The Vestibular System: A Newly Identified Regulator of Bone Homeostasis Acting Through the Sympathetic Nervous System

Abstract

The vestibular system is a small bilateral structure located in the inner ear, known as the organ of balance and spatial orientation. It senses head orientation and motion, as well as body motion in the three dimensions of our environment. It is also involved in non-motor functions such as postural control of blood pressure. These regulations are mediated via anatomical projections from vestibular nuclei to brainstem autonomic centers and are involved in the maintenance of cardiovascular function via sympathetic nerves. Age-associated dysfunction of the vestibular organ contributes to an increased incidence of falls, whereas muscle atrophy, reduced physical activity, cellular aging, and gonadal deficiency contribute to bone loss. Recent studies in rodents suggest that vestibular dysfunction might also alter bone remodeling and mass more directly, by affecting the outflow of sympathetic nervous signals to the skeleton and other tissues. This review will summarize the findings supporting the influence of vestibular signals on bone homeostasis, and the potential clinical relevance of these findings.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

SNS:

Sympathetic nervous system

β2-AR:

Beta2-adrenergic receptors

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Zaidi M. Skeletal remodeling in health and disease. Nat Med. 2007;13:791–801.

    CAS  PubMed  Google Scholar 

  2. 2.

    Sims NA, Gooi JH. Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol. 2008;19:444–51.

    CAS  PubMed  Google Scholar 

  3. 3.

    Elefteriou F, Campbell P, Ma Y. Control of bone remodeling by the peripheral sympathetic nervous system. Calcif Tissue Int. 2014;94:140–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. 4.

    Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature. 2012;481:314–20.

    CAS  PubMed  Google Scholar 

  5. 5.

    Ferron M, Wei J, Yoshizawa T, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142:296–308.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. 6.

    Yadav VK, Oury F, Suda N, et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 2009;138:976–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. 7.

    Oury F, Sumara G, Sumara O, et al. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144:796–809.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. 8.

    Takeda S, Elefteriou F, Levasseur R, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111:305–17.

    CAS  PubMed  Google Scholar 

  9. 9.•

    Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100:197–207. This publication brings the first evidence of a central control of bone remodeling and bone mass in mice.

    CAS  PubMed  Google Scholar 

  10. 10.

    Quarles LD. Evidence for a bone-kidney axis regulating phosphate homeostasis. J Clin Invest. 2003;112:642–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. 11.

    Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. 12.

    Perkins MN, Rothwell NJ, Stock MJ, et al. Activation of brown adipose tissue thermogenesis by the ventromedial hypothalamus. Nature. 1981;289:401–2.

    CAS  PubMed  Google Scholar 

  13. 13.

    Satoh N, Ogawa Y, Katsuura G, et al. Sympathetic activation of leptin via the ventromedial hypothalamus: leptin-induced increase in catecholamine secretion. Diabetes. 1999;48:1787–93.

    CAS  PubMed  Google Scholar 

  14. 14.

    Bjurholm A, Kreicbergs A, Brodin E, et al. Substance P- and CGRP-immunoreactive nerves in bone. Peptides. 1988;9:165–71.

    CAS  PubMed  Google Scholar 

  15. 15.

    Bjurholm A, Kreicbergs A, Terenius L, et al. Neuropeptide Y-, tyrosine hydroxylase- and vasoactive intestinal polypeptide-immunoreactive nerves in bone and surrounding tissues. J Auton Nerv Syst. 1988;25:119–25.

    CAS  PubMed  Google Scholar 

  16. 16.

    Goto T, Yamaza T, Kido MA, et al. Light- and electron-microscopic study of the distribution of axons containing substance P and the localization of neurokinin-1 receptor in bone. Cell Tissue Res. 1998;293:87–93.

    CAS  PubMed  Google Scholar 

  17. 17.

    Hill EL, Elde R. Distribution of CGRP-, VIP-, D beta H-, SP-, and NPY-immunoreactive nerves in the periosteum of the rat. Cell Tissue Res. 1991;264:469–80.

    CAS  PubMed  Google Scholar 

  18. 18.

    Hohmann EL, Elde RP, Rysavy JA. Innervation of periosteum and bone by sympathetic vasoactive intestinal peptide-containing nerve fibers. Science (New York, NY). 1986;232:868–71.

    CAS  Google Scholar 

  19. 19.

    Sisask G, Bjurholm A, Ahmed M, et al. The development of autonomic innervation in bone and joints of the rat. J Auton Nerv Syst. 1996;59:27–33.

    CAS  PubMed  Google Scholar 

  20. 20.

    Dénes A, Boldogkoi Z, Uhereczky G, et al. Central autonomic control of the bone marrow: multisynaptic tract tracing by recombinant pseudorabies virus. Neuroscience. 2005;134:947–63.

    PubMed  Google Scholar 

  21. 21.

    Togari A, Arai M, Mizutani S, et al. Expression of mRNAs for neuropeptide receptors and beta-adrenergic receptors in human osteoblasts and human osteogenic sarcoma cells. Neurosci Lett. 1997;233:125–8.

    CAS  PubMed  Google Scholar 

  22. 22.

    Kellenberger S, Muller K, Richener H, et al. Formoterol and isoproterenol induce c-fos gene expression in osteoblast-like cells by activating beta2-adrenergic receptors. Bone. 1998;22:471–8.

    CAS  PubMed  Google Scholar 

  23. 23.••

    Elefteriou F, Ahn JD, Takeda S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434:514–20. This study demonstrates the requirement of the peripheral sympathetic nervous system for normal bone remodeling in mice.

    CAS  PubMed  Google Scholar 

  24. 24.

    Bonnet N, Brunet-Imbault B, Arlettaz A, et al. Alteration of trabecular bone under chronic beta2 agonist’s treatment. Med Sci Sports Exerc. 2005;37:1493–501.

    CAS  PubMed  Google Scholar 

  25. 25.•

    Bonnet N, Benhamou CL, Malaval L, et al. Low dose beta-blocker prevents ovariectomy-induced bone loss in rats without affecting heart functions. J Cell Physiol. 2008;217:819–27. Evaluation of the dose response of a non-selective beta-blocker on bone and heart functions in ovariectomized rats led to the conclusion that a low dose beta-blocker prevents bone loss without affecting heart functions.

    CAS  PubMed  Google Scholar 

  26. 26.

    Moore RE, Smith 2nd C, Bailey CS, et al. Characterization of beta-adrenergic receptors on rat and human osteoblast-like cells and demonstration that beta-receptor agonists can stimulate bone resorption in organ culture. Bone Miner. 1993;23:301–15.

    CAS  PubMed  Google Scholar 

  27. 27.

    Ma Y, Krueger JJ, Redmon SN, et al. Extracellular norepinephrine clearance by the norepinephrine transporter is required for skeletal homeostasis. J Biol Chem. 2013;288:30105–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. 28.

    Schlienger RG, Kraenzlin ME, Jick SS, et al. Use of beta-blockers and risk of fractures. JAMA: J Am Med Assoc. 2004;292:1326–32.

    CAS  Google Scholar 

  29. 29.

    Rejnmark L, Vestergaard P, Kassem M, et al. Fracture risk in perimenopausal women treated with beta-blockers. Calcif Tissue Int. 2004;75:365–72.

    CAS  PubMed  Google Scholar 

  30. 30.

    Reid IR, Gamble GD, Grey AB, et al. beta-Blocker use, BMD, and fractures in the study of osteoporotic fractures. J Bone Miner Res. 2005;20:613–8.

    CAS  PubMed  Google Scholar 

  31. 31.

    Farr JN, Charkoudian N, Barnes JN, et al. Relationship of sympathetic activity to bone microstructure, turnover, and plasma osteopontin levels in women. J Clin Endocrinol Metab. 2012;97:4219–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. 32.

    Riggs BL, Khosla S, Melton 3rd LJ. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002;23:279–302.

    CAS  PubMed  Google Scholar 

  33. 33.

    Manolagas SC, Kousteni S, Jilka RL. Sex steroids and bone. Recent Prog Horm Res. 2002;57:385–409.

    CAS  PubMed  Google Scholar 

  34. 34.

    Sakai A, Nakamura T. Changes in trabecular bone turnover and bone marrow cell development in tail-suspended mice. J Musculoskelet Neuronal Interact. 2001;1:387–92.

    CAS  PubMed  Google Scholar 

  35. 35.

    Ehara Y, Yamaguchi M. Histomorphological confirmation of bone loss in the femoral-metaphyseal tissues of rats with skeletal unloading. Res Exp Med (Berl). 1996;196:163–70.

    CAS  Google Scholar 

  36. 36.•

    LeBlanc AD, Spector ER, Evans HJ, et al. Skeletal responses to space flight and the bed rest analog: a review. J Musculoskelet Neuronal Interact. 2007;7:33–47. This review summarizes four decades of human skeletal data from space programs and ground-based analog (bed rest) studies and discusses possible countermeasures to bone loss.

    CAS  PubMed  Google Scholar 

  37. 37.

    Cavanagh PR, Licata AA, Rice AJ. Exercise and pharmacological countermeasures for bone loss during long-duration space flight. Gravit Space Biol Bull. 2005;18:39–58.

    PubMed  Google Scholar 

  38. 38.

    Iwamoto J, Takeda T, Sato Y. Interventions to prevent bone loss in astronauts during space flight. Keio J Med. 2005;54:55–9.

    PubMed  Google Scholar 

  39. 39.

    Sibonga JD, Evans HJ, Sung HG, et al. Recovery of spaceflight-induced bone loss: bone mineral density after long-duration missions as fitted with an exponential function. Bone. 2007;41:973–8.

    CAS  PubMed  Google Scholar 

  40. 40.

    Smith SM, Heer MA, Shackelford LC, et al. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry. J Bone Miner Res. 2012;27:1896–906.

    CAS  PubMed  Google Scholar 

  41. 41.

    Leblanc A, Matsumoto T, Jones J, et al. Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos Int. 2013;24:2105–14.

    CAS  PubMed  Google Scholar 

  42. 42.

    Tavassoli M. Medical problems of space flight. Am J Med. 1986;81:850–4.

    CAS  PubMed  Google Scholar 

  43. 43.•

    Hsieh L-C, Lin H-C, Lee G-S. Aging of vestibular function evaluated using correlational vestibular autorotation test. Clin Interv Aging. 2014;9:1463–9. Here the authors show that the function of the visual-vestibulo-ocular reflex and of the vestibulo-ocular reflex declines with aging in humans.

    PubMed Central  PubMed  Google Scholar 

  44. 44.

    Narkiewicz K, Phillips BG, Kato M, et al. Gender-selective interaction between aging, blood pressure, and sympathetic nerve activity. Hypertension. 2005;45:522–5.

    CAS  PubMed  Google Scholar 

  45. 45.

    Mano T. Autonomic neural functions in space. Curr Pharm Biotechnol. 2005;6:319–24.

    CAS  PubMed  Google Scholar 

  46. 46.

    Norsk P, Christensen NJ. The paradox of systemic vasodilatation and sympathetic nervous stimulation in space. Respir Physiol Neurobiol. 2009;169(1):S26–9.

    PubMed  Google Scholar 

  47. 47.

    Emkey GR, Epstein S. Secondary osteoporosis: pathophysiology & diagnosis. Best Pract Res Clin Endocrinol Metab. 2014;28:911–35.

    PubMed  Google Scholar 

  48. 48.

    Barmack NH. Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull. 2003;60:511–41.

    PubMed  Google Scholar 

  49. 49.

    Yates BJ. The vestibular system and cardiovascular responses to altered gravity. Am J Physiol. 2004;286:R22.

    CAS  Google Scholar 

  50. 50.

    Etard O, Reber A, Quarck G, et al. Vestibular control on blood pressure during parabolic flights in awake rats. Neuroreport. 2004;15:2357–60.

    PubMed  Google Scholar 

  51. 51.

    Abe C, Kawada T, Sugimachi M, et al. Interaction between vestibulo-cardiovascular reflex and arterial baroreflex during postural change in rats. J Appl Physiol. 2011;111:1614–21.

    PubMed  Google Scholar 

  52. 52.

    Normand H, Etard O, Denise P. Otolithic and tonic neck receptors control of limb blood flow in humans. J Appl Physiol (1985). 1997;82:1734–8.

    CAS  Google Scholar 

  53. 53.

    Herault S, Tobal N, Normand H, et al. Effect of human head flexion on the control of peripheral blood flow in microgravity and in 1 g. Eur J Appl Physiol. 2002;87:296–303.

    CAS  PubMed  Google Scholar 

  54. 54.

    Yates BJ, Siniaia MS, Miller AD. Descending pathways necessary for vestibular influences on sympathetic and inspiratory outflow. Am J Physiol. 1995;268:R1381–5.

    CAS  PubMed  Google Scholar 

  55. 55.

    Cai Y-L, Ma W-L, Wang J-Q, et al. Excitatory pathways from the vestibular nuclei to the NTS and the PBN and indirect vestibulo-cardiovascular pathway from the vestibular nuclei to the RVLM relayed by the NTS. Brain Res. 2008;1240:96–104.

    CAS  PubMed  Google Scholar 

  56. 56.

    Tanguy S, Quarck G, Etard O, et al. Vestibulo-ocular reflex and motion sickness in figure skaters. Eur J Appl Physiol. 2008;104:1031–7.

    PubMed  Google Scholar 

  57. 57.

    Cullen KE. The neural encoding of self-generated and externally applied movement: implications for the perception of self-motion and spatial memory. Front Integr Neurosci. 2014;7:108.

    PubMed Central  PubMed  Google Scholar 

  58. 58.

    DeAngelis GC, Angelaki DE. The neural bases of multisensory processes. 2012.

  59. 59.

    Morrison SF, Gebber GL. Classification of raphe neurons with cardiac-related activity. Am J Physiol. 1982;243:R49–59.

    CAS  PubMed  Google Scholar 

  60. 60.

    Yates BJ, Yamagata Y. Convergence of cardiovascular and vestibular inputs on neurons in the medullary paramedian reticular formation. Brain Res. 1990;513:166–70.

    CAS  PubMed  Google Scholar 

  61. 61.

    Yates BJ, Goto T, Bolton PS. Responses of neurons in the caudal medullary raphe nuclei of the cat to stimulation of the vestibular nerve. Exp Brain Res. 1992;89:323–32.

    CAS  PubMed  Google Scholar 

  62. 62.

    Barman SM, Gebber GL. Lateral tegmental field neurons of cat medulla: a source of basal activity of ventrolateral medullospinal sympathoexcitatory neurons. J Neurophysiol. 1987;57:1410–24.

    CAS  PubMed  Google Scholar 

  63. 63.

    Dampney RA, Goodchild AK, McAllen RM. Vasomotor control by subretrofacial neurones in the rostral ventrolateral medulla. Can J Physiol Pharmacol. 1987;65:1572–9.

    CAS  PubMed  Google Scholar 

  64. 64.

    Van Bockstaele EJ, Pieribone VA, Aston-Jones G. Diverse afferents converge on the nucleus paragigantocellularis in the rat ventrolateral medulla: retrograde and anterograde tracing studies. J Comp Neurol. 1989;290:561–84.

    PubMed  Google Scholar 

  65. 65.

    Herbert H, Moga MM, Saper CB. Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol. 1990;293:540–80.

    CAS  PubMed  Google Scholar 

  66. 66.

    Balaban CD, Porter JD. Neuroanatomic substrates for vestibulo-autonomic interactions. J Vestib Res. 1998;8:7–16.

    CAS  PubMed  Google Scholar 

  67. 67.

    Cavdar S, San T, Aker R, et al. Cerebellar connections to the dorsomedial and posterior nuclei of the hypothalamus in the rat. J Anat. 2001;198:37–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. 68.

    Horowitz SS, Blanchard J, Morin LP. Medial vestibular connections with the hypocretin (orexin) system. J Comp Neurol. 2005;487:127–46.

    PubMed  Google Scholar 

  69. 69.

    Spyer KM. Neural organisation and control of the baroreceptor reflex. Rev Physiol Biochem Pharmacol. 1981;88:24–124.

    CAS  PubMed  Google Scholar 

  70. 70.

    Ishikawa T, Miyazawa T. Sympathetic responses evoked by vestibular stimulation and their interactions with somato-sympathetic reflexes. J Auton Nerv Syst. 1980;1:243–54.

    CAS  PubMed  Google Scholar 

  71. 71.

    Kerman IA, Yates BJ. Regional and functional differences in the distribution of vestibulosympathetic reflexes. Am J Physiol. 1998;275:R824–835.

    CAS  PubMed  Google Scholar 

  72. 72.•

    Yates BJ, Miller AD. Physiological evidence that the vestibular system participates in autonomic and respiratory control. J Vestib Res. 1998;8:17–25. In this manuscript the authors show that body movements induce a vestibular response that aims to offset orthostatic hypotension by acting on the autonomic and respiratory systems in cats.

    CAS  PubMed  Google Scholar 

  73. 73.

    Kerman IA, Emanuel BA, Yates BJ. Vestibular stimulation leads to distinct hemodynamic patterning. Am J Physiol Regul Integr Comp Physiol. 2000;279:R118–25.

    CAS  PubMed  Google Scholar 

  74. 74.

    Kasumacic N, Glover JC, Perreault M-C. Vestibular-mediated synaptic inputs and pathways to sympathetic preganglionic neurons in the neonatal mouse. J Physiol. 2012;590:5809–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. 75.

    Mori RL, Cotter LA, Arendt HE, et al. Effects of bilateral vestibular nucleus lesions on cardiovascular regulation in conscious cats. J Appl Physiol. 2005;98:526–33.

    CAS  PubMed  Google Scholar 

  76. 76.

    Radaei F, Gharibzadeh S. Relationship between bone mineral density and balance disorders in osteoporotic patients. Front Bioeng Biotechnol. 2013;1:5.

    PubMed Central  PubMed  Google Scholar 

  77. 77.••

    Mendy A, Vieira ER, Albatineh AN, et al. Low bone mineral density is associated with balance and hearing impairments. Ann Epidemiol. 2014;24:58–62. In this retrospective study, the authors identified the association between low bone mineral density and balance in older adults and proposed that demineralization of the temporal bone, which contains the vestibular organ, leads to balance and hearing impairments.

    PubMed  Google Scholar 

  78. 78.

    Levasseur R, Sabatier JP, Etard O, et al. Labyrinthectomy decreases bone mineral density in the femoral metaphysis in rats. J Vestib Res. 2004;14:361–5.

    PubMed  Google Scholar 

  79. 79.

    Hunt MA, Miller SW, Nielson HC, et al. Intratympanic injection of sodium arsanilate (atoxyl) solution results in postural changes consistent with changes described for labyrinthectomized rats. Behav Neurosci. 1987;101:427–8.

    CAS  PubMed  Google Scholar 

  80. 80.•

    Vignaux G, Besnard S, Ndong J, et al. Bone remodeling is regulated by inner ear vestibular signals. J Bone Miner Res. 2013;28:2136–44. This work identifies the vestibular system as a regulator of bone remodeling and bone mass in rats.

    CAS  PubMed  Google Scholar 

  81. 81.

    Anniko M, Wersäll J. Experimentally (atoxyl) induced ampullar degeneration and damage to the maculae utriculi. Acta Otolaryngol. 1977;83:429–40.

    CAS  PubMed  Google Scholar 

  82. 82.

    Andersson L, Ulfendahl M, Tham R. A method for studying the effects of neurochemicals on long-term compensation in unilaterally labyrinthectomized rats. J Neural Transplant Plast. 1997;6:105–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. 83.

    Vignaux G, Chabbert C, Gaboyard-Niay S, et al. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats. Toxicol Appl Pharmacol. 2012;258:61–71.

    CAS  PubMed  Google Scholar 

  84. 84.

    Ossenkopp KP, Prkacin A, Hargreaves EL. Sodium arsanilate-induced vestibular dysfunction in rats: effects on open-field behavior and spontaneous activity in the automated digiscan monitoring system. Pharmacol Biochem Behav. 1990;36:875–81.

    CAS  PubMed  Google Scholar 

  85. 85.••

    Vignaux G, Ndong J, Perrien D, et al. Inner ear vestibular signals regulate bone remodeling via the sympathetic nervous system. J Bone Miner Res 2014. This study shows that the process of bone remodeling has a vestibulosympathetic regulatory component in mice, suggesting that vestibular system pathologies might cause bone fragility.

  86. 86.•

    Kerman IA, McAllen RM, Yates BJ. Patterning of sympathetic nerve activity in response to vestibular stimulation. Brain Res Bull. 2000;53:11–6. This review of animal studies highlights the patterning of sympathetic response after vestibular stimulation, which is interestingly similar to the pattern of bone loss observed with aging or weightlessness.

    CAS  PubMed  Google Scholar 

  87. 87.

    Cui J, Mukai C, Iwase S, et al. Response to vestibular stimulation of sympathetic outflow to muscle in humans. J Auton Nerv Syst. 1997;66:154–62.

    CAS  PubMed  Google Scholar 

  88. 88.

    Ray CA, Hume KM, Steele SL. Sympathetic nerve activity during natural stimulation of horizontal semicircular canals in humans. Am J Physiol. 1998;275:R1274–8.

    CAS  PubMed  Google Scholar 

  89. 89.

    Shortt TL, Ray CA. Sympathetic and vascular responses to head-down neck flexion in humans. Am J Physiol. 1997;272:H1780–4.

    CAS  PubMed  Google Scholar 

  90. 90.

    Kaufmann H, Biaggioni I, Voustianiouk A, et al. Vestibular control of sympathetic activity. An otolith-sympathetic reflex in humans. Exp Brain Res. 2002;143:463–9.

    CAS  PubMed  Google Scholar 

  91. 91.

    Voustianiouk A, Kaufmann H, Diedrich A, et al. Electrical activation of the human vestibulosympathetic reflex. Exp Brain Res. 2006;171:251–61.

    PubMed  Google Scholar 

  92. 92.

    Bolton PS, Wardman DL, Macefield VG. Absence of short-term vestibular modulation of muscle sympathetic outflow, assessed by brief galvanic vestibular stimulation in awake human subjects. Exp Brain Res. 2004;154:39–43.

    PubMed  Google Scholar 

  93. 93.

    Sample SJ, Behan M, Smith L, et al. Functional adaptation to loading of a single bone is neuronally regulated and involves multiple bones. J Bone Miner Res. 2008;23:1372–81.

    PubMed Central  PubMed  Google Scholar 

  94. 94.

    Rauch SD, Velázquez-Villaseñor L, Dimitri PS, et al. Decreasing hair cell counts in aging humans. Ann N Y Acad Sci. 2001;942:220–7.

    CAS  PubMed  Google Scholar 

  95. 95.

    Merchant SN, Velázquez-Villaseñor L, Tsuji K, et al. Temporal bone studies of the human peripheral vestibular system. Normative vestibular hair cell data. Ann Otol Rhinol Laryngol Suppl. 2000;181:3–13.

    CAS  PubMed  Google Scholar 

  96. 96.

    Rosenhall U, Rubin W. Degenerative changes in the human vestibular sensory epithelia. Acta Otolaryngol. 1975;79:67–80.

    CAS  PubMed  Google Scholar 

  97. 97.

    Velázquez-Villaseñor L, Merchant SN, Tsuji K, et al. Temporal bone studies of the human pe7ripheral vestibular system. Normative Scarpa’s ganglion cell data. Ann Otol Rhinol Laryngol Suppl. 2000;181:14–9.

    PubMed  Google Scholar 

  98. 98.

    Park JJ, Tang Y, Lopez I, et al. Age-related change in the number of neurons in the human vestibular ganglion. J Comp Neurol. 2001;431:437–43.

    CAS  PubMed  Google Scholar 

  99. 99.

    Nakayama M, Helfert RH, Konrad HR, et al. Scanning electron microscopic evaluation of age-related changes in the rat vestibular epithelium. Otolaryngol Head Neck Surg. 1994;111:799–806.

    CAS  PubMed  Google Scholar 

  100. 100.

    Sturrock RR. Age related changes in neuron number in the mouse lateral vestibular nucleus. J Anat. 1989;166:227–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. 101.

    Lopez I, Honrubia V, Baloh RW. Aging and the human vestibular nucleus. J Vestib Res. 1997;7:77–85.

    CAS  PubMed  Google Scholar 

  102. 102.

    Faraldo-García A, Santos-Pérez S, Crujeiras-Casais R, et al. Influence of age and gender in the sensory analysis of balance control. Eur Arch Otorhinolaryngol. 2012;269:673–7.

    PubMed  Google Scholar 

  103. 103.

    Chang C-M, Young Y-H, Cheng P-W. Age-related changes in ocular vestibular-evoked myogenic potentials via galvanic vestibular stimulation and bone-conducted vibration modes. Acta Otolaryngol. 2012;132:1295–300.

    PubMed  Google Scholar 

  104. 104.

    Sloane PD, Baloh RW, Honrubia V. The vestibular system in the elderly: clinical implications. Am J Otolaryngol. 1989;10:422–9.

    CAS  PubMed  Google Scholar 

  105. 105.

    Hirvonen TP, Aalto H, Pyykkö I, et al. Changes in vestibulo-ocular reflex of elderly people. Acta Otolaryngol Suppl. 1997;529:108–10.

    CAS  PubMed  Google Scholar 

  106. 106.

    Furman JM, Redfern MS. Effect of aging on the otolith-ocular reflex. J Vestib Res. 2001;11:91–103.

    CAS  PubMed  Google Scholar 

  107. 107.

    Kuipers NT, Sauder CL, Ray CA. Aging attenuates the vestibulorespiratory reflex in humans. J Physiol. 2003;548:955–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. 108.

    Ray CA, Monahan KD. Aging attenuates the vestibulosympathetic reflex in humans. Circulation. 2002;105:956–61.

    PubMed  Google Scholar 

  109. 109.

    Sauder CL, Conboy EE, Chin-Sang SA, et al. Otolithic activation on visceral circulation in humans: effect of aging. Am J Physiol Renal Physiol. 2008;295:F1166–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. 110.

    Reschke MF, Anderson DJ, Homick JL. Vestibulospinal reflexes as a function of microgravity. Science. 1984;225:212–4.

    CAS  PubMed  Google Scholar 

  111. 111.

    Ross MD. Morphological changes in rat vestibular system following weightlessness. J Vestib Res. 1993;3:241–51.

    CAS  PubMed  Google Scholar 

  112. 112.

    Ross MD, Tomko DL. Effect of gravity on vestibular neural development. Brain Res Brain Res Rev. 1998;28:44–51.

    CAS  PubMed  Google Scholar 

  113. 113.

    Dai M, McGarvie L, Kozlovskaya I, et al. Effects of spaceflight on ocular counter rolling and the spatial orientation of the vestibular system. Exp Brain Res. 1994;102:45–56.

    CAS  PubMed  Google Scholar 

  114. 114.

    Thornton WE, Uri JJ, Moore T, et al. Studies of the horizontal vestibulo-ocular reflex in spaceflight. Arch Otolaryngol Head Neck Surg. 1989;115:943–9.

    CAS  PubMed  Google Scholar 

  115. 115.

    Vogel H, Kass JR. European vestibular experiments on the Spacelab-1 mission: 7. ocular counter rolling measurements pre- and post-flight. Exp Brain Res. 1986;64:284–90.

    CAS  PubMed  Google Scholar 

  116. 116.

    Thomson DB, Inglis JT, Schor RH, et al. Bilateral labyrinthectomy in the cat: motor behaviour and quiet stance parameters. Exp Brain Res. 1991;85:364–72.

    CAS  PubMed  Google Scholar 

  117. 117.

    Stapley PJ, Ting LH, Kuifu C, et al. Bilateral vestibular loss leads to active destabilization of balance during voluntary head turns in the standing cat. J Neurophysiol. 2006;95:3783–97.

    PubMed  Google Scholar 

  118. 118.

    Barmack NH, Pettorossi VE, Erickson RG. The influence of bilateral labyrinthectomy on horizontal and vertical optokinetic reflexes in the rabbit. Brain Res. 1980;196:520–4.

    CAS  PubMed  Google Scholar 

  119. 119.

    Waespe W, Wolfensberger M. Optokinetic nystagmus (OKN) and optokinetic after-responses after bilateral vestibular neurectomy in the monkey. Exp Brain Res. 1985;60:263–9.

    CAS  PubMed  Google Scholar 

  120. 120.

    Baek JH, Zheng Y, Darlington CL, et al. Evidence that spatial memory deficits following bilateral vestibular deafferentation in rats are probably permanent. Neurobiol Learn Mem. 2010;94:402–13.

    PubMed  Google Scholar 

  121. 121.

    Siaperas P, Ring HA, McAllister CJ, et al. Atypical movement performance and sensory integration in Asperger’s syndrome. J Autism Dev Disord. 2012;42:718–25.

    PubMed  Google Scholar 

  122. 122.

    Molloy CA, Dietrich KN, Bhattacharya A. Postural stability in children with autism spectrum disorder. J Autism Dev Disord. 2003;33:643–52.

    PubMed  Google Scholar 

  123. 123.

    Neumeyer AM, Gates A, Ferrone C, et al. Bone density in peripubertal boys with autism spectrum disorders. J Autism Dev Disord. 2013;43:1623–9.

    PubMed Central  PubMed  Google Scholar 

  124. 124.

    Neumeyer AM, O’Rourke JA, Massa A, et al. Brief report: bone fractures in children and adults with autism spectrum disorders. J. Autism Dev. Disord. 2014.

Download references

Acknowledgments

The authors would like to thank the National Aeronautics and Space Administration through grant NNX12AL35G (FE), the National Space Biomedical Research Institute (GV, NASA NCC 9–58), the European Union’s Seventh Framework Programme FP7/2007–2013/ through REA grant #318980, and the Centre National d’Etudes Spatiales (CNES, Grant #715) for their support of this work. We thank Dr. D. Perrien (VCBB) for critical reading of the manuscript.

Compliance with Ethics Guidelines

Conflict of Interest

G Vignaux, S Besnard, P Denise, and F Elefteriou all declare no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by the authors involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Elefteriou.

Additional information

This article is part of the Topical Collection on Skeletal Biology and Regulation

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vignaux, G., Besnard, S., Denise, P. et al. The Vestibular System: A Newly Identified Regulator of Bone Homeostasis Acting Through the Sympathetic Nervous System. Curr Osteoporos Rep 13, 198–205 (2015). https://doi.org/10.1007/s11914-015-0271-2

Download citation

Keywords

  • Vestibular system
  • Sympathetic nervous system
  • Bone
  • Balance