–92.

    CAS  PubMed  Article  Google Scholar 

  5. Gluer CC, Lu Y, Engelke K. Quality and performance measures in bone densitometry. II. Fracture risk. Osteoporos Int. 2006;17:1449–58.

    CAS  PubMed  Article  Google Scholar 

  6. Blake GM, Fogelman I. Role of dual-energy X-ray absorptiometry in the diagnosis and treatment of osteoporosis. J Clin Densitom. 2007;10:102–10.

    PubMed  Article  Google Scholar 

  7. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2013;24:23–57.

    CAS  PubMed  Article  Google Scholar 

  8. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. National osteoporosis foundation. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25:2359–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Lentle B, Cheung AM, Hanley DA, Leslie WD, Lyons D, Papaioannou A, et al. Scientific Advisory Council of Osteoporosis Canada. Osteoporosis Canada 2010 guidelines for the assessment of fracture risk. Can Assoc Radiol J. 2011;62:243–50.

    PubMed  Article  Google Scholar 

  10. Lau EMC, Sambrook P, Seeman E, Leong KH, Leung PC, Delmas P. Guidelines for diagnosing, prevention and treatment of osteoporosis in Asia. APLAR J Rheumatol. 2006;9:24–36.

    Article  Google Scholar 

  11. Al-Saleh Y, Sulimani R, Sabico S, Raef H, Fouda M, Alshahrani F, et al. Guidelines for osteoporosis in Saudi Arabia: recommendations from the Saudi Osteoporosis Society. Ann Saudi Med. 2015;35:1–12.

    PubMed  Google Scholar 

  12. Maalouf G, Gannagé-Yared MH, Ezzedine J, Larijani B, Badawi S, Rached A, et al. Middle East and North Africa consensus on osteoporosis. J Musculoskelet Neuronal Interact. 2007;7:131–43.

    CAS  PubMed  Google Scholar 

  13. Pecina JL, Romanovsky L, Merry SP, Kennel KA, Thacher TD. Comparison of clinical risk tools for predicting osteoporosis in women ages 50–64. J Am Board Fam Med. 2016;29:233–9.

    PubMed  Article  Google Scholar 

  14. Delmas PD, Eastell R, Garnero P, Seibel MJ, Stepan J. The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos Int. 2000;11:S2–S17.

    PubMed  Article  Google Scholar 

  15. Johnell O, Oden A, De Laet C, Garnero P, Delmas PD, Kanis JA. Biochemical indices of bone turnover and the assessment of fracture probability. Osteoporos Int. 2002;13:523–6.

    CAS  PubMed  Article  Google Scholar 

  16. Adami S, Bertoldo F, Brandi ML, Cepollaro C, Filipponi P, Fiore E, et al. Società Italiana dell’Osteoporosi, del Metabolismo Minerale e delle Malattie dello Scheletro. Guidelines for the diagnosis, prevention and treatment of osteoporosis. Reumatismo. 2009;61:260–84.

    CAS  PubMed  Google Scholar 

  17. Nordin BE, Morris HA. Osteoporosis and vitamin D. J Cell Biochem. 1992;49:19–25.

    CAS  PubMed  Article  Google Scholar 

  18. Richy F, Schacht E, Bruyere O, Ethgen O, Gourlay M, Reginster JY. Vitamin D analogs versus native vitamin D in preventing bone loss and osteoporosis-related fractures: a comparative meta-analysis. Calcif Tissue Int. 2005;76:176–86.

    CAS  PubMed  Article  Google Scholar 

  19. Ström O, Borgstrom F, Kanis JA, Compston JE, Cooper C, McCloskey E, et al. Osteoporosis: burden, health care provision and opportunities in the EU. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2011;6:59–155. doi:10.1007/s11657-011-0060-1.

    PubMed  Article  Google Scholar 

  20. Weaver CM, Alexander DD, Boushey CJ, Dawson-Hughes B, Lappe JM, LeBoff MS, et al. Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos Int. 2016;27:367–76.

    CAS  PubMed  Article  Google Scholar 

  21. Brannon PM, Yetley EA, Bailey RL, Picciano MF. Vitamin D and health in the 21st century: an update. Am J Clin Nutr. 2008;88:483S–90S.

    CAS  PubMed  Google Scholar 

  22. Wöbke TK, Sorg BL, Steinhilber D. Vitamin D in inflammatory diseases. Front Physiol. 2014;5:244.

    PubMed  PubMed Central  Google Scholar 

  23. Lagishetty V, Liu NQ, Hewison M. Vitamin D metabolism and innate immunity. Mol Cell Endocrinol. 2011;347:97–105.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Mathieu C, Badenhoop K. Vitamin D and type 1 diabetes mellitus: state of the art. Trends Endocrinol Metab. 2005;16:261–6.

    CAS  PubMed  Article  Google Scholar 

  25. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, et al. Multiple genetic loci for bone mineral density and fractures. N Engl J Med. 2008;358:2355–65.

    CAS  PubMed  Article  Google Scholar 

  26. Holick MF, MacLaughlin JA, Clark MB, Holick SA, Potts JT. Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science. 1980;210:203–5.

    CAS  PubMed  Article  Google Scholar 

  27. Mac Laughlin JA, Anderson RR, Holick MF. Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers in human skin. Science. 1982;216:1001–3.

    CAS  Article  Google Scholar 

  28. Lehmann B, Meurer M. Vitamin D metabolism. Dermatol Ther. 2010;23:2–12.

    PubMed  Article  Google Scholar 

  29. Prosser DE, Jones G. Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem Sci. 2004;29:664–73.

    CAS  PubMed  Article  Google Scholar 

  30. Ohyama Y, Yamasaki T. Eight cytochrome P450S catalyze vitamin D metabolism. Front Biosci. 2005;10:608–19.

    Article  Google Scholar 

  31. Jones G. Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr. 2008;88:582S–6S.

    CAS  PubMed  Google Scholar 

  32. Holick MF. Vitamin D, deficiency. N Engl J Med. 2007;357:266–81.

    CAS  PubMed  Article  Google Scholar 

  33. Heaney RP. Assessing vitamin D status. Curr Opin Clin Nutr Metab Care. 2011;14:440–4.

    CAS  PubMed  Article  Google Scholar 

  34. Martin A, David V, Quarles LD. Regulation and function of the fgf23/klotho endocrine pathways. Physiol Rev. 2012;92:131–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Henry HL. The 25(OH)D3/1α,25(OH)2D3-24R-hydroxylase: a catabolic or biosynthetic enzyme? Steroids. 2001;66:391–8.

    CAS  PubMed  Article  Google Scholar 

  36. Henry HL. Regulation of vitamin D metabolism. Best Pract Res Clin Endocrinol Metab. 2011;25:531–41.

    CAS  PubMed  Article  Google Scholar 

  37. Cantorna MT, Zhu Y, Froicu M, Wittke A. Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am J Clin Nutr. 2004;80:1717S–20S.

    CAS  PubMed  Google Scholar 

  38. Chen J, Lobachev KS, Grindel BJ, Farach-Carson MC, Hyzy SL, El-Baradie KB, et al. Chaperone properties of pdia3 participate in rapid membrane actions of 1α,25-dihydroxyvitamin D3. Mol Endocrinol. 2013;27:1065–77.

    CAS  PubMed  Article  Google Scholar 

  39. Holick MF, Schnoes HK, DeLuca HF, Gray RW, Boyle IT, Suda T. Isolation and identification of 24,25-dihydroxycholecalciferol, a metabolite of vitamin D made in the kidney. Biochemistry. 1972;11:4251–5.

    CAS  PubMed  Article  Google Scholar 

  40. Kumar R, Schnoes HK, DeLuca HF. Rat intestinal 25-hydroxyvitamin D3- and 1α,25-dihydroxyvitamin D3-24-hydroxylase. J Biol Chem. 1978;253:3804–9.

    CAS  PubMed  Google Scholar 

  41. Halloran BP, Castro ME. Vitamin D kinetics in vivo: effect of 1, 25-dihydroxyvitamin D administration. Am J Physiol. 1989;256:E686–91.

    CAS  PubMed  Google Scholar 

  42. Clements MR, Davies M, Hayes ME, Hickey CD, Lumb GA, Mawer EB, et al. The role of 1,25-dihydroxyvitamin D in the mechanism of acquired vitamin D deficiency. Clin Endocrinol. 1992;37:17–27.

    CAS  Article  Google Scholar 

  43. Akeno N, Saikatsu S, Kimura S, Horiuchi N. Induction of vitamin D 24-hydroxylase messenger RNA and activity by 22-oxacalcitriol in mouse kidney and duodenum. Possible role in decrease of plasma 1α,25-dihydroxyvitamin D3. Biochem Pharmacol. 1994;48:2081–90.

    CAS  PubMed  Article  Google Scholar 

  44. Demay MB, Gerardi JM, DeLuca HF, Kronenberg HM. DNA sequences in the rat osteocalcin gene that bind the 1,25-dihydroxyvitamin D3 receptor and confer responsiveness to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A. 1990;87:369–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Holick MF. Vitamin D, status: measurement, interpretation, and clinical application. Ann Epidemiol. 2009;19:73–8.

    PubMed  Article  Google Scholar 

  46. Zierold C, Darwish HM, DeLuca HF. Identification of a vitamin D-response element in the rat calcidiol (25-hydroxyvitamin D3) 24-hydroxylase gene. Proc Natl Acad Sci U S A. 1994;91:900–2.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Zierold C, Darwish HM, DeLuca HF. Two vitamin D response elements function in the rat 1,25-dihydroxyvitamin D 24-hydroxylase promoter. J Biol Chem. 1995;270:1675–8.

    CAS  PubMed  Article  Google Scholar 

  48. Darwish HM, DeLuca HF. Recent advances in the molecular biology of vitamin D action. Prog Nucleic Acid Res Mol Biol. 1996;53:321–44.

    CAS  PubMed  Article  Google Scholar 

  49. Ozono K, Liao J, Kerner SA, Scott RA, Pike JW. The vitamin D-responsive element in the human osteocalcin gene. Association with a nuclear proto-oncogene enhancer. J Biol Chem. 1990;265:21881–8.

    CAS  PubMed  Google Scholar 

  50. Nishikawa J, Matsumoto M, Sakoda K, Kitaura M, Imagawa M, Nishihara T. Vitamin D receptor zinc finger region binds to a direct repeat as a dimer and discriminates the spacing number between each half-site. J Biol Chem. 1993;268:19739–43.

    CAS  PubMed  Google Scholar 

  51. Kim MS, Fujiki R, Kitagawa H, Kato S. 1alpha,25(OH)2D3-induced DNA methylation suppresses the human CYP27B1 gene. Mol Cell Endocrinol. 2007;265–266:168–73.

    PubMed  Article  CAS  Google Scholar 

  52. Kim MS, Fujiki R, Murayama A, Kitagawa H, Yamaoka K, Yamamoto Y, et al. 1Alpha,25(OH)2D3-induced transrepression by vitamin D receptor through E-box-type elements in the human parathyroid hormone gene promoter. Mol Endocrinol. 2007;21:334–42.

    CAS  PubMed  Article  Google Scholar 

  53. Kitazawa S, Kajimoto K, Kondo T, Kitazawa R. Vitamin D3 supports osteoclastogenesis via functional vitamin D response element of human RANKL gene promoter. J Cell Biochem. 2003;89:771–7.

    CAS  PubMed  Article  Google Scholar 

  54. Jones G, DeLuca HF. HPLC of vitamin D and its metabolites. In: Makin HLJ, Newton R, editors. High performance liquid chromatography and its application to endocrinology, Monographs on endocrinology, vol. 30. Berlin: Springer; 1988. p. 95–139.

    Chapter  Google Scholar 

  55. Brown EM, Pollak M, Hebert SC. The extracellular calcium-sensing receptor: its role in health and disease. Annu Rev Med. 1998;49:15–29.

    CAS  PubMed  Article  Google Scholar 

  56. Jones G, Strugnell S, De Luca HF. Current understanding of the molecular actions of vitamin D. Physiol Rev. 1998;78:1193–231.

    CAS  PubMed  Google Scholar 

  57. Suda T, Takahashi N, Abe E. Role of vitamin D in bone resorption. J Cell Biochem. 1992;49:53–8.

    CAS  PubMed  Article  Google Scholar 

  58. Suda T, Ueno K, Fujii K, Shinki T. Vitamin D and bone. J Cell Biochem. 2003;88:2259–66.

    Article  CAS  Google Scholar 

  59. Redmond J, Jarjou LM, Zhou B, Prentice A, Schoenmakers I. Ethnic differences in calcium, phosphate and bone metabolism. Proc Nutr Soc. 2014;73:340–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Kinyamu HK, Gallagher JC, Prahl JM, DeLuca HF, Petranick KM, Lanspa SJ. Association between intestinal vitamin D receptor, calcium absorption, and serum 1,25-dihydroxyvitamin D in normal young and elderly women. J Bone Miner Res. 1997;12:922–8.

    CAS  PubMed  Article  Google Scholar 

  61. Levine BS, Singer FR, Bryce GF, Mallon JP, Miller ON, Coburn JW. Pharmacokinetics and biologic effects of calcitriol in normal humans. J Lab Clin Med. 1985;105:239–46.

    CAS  PubMed  Google Scholar 

  62. Aranow C. Vitamin D, and the immune system. J Investig Med. 2011;59:881–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Prietl B, Treiber G, Pieber TR, Amrein K. Vitamin D and immune function. Nutrients. 2013;5:2502–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Loi F, Córdova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB. Inflammation, fracture and bone repair. Bone. 2016;86:119–30.

    CAS  PubMed  Article  Google Scholar 

  65. Rigby WF, Waugh MG. Decreased accessory cell function and costimulatory activity by 1,25-dihydroxyvitamin D3-treated monocytes. Arthritis Rheum. 1992;35:110–9.

    CAS  PubMed  Article  Google Scholar 

  66. Adorini L, Penna G, Giarratana N, Uskokovic M. Tolerogenic dendritic cells induced by vitamin D receptor ligands enhance regulatory T cells inhibiting allograft rejection and autoimmune diseases. J Cell Biochem. 2003;88:227–33.

    CAS  PubMed  Article  Google Scholar 

  67. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449:419–26.

    CAS  PubMed  Article  Google Scholar 

  68. Lemire JM, Adams JS, Sakai R, Jordan SC. 1 alpha,25-dihydroxyvitamin D3 suppresses proliferation and immunoglobulin production by normal human peripheral blood mononuclear cells. J Clin Invest. 1984;74:657–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Chen S, Sims GP, Chen XX, Gu YY, Chen S, Lipsky PE. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol. 2007;179:1634–47.

    CAS  PubMed  Article  Google Scholar 

  70. Lemire JMM, Archer DC, Beck L, Spiegelberg HL. Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions. J Nutr. 1995;125:1704S–8S.

    CAS  PubMed  Google Scholar 

  71. Giulietti A, Gysemans C, Stoffels K, van Etten E, Decallonne B, Overbergh L, et al. Vitamin D deficiency in early life accelerates type 1 diabetes in non-obese diabetic mice. Diabetologia. 2004;47:451–62.

    CAS  PubMed  Article  Google Scholar 

  72. Cantorna MT. Mechanisms underlying the effect of vitamin D on the immune system. Proc Nutr Soc. 2011;69:286–9.

    Article  CAS  Google Scholar 

  73. Baeke F, Korf H, Overbergh L, Verstuyf A, Thorrez L, van Lommel L, et al. The vitamin D analog, TX527, promotes a human CD4+ CD25high CD127low regulatory T cell profile and induces a migratory signature specific for homing to sites of inflammation. J Immunol. 2011;186:132–42.

    CAS  PubMed  Article  Google Scholar 

  74. Palmer MT, Lee YK, Maynard CL, Oliver JR, Bikle DD, Jetten AM, et al. Lineage-specific effects of 1,25-dihydroxyvitamin D3 on the development of effector CD4 T cells. J Biol Chem. 2011;286:997–1004.

    CAS  PubMed  Article  Google Scholar 

  75. Van Belle TL, Gysemans C, Mathieu C. Vitamin D in autoimmune, infectious and allergic diseases: a vital player? Best Pract Res Clin Endocrinol Metab. 2011;25:617–32.

    PubMed  Article  CAS  Google Scholar 

  76. Talaat RM, Mohamed SF, Bassyouni IH, Raouf AA. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: correlation with disease activity. Cytokine. 2015;72:146–53.

    CAS  PubMed  Article  Google Scholar 

  77. Jeffery LE, Burke F, Mura M, Zheng Y, Qureshi OS, Hewison M, et al. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol. 2009;183:5458–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Joshi S, Pantalena L, Liu XK, Sarah L, Liu H, Rohowsky-kochan C, et al. 1,25-Dihydroxyvitamin D3 ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol Cell Biol. 2011;31:3653–69.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Penna G, Amuchastegui S, Cossetti C, Aquilano F, Mariani R, Sanvito F, et al. Diabetic mice by the vitamin D receptor agonist elocalcitol. J Immunol. 2006;177:8504–11.

    CAS  PubMed  Article  Google Scholar 

  80. Penna G, Amuchastegui S, Giarratana N, Daniel KC, Vulcano M, Sozzani S, et al. 1,25-Dihydroxyvitamin D3 selectively modulates tolerogenic properties in myeloid but not plasmacytoid dendritic cells. J Immunol. 2007;178:145–53.

    CAS  PubMed  Article  Google Scholar 

  81. Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol. 2008;8:685–98.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modulator of the immune system. Curr Opin Pharmacol. 2010;10:482–96.

    CAS  PubMed  Article  Google Scholar 

  83. Ferreira GB, van Etten E, Verstuyf A, Waer M, Overbergh L, Gysemans C, et al. 1,25-Dihydroxyvitamin D3 alters murine dendritic cell behaviour in vitro and in vivo. Diabetes Metab Res Rev. 2011;27:933–41.

    CAS  PubMed  Article  Google Scholar 

  84. Müller K, Diamant M, Bendtzen K. Inhibition of production and function of interleukin-6 by 1,25-dihydroxyvitamin D3. Immunol Lett. 1991;28:115–20.

    PubMed  Article  Google Scholar 

  85. Matheu V, Back O, Mondoc E, Issazadeh-Navikas S. Dual effects of vitamin D-induced alteration of TH1/TH2 cytokine expression: enhancing IgE production and decreasing airway eosinophilia in murine allergic airway disease. J Allergy Clin Immunol. 2003;112:585–92.

    CAS  PubMed  Article  Google Scholar 

  86. Rudensky AY. Regulatory T, cells and foxP3. Immunol Rev. 2011;241:260–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. Wang T, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol. 2004;173:2909–12.

    CAS  PubMed  Article  Google Scholar 

  88. Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. 2005;19:1067–77.

    CAS  PubMed  Article  Google Scholar 

  89. White JH. Vitamin D, metabolism and signaling in the immune system. Rev Endocr Metab Disord. 2012;13:21–9.

    CAS  PubMed  Article  Google Scholar 

  90. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311:1770–3.

    CAS  PubMed  Article  Google Scholar 

  91. Edfeldt K, Liu PT, Chun R, Fabri M, Schenk M, Wheelwright M, et al. T-cell cytokines differentially control human monocyte antimicrobial responses by regulating vitamin D metabolism. Proc Natl Acad Sci U S A. 2010;107:22593–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Boyce BF, Xiu Y, Li J, Xing L, Yao Z. NF-kB-mediated regulation of osteoclastogenesis. Endocrinol Metab. 2015;30:35–44.

    Article  Google Scholar 

  93. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Dawson-Hughes B. Positive association between 25-hydroxy vitamin D levels and bone mineral density: a population-based study of younger and older adults. Am J Med. 2004;116:634–9.

    CAS  PubMed  Article  Google Scholar 

  94. Dawson-Hughes B, Heaney RP, Holick MF, Lips P, Meunier PJ, Vieth R. Estimates of optimal vitamin D status. Osteoporos Int. 2005;16:713–6.

    CAS  PubMed  Article  Google Scholar 

  95. Stone K, Bauer DC, Black DM, Sklarin P, Ensrud KE, Cummings SR. Hormonal predictors of bone loss in elderly women: a prospective study. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res. 1998;13:1167–74.

    CAS  PubMed  Article  Google Scholar 

  96. Giovannucci E, Liu Y, Hollis BW, Rimm EB. 25-Hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med. 2008;168:1174–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Melamed ML, Michos ED, Post W, Astor B. 25-Hydroxyvitamin D levels and the risk of mortality in the general population. Arch Intern Med. 2008;168:1629–37.

    PubMed  PubMed Central  Article  Google Scholar 

  98. Dobnig H, Pilz S, Scharnagl H, Renner W, Seelhorst U, Wellnitz B, et al. Independent association of low serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels with all-cause and cardiovascular mortality. Arch Intern Med. 2008;168:1340–9.

    CAS  PubMed  Article  Google Scholar 

  99. Wang TJ, Pencina MJ, Booth SL, Jacques PF, Ingelsson E, Lanier K, et al. Vitamin D deficiency and risk of cardiovascular disease. Circulation. 2008;117:503–11.

    CAS  PubMed  Article  Google Scholar 

  100. Looker AC, Mussolino ME. Serum 25-hydroxyvitamin D and hip fracture risk in older US white adults. J Bone Miner Res. 2008;23:143–50.

    CAS  PubMed  Article  Google Scholar 

  101. De Boer IH, Kestenbaum B, Shoben AB, Michos ED, Sarnak MJ, Siscovick DS. 25-Hydroxyvitamin D levels inversely associate with risk for developing coronary artery calcification. J Am Soc Nephrol. 2009;20:1805–12.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  102. Cauley JA, Lacroix AZ, Wu L, Horwitz M, Danielson ME, Bauer DC, et al. Serum 25-hydroxyvitamin D concentrations and risk for hip fractures. Ann Intern Med. 2008;149:242–50.

    PubMed  PubMed Central  Article  Google Scholar 

  103. Rosen CJ. Clinical practice: vitamin D insufficiency. N Engl J Med. 2011;364:248–54.

    CAS  PubMed  Article  Google Scholar 

  104. De Boer IH, Levin GP, Robinson-Cohen C, Biggs ML, Hoofnagle AN, Siscovick DS, et al. Serum 25-hydroxyvitamin D concentration and risk for major clinical disease events in a community based population of older adults: a cohort study. Ann Intern Med. 2012;156:627–34.

    PubMed  PubMed Central  Article  Google Scholar 

  105. Buehring B, Viswanathan R, Binkley N, Busse W. Glucocorticoid-induced osteoporosis: an update on effects and management. J Allergy Clin Immunol. 2013;132:1019–30.

    CAS  PubMed  Article  Google Scholar 

  106. Adachi JD, Olszynski WP, Hanley DA, Hodsman AB, Kendler DL, Siminoski KG, et al. Management of corticosteroid-induced osteoporosis. Semin Arthritis Rheum. 2000;29:228–51.

    CAS  PubMed  Article  Google Scholar 

  107. Arnson Y, Amital H, Shoenfeld Y. Vitamin D and autoimmunity: new aetiological and therapeutic considerations. Ann Rheum Dis. 2007;66:1137–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11:98–107.

    CAS  PubMed  Article  Google Scholar 

  109. Cade C, Norman AW. Vitamin D3 improves impaired glucose tolerance and insulin secretion in the vitamin D-deficient rat in vivo. Endocrinology. 1986;119:84–90.

    CAS  PubMed  Article  Google Scholar 

  110. Norman AW, Frankel JB, Heldt AM, Grodsky GM. Vitamin D deficiency inhibits pancreatic secretion of insulin. Science. 1980;209:823–5.

    CAS  PubMed  Article  Google Scholar 

  111. Chiu KC, Chu A, Go VL, Saad MF. Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr. 2004;79:820–5.

    CAS  PubMed  Google Scholar 

  112. Schwartz AV. Diabetes mellitus: does it affect bone? Calcif Tissue Int. 2003;73:515–9.

    CAS  PubMed  Article  Google Scholar 

  113. Lecka-Czernik B. Bone loss in diabetes: use of antidiabetic thiazolidinediones and secondary osteoporosis. Curr Osteoporos Rep. 2010;8:178–84.

    PubMed  PubMed Central  Article  Google Scholar 

  114. García-Hernández A, Arzate H, Gil-Chavarría I, Rojo R, Moreno-Fierros L. High glucose concentrations alter the biomineralization process in human osteoblastic cells. Bone. 2012;50:276–88.

    PubMed  Article  CAS  Google Scholar 

  115. Al-Shoumer KA, Al-Essa TM. Is there a relationship between vitamin D with insulin resistance and diabetes mellitus? World J Diabetes. 2015;6:1057–64.

    PubMed  PubMed Central  Article  Google Scholar 

  116. Flores M. A role of vitamin D in low-intensity chronic inflammation and insulin resistance in type 2 diabetes mellitus? Nutr Res Rev. 2005;18:175–82.

    CAS  PubMed  Article  Google Scholar 

  117. de Courten B, Mousa A, Naderpoor N, Teede H, de Courten MP, Scragg R. Vitamin D supplementation for the prevention of type 2 diabetes in overweight adults: study protocol for a randomized controlled trial. Trials. 2015;16:335.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  118. Sarkar M, Bhardwaj R, Madabhavi I, Khatana J. Osteoporosis in chronic obstructive pulmonary disease. Clin Med Insights Circ Respir Pulm Med. 2015;9:5–21.

    PubMed  PubMed Central  Google Scholar 

  119. Black PN, Scragg R. Relationship between serum 25-hydroxyvitamin D and pulmonary function in the Third National Health and Nutrition Examination Survey. Chest. 2005;128:3792–8.

    CAS  PubMed  Article  Google Scholar 

  120. Heulens N, Korf H, Janssens W. Innate immune modulation in chronic obstructive pulmonary disease: moving closer toward vitamin D therapy. J Pharmacol Exp Ther. 2015;353:360–8.

    CAS  PubMed  Article  Google Scholar 

  121. Romme EA, Rutten EP, Smeenk FW, Spruit MA, Menheere PP, Wouters EF. Vitamin D status is associated with bone mineral density and functional exercise capacity in patients with chronic obstructive pulmonary disease. Ann Med. 2013;45:91–6.

    CAS  PubMed  Article  Google Scholar 

  122. Heidari B, Javadian Y, Monadi M, Dankob Y, Firouzjahi A. Vitamin D status and distribution in patients with chronic obstructive pulmonary disease versus healthy controls. Caspian J Intern Med. 2015;6:93–7.

    PubMed  PubMed Central  Google Scholar 

  123. Sutherland ER, Goleva E, Jackson LP, Stevens AD, Leung DY. Vitamin D levels, lung function and steroid response in adult asthma. Am J Respir Crit Care Med. 2010;181:699–704.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. Yin K, Agrawal DK. Vitamin D and inflammatory diseases. J Inflamm Res. 2014;7:69–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Hong Q, Xu J, Xu S, Lian L, Zhang M, Ding C. Associations between serum 25-hydroxyvitamin D and disease activity, inflammatory cytokines and bone loss in patients with rheumatoid arthritis. Rheumatology (Oxford). 2014;53:1994–2001.

    Article  Google Scholar 

  126. Hoes JN, Bultink IE, Lems WF. Management of osteoporosis in rheumatoid arthritis patients. Expert Opin Pharmacother. 2015;16:559–71.

    CAS  PubMed  Article  Google Scholar 

  127. Varenna M, Manara M, Cantatore FP, Del Puente A, Di Munno O, Malavolta N, et al. Determinants and effects of vitamin D supplementation on serum 25-hydroxy-vitamin D levels in patients with rheumatoid arthritis. Clin Exp Rheumatol. 2012;30:714–9.

    PubMed  Google Scholar 

  128. Magrey M, Khan MA. Osteoporosis in ankylosing spondylitis. Curr Rheumatol Rep. 2010;12:332–6.

    PubMed  Article  Google Scholar 

  129. Cai G, Wang L, Fan D, Xin L, Liu L, Hu Y, et al. Vitamin D in ankylosing spondylitis: review and meta-analysis. Clin Chim Acta. 2015;438:316–22.

    CAS  PubMed  Article  Google Scholar 

  130. Horowitz MC, Bothwell AL, Hesslein DG, Pflugh DL, Schatz DG. B cells and osteoblast and osteoclast development. Immunol Rev. 2005;208:141–53.

    CAS  PubMed  Article  Google Scholar 

  131. Tamura T, Udagawa N, Takahashi N, Miyaura C, Tanaka S, Yamada Y, et al. Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc Natl Acad Sci U S A. 1993;90:11924–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. Hofbauer LC, Lacey DL, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S. Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone. 1999;25:255–9.

    CAS  PubMed  Article  Google Scholar 

  133. Zaiss MM, Axmann R, Zwerina J, Polzer K, Gückel E, Skapenko A, et al. Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum. 2007;56:4104–12.

    CAS  PubMed  Article  Google Scholar 

  134. Ma L, Makino Y, Yamaza H, Akiyama K, Hoshino Y, Song G, et al. Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine. PLoS One. 2012;7:e51777.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. Tyagi AM, Mansoori MN, Srivastava K, Khan MP, Kureel J, Dixit M, et al. Enhanced immunoprotective effects by anti-IL-17 antibody translates to improved skeletal parameters under estrogen deficiency compared with anti-RANKL and anti-TNF-α antibodies. J Bone Miner Res. 2014;29:1981–92.

    CAS  PubMed  Article  Google Scholar 

  136. Gonçalves-Zillo TO, Pugliese LS, Sales VM, Mori MA, Squaiella-Baptistão CC, Longo-Maugéri IM, et al. Increased bone loss and amount of osteoclasts in kinin B1 receptor knockout mice. J Clin Periodontol. 2013;40:653–60.

    PubMed  Article  CAS  Google Scholar 

  137. Yap KS, Morand EF. Vitamin D and systemic lupus erythematosus: continued evolution. Int J Rheum Dis. 2015;18:242–9.

    CAS  PubMed  Article  Google Scholar 

  138. Sioka C, Kyritsis AP, Fotopoulos A. Multiple sclerosis, osteoporosis, and vitamin D. J Neurol Sci. 2009;287:1–6.

    CAS  PubMed  Article  Google Scholar 

  139. Olsson A, Oturai DB, Sørensen PS, Oturai PS, Oturai AB. Short-term, high-dose glucocorticoid treatment does not contribute to reduced bone mineral density in patients with multiple sclerosis. Mult Scler. 2015;21:1557–65.

    CAS  PubMed  Article  Google Scholar 

  140. Forrest KY, Stuhldreher WL. Prevalence and correlates of vitamin D deficiency in US adults. Nutr Res. 2011;31:48–54.

    CAS  PubMed  Article  Google Scholar 

  141. Grethen E, McClintock R, Gupta CE, Jones R, Cacucci BM, Diaz D, et al. Vitamin D and hyperparathyroidism in obesity. J Clin Endocrinol Metab. 2011;96:1320–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. Vimaleswaran KS, Berry DJ, Lu C, Tikkanen E, Pilz S, Hiraki LT, et al. Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 2013;19:951–60.

    Google Scholar 

  143. Song Q, Sergeev IN. Calcium and vitamin D in obesity. Nutr Res Rev. 2012;25:130–41.

    CAS  PubMed  Article  Google Scholar 

  144. Marcotorchino J, Tourniaire F, Astier J, Karkeni E, Canault M, Amiot MJ, et al. Vitamin D protects against diet-induced obesity by enhancing fatty acid oxidation. J Nutr Biochem. 2014;25:1077–83.

    CAS  PubMed  Article  Google Scholar 

  145. Fini M, Giavaresi G, Salamanna F, Veronesi F, Martini L, De Mattei M, et al. Harmful lifestyles on orthopedic implantation surgery: a descriptive review on alcohol and tobacco use. J Bone Miner Metab. 2011;29:633–44.

    PubMed  Article  Google Scholar 

  146. Zhao LJ, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, et al. Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res. 2008;1:17–29.

    Google Scholar 

  147. Cao JJ. Effects of obesity on bone metabolism. J Orthop Surg Res. 2011;6:30–6.

    PubMed  PubMed Central  Article  Google Scholar 

  148. Williams FM, Spector TD. Recent advances in the genetics of osteoporosis. Musculoskelet Neuronal Interact. 2006;6:27–35.

    CAS  Google Scholar 

  149. Ji GR, Yao M, Sun CY, Li ZH, Han Z. BsmI, TaqI, ApaI and FokI polymorphisms in the vitamin D receptor (VDR) gene and risk of fracture in Caucasians: a meta-analysis. Bone. 2010;47:681–6.

    CAS  PubMed  Article  Google Scholar 

  150. Deng H, Liu F, Pan Y, Jin X, Wang H, Cao J. BsmI, TaqI, ApaI, and FokI polymorphisms in the vitamin D receptor gene and periodontitis: a meta-analysis of 15 studies including 1338 cases and 1302 controls. J Clin Periodontol. 2011;38:199–207.

    CAS  PubMed  Article  Google Scholar 

  151. Li Y, Xi B, Li K, Wang C. Association between vitamin D receptor gene polymorphisms and bone mineral density in Chinese women. Mol Biol Rep. 2012;39:5709–17.

    CAS  PubMed  Article  Google Scholar 

  152. Marozik P, Mosse I, Alekna V, Rudenko E, Tamulaitienė M, Ramanau H, et al. Association between polymorphisms of VDR, COL1A1, and LCT genes and bone mineral density in Belarusian women with severe postmenopausal osteoporosis. Medicina (Kaunas). 2013;49:177–84.

    Google Scholar 

  153. Tarner IH, Erkal MZ, Obermayer-Pietsch BM, Hofbauer LC, Bergmann S, Goettsch C, et al. Osteometabolic and osteogenetic pattern of Turkish immigrants in Germany. Exp Clin Endocrinol Diabetes. 2012;120:517–23.

    CAS  PubMed  Article  Google Scholar 

  154. Kurt O, Yilmaz-Aydogan H, Uyar M, Isbir T, Seyhan MF, Can A. Evaluation of ERα and VDR gene polymorphisms in relation to bone mineral density in Turkish postmenopausal women. Mol Biol Rep. 2012;39:6723–30.

    CAS  PubMed  Article  Google Scholar 

  155. Pouresmaeili F, Jamshidi J, Azargashb E, Samangouee S. Association between vitamin D receptor gene BsmI polymorphism and bone mineral density in a population of 146 Iranian women. Cell J. 2013;15:75–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Khatkhatay MI. Genetic factors contributing to osteoporosis: study of vitamin D receptor polymorphism and estrogen receptor gene in Indian population. Hum Mol Genet. 2004;13:1633–9.

    Article  CAS  Google Scholar 

  157. Thakkinstian A, Eisman J, Atteia J, Neygyen J. Meta-analysis of molecular association studies: vitamin D receptor gene polymorphisms and BMD as a case study. J Bone Miner Res. 2004;19:419–28.

    CAS  PubMed  Article  Google Scholar 

  158. Horst-Sikorska W, Ignaszak-Szczepaniak M, Marcinkowska M, Kaczmarek M, Stajgis M, Slomski R. Association analysis of vitamin D receptor gene polymorphisms with bone mineral density in young women with Graves’ disease. Acta Biochim Pol. 2008;55:371–80.

    CAS  PubMed  Google Scholar 

  159. Creatsa M, Pliatsika P, Kaparos G, Antoniou A, Armeni E, Tsakonas E, et al. The effect of vitamin D receptor BsmI genotype on the response to osteoporosis treatment in postmenopausal women: a pilot study. J Obstet Gynaecol Res. 2011;37:1415–22.

    PubMed  Article  Google Scholar 

  160. Lisker R, López MA, Jasqui S, Ponce De León Rosales S, Correa-Rotter R, Sánchez S, et al. Association of vitamin D receptor polymorphisms with osteoporosis in Mexican postmenopausal women. Hum Biol. 2003;75:399–403.

    PubMed  Article  Google Scholar 

  161. Kiel DP, Demissie S, Dupuis J, Lunetta KL, Murabito JM, Karasik D. Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med Genet. 2007;19:S14.

    Article  CAS  Google Scholar 

  162. Mosaad YM, Hammadb EM, Fawzy Z, Abdal IA, Youssef HM, ElSaid TO, et al. Vitamin D receptor gene polymorphism as possible risk factor in rheumatoid arthritis and rheumatoid related osteoporosis. Hum Immunol. 2014;75:452–61.

    CAS  PubMed  Article  Google Scholar 

  163. Hussien YM, Shehata A, Karam RA, Alzahrani SS, Magdy H, El-Shafey AM. Polymorphism in vitamin D receptor and osteoprotegerin genes in Egyptian rheumatoid arthritis patients with and without osteoporosis. Mol Biol Rep. 2013;40:3675–80.

    CAS  PubMed  Article  Google Scholar 

  164. Jia F, Sun RF, Li QH, Wang DX, Zhao F, Li JM, et al. Vitamin D receptor BsmI polymorphism and osteoporosis risk: a meta-analysis from 26 studies. Genet Test Mol Biomarkers. 2013;17:30–4.

    CAS  PubMed  Article  Google Scholar 

  165. Qin G, Dong Z, Zeng P, Liu M, Liao X. Association of vitamin D receptor BsmI gene polymorphism with risk of osteoporosis: a meta-analysis of 41 studies. Mol Biol Rep. 2013;40:497–506.

    CAS  PubMed  Article  Google Scholar 

  166. Shen H, Xie J, Lu H. Vitamin D receptor gene and risk of fracture in postmenopausal women: a meta-analysis. Climacteric. 2014;17:319–24.

    CAS  PubMed  Article  Google Scholar 

  167. Wu FY, Liu CS, Liao LN, Li CI, Lin CH, Yang CW, et al. Vitamin D receptor variability and physical activity are jointly associated with low handgrip strength and osteoporosis in community-dwelling elderly people in Taiwan: the Taichung Community Health Study for Elders (TCHS-E). Osteoporos Int. 2014;25:1917–29.

    CAS  PubMed  Article  Google Scholar 

  168. Lauridsen AL, Vestergaard P, Nexo E. Mean serum concentration of vitamin D-binding protein (Gc globulin) is related to the Gc phenotype in women. Clin Chem. 2001;47:753–6.

    CAS  PubMed  Google Scholar 

  169. Lauridsen AL, Vestergaard P, Hermann AP, Moller HJ, Mosekilde L, Nexo E. Female premenopausal fracture risk is associated with Gc phenotype. J Bone Miner Res. 2004;19:875–81.

    PubMed  Article  Google Scholar 

  170. Lauridsen AL, Vestergaard P, Hermann AP, Brot C, Heickendorff L, Mosekilde L, et al. Plasma concentrations of 25-hydroxy-vitamin D and 1,25-dihydroxyvitamin D are related to the phenotype of Gc (vitamin D-binding protein): a cross-sectional study on 595 early postmenopausal women. Calcif Tissue Int. 2005;77:15–22.

    CAS  PubMed  Article  Google Scholar 

  171. Pekkinen M, Saarnio E, Viljakainen HT, Kokkonen E, Jakobsen J, Cashman K, et al. Vitamin D binding protein genotype is associated with serum 25-hydroxyvitamin D and PTH concentrations, as well as bone health in children and adolescents in Finland. PLoS One. 2014;9:e87292.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  172. Xu XH, Xiong DH, Liu XG, Guo Y, Chen Y, Zhao J, et al. Association analyses of vitamin D-binding protein gene with compression strength index variation in Caucasian nuclear families. Osteoporos Int. 2010;21:99–107.

    CAS  PubMed  Article  Google Scholar 

  173. Taes YE, Goemaere S, Huang G, Van Pottelbergh I, De Bacquer D, Verhasselt B, et al. Vitamin D binding protein, bone status and body composition in community-dwelling elderly men. Bone. 2006;38:701–7.

    CAS  PubMed  Article  Google Scholar 

  174. Al-oanzi ZH, Tuck SP, Mastana SS, Summers GD, Cook DB, Francis RM, et al. Vitamin D binding protein gene microsatellite polymorphism influences BMD and risk of fractures in men. Osteoporos Int. 2008;19:951–60.

    CAS  PubMed  Article  Google Scholar 

  175. Papiha SS, Allcroft LC, Kanan RM, Francis RM, Datta HK. Vitamin D binding protein gene in male osteoporosis: association of plasma DBP and bone mineral density with (TAAA)n-Alu polymorphism in DBP. Calcif Tissue Int. 1999;65:262–6.

    CAS  PubMed  Article  Google Scholar 

  176. Speeckaert M, Huang G, Delanghe JR, Taes YE. Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clin Chim Acta. 2006;372:33–42.

    CAS  PubMed  Article  Google Scholar 

  177. Thongthai P, Chailurkit LO, Chanprasertyothin S, Nimitphong H, Sritara P, Aekplakorn W, et al. Vitamin D binding protein gene polymorphism as a risk factor for vitamin D deficiency in Thais. Endocr Pract. 2015;21:221–5.

    PubMed  Article  Google Scholar 

  178. Ezura Y, Nakajima T, Kajita M, Ishida R, Inoue S, Yoshida H, et al. Association of molecular variants, haplotypes, and linkage disequilibrium within the human vitamin D-binding protein (DBP) gene with postmenopausal bone mineral density. J Bone Miner Res. 2003;18:1642–9.

    CAS  PubMed  Article  Google Scholar 

  179. Sinotte M, Diorio C, Bérubé S, Pollak M, Brisson J. Genetic polymorphisms of the vitamin D binding protein and plasma concentrations of 25-hydroxyvitamin D in premenopausal women. Am J Clin Nutr. 2009;89:634–40.

    CAS  PubMed  Article  Google Scholar 

  180. Bu FX, Armas L, Lappe J, Zhou Y, Gao G, Wang HW, et al. Comprehensive association analysis of nine candidate genes with serum 25-hydroxy vitamin D levels among healthy Caucasian subjects. Hum Genet. 2010;128:549–56.

    CAS  PubMed  Article  Google Scholar 

  181. Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci U S A. 2004;101:7711–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  182. Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, et al. Genome-wide association study of circulating vitamin D levels. Hum Mol Genet. 2010;19:2739–45.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  183. Ramos-Lopez E, Kahles H, Weber S, Kukic A, Penna-Martinez M, Badenhoop K, et al. Gestational diabetes mellitus and vitamin D deficiency: genetic contribution of CYP27B1 and CYP2R1 polymorphisms. Diabetes Obes Metab. 2008;10:683–5.

    CAS  PubMed  Article  Google Scholar 

  184. Massey K, Dickerson RN, Brown RO. A review of vitamin D deficiency in the critical care population. Pharmacy. 2014;2:40–9.

    Article  Google Scholar 

Download references

Acknowledgments

This study has been developed with the contribution of the National Operational Programme for Research and Competitiveness 2007–2013 - PONa03_00011 “Potenziamento strutturale di una rete di eccellenza per la ricerca clinica sulla terapia personalizzata in oncologia e in medicina rigenerativa”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Giavaresi.

Ethics declarations

Conflict of Interest

All authors have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Bone and Diabetes

Appendix

Appendix

Search Strategies

A literature research of the entire MEDLINE database (PubMed research engine) using the following MeSH database terms was carried out: (“Vitamin D” [Mesh]) AND (“Osteoporosis” [Mesh]). The search was limited to the last 5 years (“2010/01/01” [Date - Entrez]: “2016/06/31” [Date - Entrez]) and abstract availability in English. The references of the retrieved studies and pertinent reviews were then manually assessed by three reviewers. No relevant data were found about the effect of vitamin D in the immune system of osteoporotic patients. We performed a specific research in “PubMed” database including “Vitamin D” [Mesh] AND “Osteoporosis” [Mesh] AND (“2010/01/01” [PDat]: “2016/06/31” [PDat]), “immune system” [Mesh]. The articles found were eight, three of which were discarded because these are not relevant to the subject of the research.

The number of unique papers from the electronic search was 829, which after abstract review was reduced to:

  • 4 meta-analysis

  • 6 systematic reviews

  • 34 reviews

  • 5 related to immune system (AND “Immune System” [Mesh])

  • 17 related to polymorphisms (AND “Polymorphism” [Mesh])

  • 3 related to calcium and phosphorus metabolism (AND “Calcium” [Mesh] AND “Phosphorus” [Mesh])

  • 4 guidelines

  • 10 other articles

Other 100 (about 54.65 %) papers were included in the final review, including 4 % guidelines, 60 % human, 10 % animal, and 15 % in vitro studies. Most of the human studies were observational (41.7 %, 25 out of 60) and only one controlled study was present (3.3 %, 2 out of 60).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bellavia, D., Costa, V., De Luca, A. et al. Vitamin D Level Between Calcium-Phosphorus Homeostasis and Immune System: New Perspective in Osteoporosis. Curr Osteoporos Rep (2016). https://doi.org/10.1007/s11914-016-0331-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11914-016-0331-2

Keywords

  • Vitamin D
  • Osteoporosis
  • Calcium-phosphorus homeostasis
  • Immune system
  • Polymorphisms