Skip to main content

Advertisement

Log in

Skeletal Implications of Chronic Obstructive Pulmonary Disease

  • Secondary Causes of Osteoporosis (SJ Warden, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Chronic obstructive pulmonary disease (COPD) is associated with numerous comorbidities, among which osteoporosis is of high significance. Low bone mass and the occurrence of fragility fractures is a common finding in patients with COPD. Typical risk factors related directly or indirectly to these skeletal complications include systemic inflammation, tobacco smoking, vitamin D deficiency, and treatment with oral or inhaled corticosteroids. In particular, treatment with glucocorticoids appears to be a strong contributor to bone changes in COPD, but does not fully account for all skeletal complications. Additional to the effects of COPD on bone mass, there is evidence for COPD-related changes in bone microstructure and material properties. This review summarizes the clinical outcomes of low bone mass and increased fracture risk, and reports on recent observations in bone tissue and material in COPD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, et al. Global initiative for chronic obstructive lung disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2007;176(6):532–55.

    Article  PubMed  Google Scholar 

  2. Graat-Verboom L, Smeenk FW, van den Borne BE, Spruit MA, Donkers-van Rossum AB, Aarts RP, et al. Risk factors for osteoporosis in Caucasian patients with moderate chronic obstructive pulmonary disease: a case control study. Bone. 2012;50(6):1234–9.

    Article  PubMed  Google Scholar 

  3. Cielen N, Maes K, Gayan-Ramirez G 2014 Musculoskeletal disorders in chronic obstructive pulmonary disease. BioMed Research International Volume 2014, Article ID 965764, 17 pages http://dx.doi.org/10.1155/2014/965764

  4. Jørgensen NR, Schwarz P. Osteoporosis in chronic obstructive pulmonary disease patients. Curr Opin Pulm Med. 2008;14(2):122–7.

    Article  PubMed  Google Scholar 

  5. Romme EA, Smeenk FW, Rutten EP, Wouters EF. Osteoporosis in chronic obstructive pulmonary disease. Expert Rev Respir Med. 2013;7(4):397–410. doi:10.1586/17476348.2013.814402.

    Article  CAS  PubMed  Google Scholar 

  6. Biskobing DM. COPD and osteoporosis. Chest. 2002;121(2):609–20.

    Article  PubMed  Google Scholar 

  7. Jaramillo JD, Wilson C, Stinson DS, Lynch DA, Bowler RP, Lutz S, et al. COPDGene Investigators. Reduced Bone Density and Vertebral Fractures in Smokers. Men and COPD Patients at Increased Risk. Ann Am Thorac Soc. 2015;12(5):648–56. In this large study comprising more than 3300 male smokers, the impact of smoking on low bone mass and vertebral fracture risk was demonstrated. COPD and especially emphysema were found associated with risk of osteoporosis after adjustment for steroid use and other variables.

    Article  PubMed  Google Scholar 

  8. Nuti R, Siviero P, Maggi S, Guglielmi G, Caffarelli C, Crepaldi G, et al. Vertebral fractures in patients with chronic obstructive pulmonary disease: the EOLO Study. Osteoporos Int. 2009;20(6):989–98.

    Article  CAS  PubMed  Google Scholar 

  9. Costa TM, Costa FM, Moreira CA, Rabelo LM, Boguszewski CL, Borba VZ. Sarcopenia in COPD: relationship with COPD severity and prognosis. J Bras Pneumol. 2015;41(5):415–21.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Romme EA, Rutten EP, Geusens P, de Jong JJ, van Rietbergen B, Smeenk FW, et al. Bone stiffness and failure load are related with clinical parameters in men with chronic obstructive pulmonary disease. J Bone Miner Res. 2013;28(10):2186–93. doi:10.1002/jbmr.1947. In this work, information on estimates of mechanical data from COPD bone have been assessed for the first time by finite element analysis.

    Article  PubMed  Google Scholar 

  11. Pandya D, Puttanna A, Balagopal V. Systemic effects of inhaled corticosteroids: an overview. Open Respir Med J. 2014;8(Suppl 1: M2):59–65.

    PubMed  PubMed Central  Google Scholar 

  12. Hofbauer LC, Gori F, Riggs BL, Lacey DL, Dunstan CR, Spelsberg TC, et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology. 1999;140(10):4382–9.

    CAS  PubMed  Google Scholar 

  13. Cooper MS. Sensitivity of bone to glucocorticoids. Clin Sci. 2004;107:111–23.

    Article  CAS  PubMed  Google Scholar 

  14. Kim HJ, Zhao H, Kitaura H, Bhattacharyya S, Brewer JA, Muglia LJ, et al. Glucocorticoids suppress bone formation via the osteoclast. J Clin Invest. 2006;8:2152–60.

    Article  Google Scholar 

  15. Weng MY, Lane NE. Medication-induced osteoporosis. Curr Osteoporos Rep. 2007;4:139–45.

    Article  Google Scholar 

  16. Unnanuntana A, Rebolledo BJ, Khair MM, DiCarlo EF, Lane JM. Diseases affecting bone quality: beyond osteoporosis. Clin Orthop Relat Res. 2011;469(8):2194–206.

    Article  PubMed  PubMed Central  Google Scholar 

  17. van Staa TP, Leufkens HG, Abenhaim L, Zhang B, Cooper C. Use of oral corticosteroids and risk of fractures. J Bone Miner Res. 2000;15(6):993–1000.

    Article  PubMed  Google Scholar 

  18. van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002;13(10):777–87.

    Article  PubMed  Google Scholar 

  19. Price D, Yawn B, Brusselle G, Rossi A. Risk-to-benefit ratio of inhaled corticosteroids in patients with COPD. Prim Care Respir J. 2013;22(1):92–100.

    Article  PubMed  Google Scholar 

  20. Chee C, Sellahewa L, Pappachan JM. Inhaled corticosteroids and bone health. Open Respir Med J. 2014;8:85–92.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bonay M, Bancal C, Crestani B. The risk/benefit of inhaled corticosteroids in chronic obstructive pulmonary disease. Expert Opin Drug Saf. 2005;4(2):251–71.

    Article  CAS  PubMed  Google Scholar 

  22. Vestergaard P, Rejnmark L, Mosekilde L. Fracture risk in patients with chronic lung diseases treated with bronchodilator drugs and inhaled and oral corticosteroids. CHEST. 2007;132:1599–607.

    Article  CAS  PubMed  Google Scholar 

  23. Loke YK, Cavallazzi R, Singh S. Risk of fractures with inhaled corticosteroids in COPD: systematic review and meta-analysis of randomised controlled trials and observational studies. Thorax. 2011;66(8):699–708. This meta-analysis of randomized clinical trials and observational studies suggested a dose-dependent increased risk of fractures associated with the long-term use of inhaled glucocorticoids in patients with COPD.

    Article  PubMed  Google Scholar 

  24. Lacativa PG. Farias ML osteoporosis and inflammation. Arq Bras Endocrinol Metabol. 2010;54(2):123–32. Review.

    Article  PubMed  Google Scholar 

  25. Gilbert CR, Arum SM, Smith CM. Vitamin D deficiency and chronic lung disease. Can Respir J. 2009;16(3):75–80.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Persson LJ, Aanerud M, Hiemstra PS, Hardie JA, Bakke PS, Eagan TM. Chronic obstructive pulmonary disease is associated with low levels of vitamin D. PLoS ONE. 2012;7(6), e38934. doi:10.1371/journal.pone.0038934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Franco CB, Paz-Filho G, Gomes PE, Nascimento VB, Kulak CA, Boguszewski CL, et al. Chronic obstructive pulmonary disease is associated with osteoporosis and low levels of vitamin D. Osteoporos Int. 2009;20(11):1881–7.

    Article  CAS  PubMed  Google Scholar 

  28. Kulak CA, Borba VC, Jorgetti V, Dos Reis LM, Liu XS, Kimmel DB, et al. Skeletal microstructural abnormalities in postmenopausal women with chronic obstructive pulmonary disease. J Bone Miner Res. 2010;25(9):1931–40. doi:10.1002/jbmr.88. This was the only study on bone biopsy samples from COPD patients so far. Microstructural abnormalities and altered bone formation indices were described.

    Article  PubMed  Google Scholar 

  29. Romme EAPM, Rutten EPA, Smeenk FWJM, Spruit MA, Menheere PPCA, Wouters EFM. Vitamin D status is associated with bone mineral density and functional exercise capacity in patients with chronic obstructive pulmonary disease. Ann Med. 2013;45(1):91–6.

    Article  CAS  PubMed  Google Scholar 

  30. de Jong WU, de Jong PA, Vliegenthart R, Isgum I, Lammers JW, Oudkerk M, et al. Association of chronic obstructive pulmonary disease and smoking status with bone density and vertebral fractures in male lung cancer screening participants. J Bone Miner Res. 2014;29(10):2224–9.

    Article  PubMed  Google Scholar 

  31. Kallala R, Barrow J, Graham SM, Kanakaris N, Giannoudis PV. The in vitro and in vivo effects of nicotine on bone, bone cells and fracture repair. Expert Opin Drug Saf. 2013;12(2):209–33.

    Article  CAS  PubMed  Google Scholar 

  32. Zhu G, ICGN Investigators, Gulsvik A, Bakke P, Ghatta S, Anderson W, et al. Association of TRPV4 gene polymorphisms with chronic obstructive pulmonary disease. Hum Mol Genet. 2009;18(11):2053–62.

    Article  CAS  PubMed  Google Scholar 

  33. McAlexander MA, Luttmann MA, Hunsberger GE, Undem BJ. Transient receptor potential vanilloid 4 activation constricts the human bronchus via the release of cysteinyl leukotrienes. J Pharmacol Exp Ther. 2014;349(1):118–25.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ohara T, Hirai T, Muro S, et al. Relationship between pulmonary emphysema and osteoporosis assessed by CT in patients with COPD. Chest. 2008;134(6):1244–9.

    Article  PubMed  Google Scholar 

  35. Romme EA, Geusens P, Lems WF, Rutten EP, Smeenk FW, van den Bergh JP, et al. Fracture prevention in COPD patients; a clinical 5-step approach. Respir Res. 2015;16:32. doi:10.1186/s12931-015-0192-8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fratzl P, Gupta HS, Paschalis EP, Roschger P. Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem. 2004;14:2115–23.

    Article  CAS  Google Scholar 

  37. Seeman E. Bone quality: the material and structural basis of bone strength. J Bone Miner Metab. 2008;26(1):1–8.

    Article  PubMed  Google Scholar 

  38. Wagermaier W, Klaushofer K, Fratzl P. Fragility of bone material controlled by internal interfaces. Calcif Tissue Int. 2015;97(3):201–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone. 2008;42:456–66.

    Article  CAS  PubMed  Google Scholar 

  40. Misof BM, Roschger P, Jorgetti V, Klaushofer K, Borba VZ, Boguszewski CL, et al. Subtle changes in bone mineralization density distribution in most severely affected patients with chronic obstructive pulmonary disease. Bone. 2015;79:1–7. doi:10.1016/j.bone.2015.05.018. This study provided the only information on bone matrix mineralization in patients with COPD so far. Altered heterogeneity of mineralization was reported for the most severely affected patients.

    Article  CAS  PubMed  Google Scholar 

  41. Yao W, Cheng Z, Pham A, Busse C, Zimmermann EA, Ritchie RO. Glucocorticoid-induced bone loss can be reversed by the actions of PTH and Risedronate on different pathways for bone formation and mineralization. Arthritis Rheu. 2008;58(11):3485–97.

    Article  CAS  Google Scholar 

  42. Paschalis E, Gamsjaeger S, Dempster D, Jorgetti V, Borba V, Klaushofer K, Moreira C. Bone Material Compositional Properties at Actively Bone Forming Trabecular Surfaces are Able to Discriminate Between Chronic Obstructive Pulmonary Disease (COPD) Patients that Sustain Fragility Fractures vs. Those Who Do Not, Irrespective of Glucocorticoid Therapy. Abstract ASBMR-meeting 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara M. Misof.

Ethics declarations

Conflict of Interest

Barbara M. Misof, Carolina A. Moreira, Klaus Klaushofer, and Paul Roschger declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Secondary Causes of Osteoporosis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misof, B.M., Moreira, C.A., Klaushofer, K. et al. Skeletal Implications of Chronic Obstructive Pulmonary Disease. Curr Osteoporos Rep 14, 49–53 (2016). https://doi.org/10.1007/s11914-016-0301-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-016-0301-8

Keywords

Navigation