Skip to main content

Advertisement

Log in

Aberrant Myeloid Differentiation Contributes to the Development of Osteoporosis in Neurofibromatosis Type 1

  • Epidemiology and Pathophysiology (J Cauley and B Dawson-Hughes, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Neurofibromatosis type 1 (NF1), also known as von Recklinghausen disease, is a common autosomal dominant genetic disorder affecting approximately 1 in 3000 individuals worldwide. NF1 results from heritable or spontaneous mutations of the NF1 tumor suppressor gene. NF1 encodes the protein neurofibromin, which functions to negatively regulate Ras-activity. Approximately 50 % of NF1 patients develop osteopenia or osteoporosis, resulting in significantly increased rates of long-bone fracture and morbidity. While defective osteoblast bone anabolism has been implicated as a central factor in the pathogenesis of NF1 associated skeletal deficits, recent data suggest that NF1 (Nf1) haploinsufficiency within the hematopoietic compartment, particularly in osteoclasts and myeloid progenitors, plays a pivotal role in engendering NF1 osseous manifestations. In this chapter, we review the latest data from clinical studies and murine models delineating a critical role for hematopoietic compartment, myeloid progenitors of NF1 (Nf1) haploinsufficient and their progeny-osteoclasts, in the pathogenesis of NF1 associated osteopenia/osteoporosis and discuss putative targets for future therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. Friedman J et al. Neurofibromatosis: phenotype, natural history, and pathogenesis. 3rd ed. Baltimore: The Johns Hopkins University Press; 1999.

    Google Scholar 

  2. Martin GA et al. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell. 1990;63(4):843–9.

    Article  CAS  PubMed  Google Scholar 

  3. Ballester R et al. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell. 1990;63(4):851–9.

    Article  CAS  PubMed  Google Scholar 

  4. Riccardi VM. Von Recklinghausen neurofibromatosis. N Engl J Med. 1981;305(27):1617–27.

    Article  CAS  PubMed  Google Scholar 

  5. Friedman JM, Birch PH. Type 1 neurofibromatosis: a descriptive analysis of the disorder in 1,728 patients. Am J Med Genet. 1997;70(2):138–43.

    Article  CAS  PubMed  Google Scholar 

  6. Friedman JM. Epidemiology of neurofibromatosis type 1. Am J Med Genet. 1999;89(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  7. Ferner RE, Gutmann DH. International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res. 2002;62(5):1573–7.

    CAS  PubMed  Google Scholar 

  8. Listernick R et al. Optic gliomas in children with neurofibromatosis type 1. J Pediatr. 1989;114(5):788–92.

    Article  CAS  PubMed  Google Scholar 

  9. Listernick R et al. Natural history of optic pathway tumors in children with neurofibromatosis type 1: a longitudinal study. J Pediatr. 1994;125(1):63–6.

    Article  CAS  PubMed  Google Scholar 

  10. Brodeur GM. The NF1 gene in myelopoiesis and childhood myelodysplastic syndromes. N Engl J Med. 1994;330(9):637–9.

    Article  CAS  PubMed  Google Scholar 

  11. Side L et al. Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N Engl J Med. 1997;336(24):1713–20.

    Article  CAS  PubMed  Google Scholar 

  12. Emanuel PD et al. The role of monocyte-derived hemopoietic growth factors in the regulation of myeloproliferation in juvenile chronic myelogenous leukemia. Exp Hematol. 1991;19(10):1017–24.

    CAS  PubMed  Google Scholar 

  13. Hyman SL, Shores A, North KN. The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology. 2005;65(7):1037–44.

    Article  PubMed  Google Scholar 

  14. Lin AE et al. Cardiovascular malformations and other cardiovascular abnormalities in neurofibromatosis 1. Am J Med Genet. 2000;95(2):108–17.

    Article  CAS  PubMed  Google Scholar 

  15. Fossali E et al. Renovascular disease and hypertension in children with neurofibromatosis. Pediatr Nephrol. 2000;14(8-9):806–10.

    Article  CAS  PubMed  Google Scholar 

  16. Rasmussen SA, Yang Q, Friedman JM. Mortality in neurofibromatosis 1: an analysis using U.S. death certificates. Am J Hum Genet. 2001;68(5):1110–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Friedman JM et al. Cardiovascular disease in neurofibromatosis 1: report of the NF1 Cardiovascular Task Force. Genet Med. 2002;4(3):105–11.

    Article  CAS  PubMed  Google Scholar 

  18. Lama G et al. Blood pressure and cardiovascular involvement in children with neurofibromatosis type1. Pediatr Nephrol. 2004;19(4):413–8.

    Article  PubMed  Google Scholar 

  19. Rea D et al. Cerebral arteriopathy in children with neurofibromatosis type 1. Pediatrics. 2009;124(3):e476–83.

    Article  PubMed  Google Scholar 

  20. Lammert M et al. Decreased bone mineral density in patients with neurofibromatosis 1. Osteoporos Int. 2005;16(9):1161–6.

    Article  PubMed  Google Scholar 

  21. Kuorilehto T et al. Decreased bone mineral density and content in neurofibromatosis type 1: lowest local values are located in the load-carrying parts of the body. Osteoporos Int. 2005;16(8):928–36.

    Article  CAS  PubMed  Google Scholar 

  22. Dulai S et al. Decreased bone mineral density in neurofibromatosis type 1: results from a pediatric cohort. J Pediatr Orthop. 2007;27(4):472–5.

    Article  PubMed  Google Scholar 

  23. Yilmaz K et al. Bone mineral density in children with neurofibromatosis 1. Acta Paediatr. 2007;96(8):1220–2.

    Article  PubMed  Google Scholar 

  24. Stevenson DA et al. Bone mineral density in children and adolescents with neurofibromatosis type 1. J Pediatr. 2007;150(1):83–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tucker T et al. Bone health and fracture rate in individuals with neurofibromatosis 1 (NF1). J Med Genet. 2009;46(4):259–65.

    Article  CAS  PubMed  Google Scholar 

  26. Crawford AH. Pitfalls of spinal deformities associated with neurofibromatosis in children. Clin Orthop Relat Res. 1989;245:29–42.

    PubMed  Google Scholar 

  27. Crawford Jr AH, Bagamery N. Osseous manifestations of neurofibromatosis in childhood. J Pediatr Orthop. 1986;6(1):72–88.

    Article  PubMed  Google Scholar 

  28. Illes T et al. Decreased bone mineral density in neurofibromatosis-1 patients with spinal deformities. Osteoporos Int. 2001;12(10):823–7.

    Article  CAS  PubMed  Google Scholar 

  29. Clementi M et al. Neurofibromatosis type 1 growth charts. Am J Med Genet. 1999;87(4):317–23.

    Article  CAS  PubMed  Google Scholar 

  30. Szudek J, Birch P, Friedman JM. Growth in North American white children with neurofibromatosis 1 (NF1). J Med Genet. 2000;37(12):933–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Virdis R et al. Growth and pubertal disorders in neurofibromatosis type 1. J Pediatr Endocrinol Metab. 2003;16 Suppl 2:289–92.

    PubMed  Google Scholar 

  32. Riccardi VM. Neurofibromatosis: phenotype, natural history, and pathogenesis. 2nd ed. 1992, Baltimore: Johns Hopkins University Press. ix, 498 p.

  33. Alwan S, Tredwell SJ, Friedman JM. Is osseous dysplasia a primary feature of neurofibromatosis 1 (NF1)? Clin Genet. 2005;67(5):378–90.

    Article  CAS  PubMed  Google Scholar 

  34. Elefteriou F et al. Skeletal abnormalities in neurofibromatosis type 1: approaches to therapeutic options. Am J Med Genet A. 2009;149A(10):2327–38.

    Article  CAS  PubMed  Google Scholar 

  35. Young H, Hyman S, North K, Neurofibromatosis 1: clinical review and exceptions to the rules. J Child Neurol. 2002. 17(8):613-21. discussion 627-9, 646-51.

  36. Friedman JM. Neurofibromatosis 1: clinical manifestations and diagnostic criteria. J Child Neurol. 2002. 17(8):548-54. discussion 571-2, 646-51.

  37. Stevenson DA et al. Descriptive analysis of tibial pseudarthrosis in patients with neurofibromatosis 1. Am J Med Genet. 1999;84(5):413–9.

    Article  CAS  PubMed  Google Scholar 

  38. Stevenson DA et al. Evidence of increased bone resorption in neurofibromatosis type 1 using urinary pyridinium crosslink analysis. Pediatr Res. 2008;63(6):697–701.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Heerva E et al. A controlled register based study of 460 neurofibromatosis 1 (NF1) patients: Increased fracture risk in children and adults over 41 years. J Bone Miner Res. 2012. A large cohort clinical study shows that patients with NF1 have increased fracture risk depending on age due to decreased bone mass.

  40. Lakkis MM, Epstein JA. Neurofibromin modulation of ras activity is required for normal endocardial-mesenchymal transformation in the developing heart. Development. 1998;125(22):4359–67.

    CAS  PubMed  Google Scholar 

  41. Wu X et al. Neurofibromin plays a critical role in modulating osteoblast differentiation of mesenchymal stem/progenitor cells. Hum Mol Genet. 2006;15(19):2837–45.

    Article  CAS  PubMed  Google Scholar 

  42. Stevenson DA et al. Double inactivation of NF1 in tibial pseudarthrosis. Am J Hum Genet. 2006;79(1):143–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu X et al. The haploinsufficient hematopoietic microenvironment is critical to the pathological fracture repair in murine models of neurofibromatosis type 1. PLoS One. 2011;6(9):e24917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kolanczyk M et al. Multiple roles for neurofibromin in skeletal development and growth. Hum Mol Genet. 2007;16(8):874–86.

    Article  CAS  PubMed  Google Scholar 

  45. Wang W et al. Mice lacking Nf1 in osteochondroprogenitor cells display skeletal dysplasia similar to patients with neurofibromatosis type I. Hum Mol Genet. 2011;20(20):3910–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li H et al. Ras dependent paracrine secretion of osteopontin by Nf1+/− osteoblasts promote osteoclast activation in a neurofibromatosis type I murine model. Pediatr Res. 2009;65(6):613–8.

    Article  CAS  PubMed  Google Scholar 

  47. Elefteriou F et al. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab. 2006;4(6):441–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tang Y et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15(7):757–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rhodes SD et al. Hyperactive transforming growth factor-beta1 signaling potentiates skeletal defects in a neurofibromatosis type 1 mouse model. J Bone Miner Res. 2013;28(12):2476–89.

  50. Heerva E et al. Osteoclasts in neurofibromatosis type 1 display enhanced resorption capacity, aberrant morphology, and resistance to serum deprivation. Bone. 2010;47(3):583–90.

    Article  CAS  PubMed  Google Scholar 

  51. Stevenson DA et al. Multiple increased osteoclast functions in individuals with neurofibromatosis type 1. Am J Med Genet A. 2011;155A(5):1050–9.

    Article  PubMed  Google Scholar 

  52. Yu X et al. Neurofibromin and its inactivation of Ras are prerequisites for osteoblast functioning. Bone. 2005;36(5):793–802.

    Article  CAS  PubMed  Google Scholar 

  53. Yang FC et al. Hyperactivation of p21ras and PI3K cooperate to alter murine and human neurofibromatosis type 1-haploinsufficient osteoclast functions. J Clin Invest. 2006;116(11):2880–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rhodes SD, et al. Hyperactive transforming growth factor-beta1 signaling potentiates skeletal defects in a neurofibromatosis type 1 mouse model. J Bone Miner Res. 2013;28(12):2476–89.

  55. Rhodes SD et al. Nf1 Haploinsufficiency alters myeloid lineage commitment and function, leading to deranged skeletal homeostasis. J Bone Miner Res. 2015;30(10):1840–51. This study demonstrates a critical requirement for Nf1 haploinsufficiency at a more primitive/progenitor stage of myeloid development in perpetuating osteolytic activity.

  56. Alanne MH, et al. Phenotypic characterization of transgenic mice harboring Nf1(+/−) or Nf1(−/−) osteoclasts in otherwise Nf1(+/+) background. J Cell Biochem. 2012;113(6):2136–46.

  57. Chiu WS et al. Transgenic mice that express Cre recombinase in osteoclasts. Genesis. 2004;39(3):178–85.

    Article  CAS  PubMed  Google Scholar 

  58. Bollag G et al. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet. 1996;12(2):144–8.

    Article  CAS  PubMed  Google Scholar 

  59. Largaespada DA et al. Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nat Genet. 1996;12(2):137–43.

    Article  CAS  PubMed  Google Scholar 

  60. Xu XL et al. Basic research and clinical applications of bisphosphonates in bone disease: what have we learned over the last 40 years? J Transl Med. 2013;11:303.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Heerva E et al. Osteoclasts derived from patients with neurofibromatosis 1 (NF1) display insensitivity to bisphosphonates in vitro. Bone. 2012;50(3):798–803.

    Article  CAS  PubMed  Google Scholar 

  62. Heerva E et al. Follow-up of six patients with neurofibromatosis 1-related osteoporosis treated with alendronate for 23 months. Calcif Tissue Int. 2014;94(6):608–12. This clinical study demonstrated a trend toward increased bone mineral density in five out of six patients with NF1-related osteoporosis following 23 months of alendronate therapy, although the effect size did not reach statistical significance.

    Article  CAS  PubMed  Google Scholar 

  63. Seitz S et al. High bone turnover and accumulation of osteoid in patients with neurofibromatosis 1. Osteoporos Int. 2010;21(1):119–27.

    Article  CAS  PubMed  Google Scholar 

  64. Brunetti-Pierri N et al. Generalized metabolic bone disease in neurofibromatosis type I. Mol Genet Metab. 2008;94(1):105–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. He Y et al. c-Fms signaling mediates neurofibromatosis type-1 osteoclast gain-in-functions. PLoS One. 2012;7(11):e46900. This study reveals that the M-CSF/c-Fms signaling axis serves as a critical pathway underlying the aberrant functioning Nf1 of haploinsufficient osteoclasts and may provide a potential therapeutic target for treating NF1 associated osteoporosis and osteopenia.

  66. Sharma R et al. Hyperactive Ras/MAPK signaling is critical for tibial nonunion fracture in neurofibromin-deficient mice. Hum Mol Genet. 2013;22(23):4818–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. El-Hoss J et al. A combination of rhBMP-2 (recombinant human bone morphogenetic protein-2) and MEK (MAP kinase/ERK kinase) inhibitor PD0325901 increases bone formation in a murine model of neurofibromatosis type I pseudarthrosis. J Bone Joint Surg Am. 2014;96(14), e117.

    Article  CAS  PubMed  Google Scholar 

  68. de la Croix Ndong J et al. Asfotase-alpha improves bone growth, mineralization and strength in mouse models of neurofibromatosis type-1. Nat Med. 2014;20(8):904–10.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Chun Yang.

Ethics declarations

Conflict of Interest

Steven D. Rhodes and Feng-Chun Yang declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Epidemiology and Pathophysiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhodes, S.D., Yang, FC. Aberrant Myeloid Differentiation Contributes to the Development of Osteoporosis in Neurofibromatosis Type 1. Curr Osteoporos Rep 14, 10–15 (2016). https://doi.org/10.1007/s11914-016-0298-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-016-0298-z

Keywords

Navigation