Advertisement

Current Osteoporosis Reports

, Volume 12, Issue 2, pp 194–204 | Cite as

Prenatal Calcium and Vitamin D Intake, and Bone Mass in Later Life

  • Elizabeth M. Curtis
  • Rebecca J. Moon
  • Elaine M. Dennison
  • Nicholas C. Harvey
Nutrition, Exercise, and Lifestyle in Osteoporosis (C Weaver and S Ferrari, Section Editors)

Abstract

The aging population will result in an increasing burden of osteoporotic fractures, necessitating the identification of novel strategies for prevention. There is increasing recognition that factors in utero may influence bone mineral accrual, and, thus, osteoporosis risk. The role of calcium and vitamin D has received much attention in recent years, and in this review, we will survey available studies relating maternal calcium and vitamin D status during pregnancy to offspring bone development. The evidence base supporting a positive influence on intrauterine skeletal growth appears somewhat stronger for maternal 25(OH)-vitamin D concentration than for calcium intake, and the available data point toward the need for high-quality randomized controlled trials in order to inform public health policy. It is only with such a rigorous approach that it will be possible to delineate the optimal strategy for vitamin D supplementation in pregnancy in relation to offspring bone health.

Keywords

Fetal programming Bone mineral density Bone mass Vitamin D Calcium Osteoporosis Pregnancy Mother-offspring 

Notes

Acknowledgments

We would like to thank Medical Research Council (UK), Arthritis Research UK, National Osteoporosis Society (UK), International Osteoporosis Foundation, and NIHR for funding this work.

Compliance with Ethics Guidelines

Conflict of Interest

E. M. Curtis, R. J. Moon, and E. M. Dennison declare that they have no conflicts of interest. N. C. Harvey has received consultant fees from Internis Pharma and Consilient Healthcare and honoraria from Servier, Eli Lilley, AFBBH, Shire, and Amgen.

Human and Animal Rights and Informed Consent

All studies by Elizabeth Curtis, Rebecca Moon, Elaine Dennison, and Nicholas Harvey involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Osteoporosis prevention, diagnosis, and therapy. NIH Consensus Statement JID - 9308532. 2000;17(1):1–45.Google Scholar
  2. 2.
    Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet. 1999;353(9156):878–82.PubMedCrossRefGoogle Scholar
  3. 3.
    Compston J, Cooper A, Cooper C, Francis R, Kanis JA, Marsh D, et al. Guidelines for the diagnosis and management of osteoporosis in postmenopausal women and men from the age of 50 years in the UK. Maturitas. 2009;62(2):105–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Cooper C, Campion G, Melton III LJ. Hip fractures in the elderly: a world-wide projection. Osteoporos Int. 1992;2(6):285–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, et al. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet. 1993;341(8837):72–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Ferrari S, Rizzoli R, Bonjour JP. Heritable and nutritional influences on bone mineral mass. Aging. 1998;10(3):205–13.PubMedGoogle Scholar
  7. 7.
    Hernandez CJ, Beaupre GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003;14(10):843–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S. Genetic determinants of bone mass in adults. A twin study. J Clin Invest. 1987;80(3):706–10. doi: 10.1172/jci113125.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Videman T, Levalahti E, Battie MC, Simonen R, Vanninen E, Kaprio J. Heritability of BMD of femoral neck and lumbar spine: a multivariate twin study of Finnish men. J Bone Miner Res. 2007;22(9):1455–62. doi: 10.1359/jbmr.070606.PubMedCrossRefGoogle Scholar
  10. 10.
    Baird J, Kurshid MA, Kim M, Harvey N, Dennison E, Cooper C. Does birthweight predict bone mass in adulthood? A systematic review and meta-analysis. Osteoporos Int. 2011;22(5):1323–34. doi: 10.1007/s00198-010-1344-9.PubMedCrossRefGoogle Scholar
  11. 11.
    Harvey NC, Javaid MK, Arden NK, Poole JR, Crozier SR, Robinson SM, et al. Maternal predictors of neonatal bone size and geometry: the Southampton Women's Survey. J Dev Orig Health Dis. 2010;1(1):35–41. doi: 10.1017/s2040174409990055.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Cole ZA, Gale CR, Javaid MK, Robinson SM, Law C, Boucher BJ, et al. Maternal dietary patterns during pregnancy and childhood bone mass: a longitudinal study. J Bone Miner Res. 2009;24(4):663–8. doi: 10.1359/jbmr.081212.PubMedCrossRefGoogle Scholar
  13. 13.
    Forestier F, Daffos F, Rainaut M, Bruneau M, Trivin F. Blood chemistry of normal human fetuses at midtrimester of pregnancy. Pediatr Res. 1987;21(6):579–83.PubMedCrossRefGoogle Scholar
  14. 14.
    Moore KL, Persaud TVN. The developing human. Philadelphia: W.B. Saunders; 1998.Google Scholar
  15. 15.
    Kovacs CS, Chafe LL, Fudge NJ, Friel JK, Manley NR. PTH regulates fetal blood calcium and skeletal mineralization independently of PTHrP. Endocrinology. 2001;142(11):4983–93.PubMedCrossRefGoogle Scholar
  16. 16.
    Kovacs CS. Skeletal physiology: fetus and neonate. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Washington: ASBMR; 2003. p. 65–71.Google Scholar
  17. 17.
    Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci U S A. 1996;93(19):10240–5. JID - 7505876.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Calvi LM, Sims NA, Hunzelman JL, Knight MC, Giovannetti A, Saxton JM, et al. Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J Clin Invest. 2001;107(3):277–86.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Schipani E, Provot S. PTHrP, PTH, and the PTH/PTHrP receptor in endochondral bone development. Birth Defects Res C Embryo Today. 2003;69(4):352–62. doi: 10.1002/bdrc.10028.PubMedCrossRefGoogle Scholar
  20. 20.
    Belkacemi L, Bedard I, Simoneau L, Lafond J. Calcium channels, transporters and exchangers in placenta: a review. Cell Calcium. 2005;37(1):1–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Glazier JD, Atkinson DE, Thornburg KL, Sharpe PT, Edwards D, Boyd RD, et al. Gestational changes in Ca2+ transport across rat placenta and mRNA for calbindin9K and Ca(2+)-ATPase. Am J Physiol. 1992;263(4 Pt 2):R930–5.PubMedGoogle Scholar
  22. 22.
    Martin R, Harvey NC, Crozier SR, Poole JR, Javaid MK, Dennison EM, et al. Placental calcium transporter (PMCA3) gene expression predicts intrauterine bone mineral accrual. Bone. 2007;40(5):1203–8. doi: 10.1016/j.bone.2006.12.060.PubMedCrossRefGoogle Scholar
  23. 23.
    Kip SN, Strehler EE. Vitamin D3 upregulates plasma membrane Ca2 + -ATPase expression and potentiates apico-basal Ca2+ flux in MDCK cells. Am J Physiol Ren Physiol. 2004;286(2):F363–9.CrossRefGoogle Scholar
  24. 24.
    Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54. doi: 10.1038/ng1089.PubMedCrossRefGoogle Scholar
  25. 25.
    Gicquel C, El-Osta A, Le Bouc Y. Epigenetic regulation and fetal programming. Best Pract Res Clin Endocrinol Metab. 2008;22(1):1–16. doi: 10.1016/j.beem.2007.07.009.PubMedCrossRefGoogle Scholar
  26. 26.
    Tang WY, Ho SM. Epigenetic reprogramming and imprinting in origins of disease. Rev Endocrinol Metab Disord. 2007;8(2):173–82. doi: 10.1007/s11154-007-9042-4.CrossRefGoogle Scholar
  27. 27.
    Harvey NC, Sheppard A, Godfrey KM, McLean C, Garratt E, Ntani G, et al. Childhood bone mineral content is associated with methylation status of the RXRA promoter at birth. J Bone Miner Res. 2014;29(3):600–7. doi: 10.1002/jbmr.2056.Google Scholar
  28. 28.
    Ganpule A, Yajnik CS, Fall CHD, Rao S, Fisher DJ, Kanade A, et al. Bone mass in Indian children—relationships to maternal nutritional status and diet during pregnancy: the Pune Maternal Nutrition Study. J Clin Endocrinol Metab. 2006;91(8):2994–3001. doi: 10.1210/jc.2005-2431.PubMedCrossRefGoogle Scholar
  29. 29.
    Heppe DH, Medina-Gomez C, Hofman A, Franco OH, Rivadeneira F, Jaddoe VW. Maternal first-trimester diet and childhood bone mass: the Generation R Study. Am J Clin Nutr. 2013;98(1):224–32. doi: 10.3945/ajcn.112.051052.PubMedCrossRefGoogle Scholar
  30. 30.
    Tobias JH, Steer CD, Emmett PM, Tonkin RJ, Cooper C, Ness AR. Bone mass in childhood is related to maternal diet in pregnancy. Osteoporos Int. 2005;16(12):1731–41. doi: 10.1007/s00198-005-1912-6.PubMedCrossRefGoogle Scholar
  31. 31.
    Jones G, Riley MD, Dwyer T. Maternal diet during pregnancy is associated with bone mineral density in children: a longitudinal study. Eur J Clin Nutr. 2000;54(10):749–56.PubMedCrossRefGoogle Scholar
  32. 32.
    Yin J, Dwyer T, Riley M, Cochrane J, Jones G. The association between maternal diet during pregnancy and bone mass of the children at age 16. Eur J Clin Nutr. 2010;64(2):131–7. doi: 10.1038/ejcn.2009.117.PubMedCrossRefGoogle Scholar
  33. 33.
    Jarjou LM, Prentice A, Sawo Y, Laskey MA, Bennett J, Goldberg GR, et al. Randomized, placebo-controlled, calcium supplementation study in pregnant Gambian women: effects on breast-milk calcium concentrations and infant birth weight, growth, and bone mineral accretion in the first year of life. Am J C Nutr. 2006;83(3):657–66.Google Scholar
  34. 34.
    Koo WW, Walters JC, Esterlitz J, Levine RJ, Bush AJ, Sibai B. Maternal calcium supplementation and fetal bone mineralization. Obstet Gynecol. 1999;94(4):577–82.PubMedCrossRefGoogle Scholar
  35. 35.
    Raman L, Rajalakshmi K, Krishnamachari KA, Sastry JG. Effect of calcium supplementation to undernourished mothers during pregnancy on the bone density of the bone density of the neonates. Am J Clin Nutr. 1978;31(3):466–9.PubMedGoogle Scholar
  36. 36.
    Jarjou LM, Sawo Y, Goldberg GR, Laskey MA, Cole TJ, Prentice A. Unexpected long-term effects of calcium supplementation in pregnancy on maternal bone outcomes in women with a low calcium intake: a follow-up study. Am J Clin Nutr. 2013;98(3):723–30. doi: 10.3945/ajcn.113.061630.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.••
    Macdonald HM, Mavroeidi A, Fraser WD, Darling AL, Black AJ, Aucott L, et al. Sunlight and dietary contributions to the seasonal vitamin D status of cohorts of healthy postmenopausal women living at northerly latitudes: a major cause for concern? Osteoporos Int. 2011;22(9):2461–72. Helpful comprehensive of 25 (OH)D concentrations by ethnicity and latitude in the UK.Google Scholar
  38. 38.
    Robinson PD, Hogler W, Craig ME, Verge CF, Walker JL, Piper AC, et al. The re-emerging burden of rickets: a decade of experience from Sydney. Arch Dis Child. 2006;91(7):564–8.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Ahmed SF, Franey C, McDevitt H, Somerville L, Butler S, Galloway P, et al. Recent trends and clinical features of childhood vitamin D deficiency presenting to a children's hospital in Glasgow. Arch Dis Child. 2011;96(7):694–6. doi: 10.1136/adc.2009.173195.PubMedCrossRefGoogle Scholar
  40. 40.
    Javaid MK, Crozier SR, Harvey NC, Gale CR, Dennison EM, Boucher BJ, et al. Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet. 2006;367(9504):36–43. doi: 10.1016/s0140-6736(06)67922-1.PubMedCrossRefGoogle Scholar
  41. 41.
    McAree T, Jacobs B, Manickavasagar T, Sivalokanathan S, Brennan L, Bassett P, et al. Vitamin D deficiency in pregnancy—still a public health issue. Matern Child Nutr. 2013;9(1):23–30. doi: 10.1111/mcn.12014.PubMedCrossRefGoogle Scholar
  42. 42.
    Dawodu A, Tsang RC. Maternal vitamin D status: effect on milk vitamin D content and vitamin D status of breastfeeding infants. Adv Nutr. 2012;3(3):353–61. doi: 10.3945/an.111.000950.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Moncrieff M, Fadahunsi TO. Congenital rickets due to maternal vitamin D deficiency. Arch Dis Child. 1974;49(10):810–1.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Innes AM, Seshia MM, Prasad C, Al SS, Friesen FR, Chudley AE, et al. Congenital rickets caused by maternal vitamin D deficiency. Paediatr Child Health. 2002;7(7):455–8.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Orbak Z, Karacan M, Doneray H, Karakelleoglu C. Congenital rickets presenting with hypocalcaemic seizures. West Indian Med J. 2007;56(4):364–7.PubMedGoogle Scholar
  46. 46.
    Anatoliotaki M, Tsilimigaki A, Tsekoura T, Schinaki A, Stefanaki S, Nicolaidou P. Congenital rickets due to maternal vitamin D deficiency in a sunny island of Greece. Acta Paediatr. 2003;92(3):389–91.PubMedGoogle Scholar
  47. 47.••
    Harvey NCH, Ntani, G, Javaid MK, Cooper P, Moon R, Cole, Z, et al. Vitamin D supplementation in pregnancy: a systematic review. HTA Journal. 2013; [In press]. A comprehensive systematic review of literature relating maternal vitamin D status in pregnancy to maternal and offspriing health outcomes.Google Scholar
  48. 48.
    Ioannou C, Javaid MK, Mahon P, Yaqub MK, Harvey NC, Godfrey KM, et al. The effect of maternal vitamin D concentration on fetal bone. J Clin Endocrinol Metab. 2012;97(11):E2070–7. doi: 10.1210/jc.2012-2538.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.•
    Mahon P, Harvey N, Crozier S, Inskip H, Robinson S, Arden N, et al. Low maternal vitamin D status and fetal bone development: cohort study. J Bone Miner Res. 2010;25(1):14–9. doi: 10.1359/jbmr.090701. Description of alterations in fetal distal femoral morphology associated with maternal vitamin D status in pregancy. These results suggest that maternal serum 25(OH)D may be important as early as 19 weeks gestation.
  50. 50.
    Young BE, McNanley TJ, Cooper EM, McIntyre AW, Witter F, Harris ZL, et al. Maternal vitamin D status and calcium intake interact to affect fetal skeletal growth in utero in pregnant adolescents. Am J Clin Nutr. 2012;95(5):1103–12. doi: 10.3945/ajcn.111.023861.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Namgung R, Tsang RC, Lee C, Han DG, Ho ML, Sierra RI. Low total body bone mineral content and high bone resorption in Korean winter-born vs summer-born newborn infants. J Pediatr. 1998;132(3 Pt 1):421–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Weiler H, Fitzpatrick-Wong S, Veitch R, Kovacs H, Schellenberg J, McCloy U, et al. Vitamin D deficiency and whole-body and femur bone mass relative to weight in healthy newborns. CMAJ. 2005;172(6):757–61. doi: 10.1503/cmaj.1040508.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.•
    Viljakainen HT, Korhonen T, Hytinantti T, Laitinen EK, Andersson S, Makitie O, et al. Maternal vitamin D status affects bone growth in early childhood—a prospective cohort study. Osteoporos Int. 2011;22(3):883–91. doi: 10.1007/s00198-010-1499-4. Further evidence for associations between 25(OH)D exposure in utero and lower limb bone morphology, assessed by tibial pQCT.
  54. 54.••
    Zhu K, Whitehouse AJ, Hart P, Kusel M, Mountain J, Lye S, et al. Maternal Vitamin D status during pregnancy and bone mass in offspring at 20 years of age: a prospective cohort study. J Bone Miner Res. 2013: Epub ahead of print [In Press]. doi: 10.1002/jbmr.2138. Most recent cohort study demonstrating positive associations between maternal 25(OH)D in pregnancy and offspring bone mass in young adulthood, that is, peak bone mass.
  55. 55.
    Dror DK. Vitamin D, status during pregnancy: maternal, fetal, and postnatal outcomes. Curr Opin Obstet Gynecol. 2011;23(6):422–6. doi: 10.1097/GCO.0b013e32834cb791.PubMedCrossRefGoogle Scholar
  56. 56.
    Lawlor DA, Wills AK, Fraser A, Sayers A, Fraser WD, Tobias JH. Association of maternal vitamin D status during pregnancy with bone-mineral content in offspring: a prospective cohort study. Lancet. 2013;381(9884):2176–83.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Sayers A, Tilling K, Boucher BJ, Noonan K, Tobias JH. Predicting ambient ultraviolet from routine meteorological data: its potential use as an instrumental variable for vitamin D status in pregnancy in a longitudinal birth cohort in the UK. Int J Epidemiol. 2009;38(6):1681–8. doi: 10.1093/ije/dyp237.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Sayers A, Tobias JH. Estimated maternal ultraviolet B exposure levels in pregnancy influence skeletal development of the child. J Clin Endocrinol Metab. 2009;94(3):765–71. doi: 10.1210/jc.2008-2146.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Abrahamsen B, Heitmann BL, Eiken PA. Season of birth and the risk of hip fracture in Danish men and women aged 65+. Front Endocrinol. 2012;3:2. doi: 10.3389/fendo.2012.00002.CrossRefGoogle Scholar
  60. 60.
    Cockburn F, Belton NR, Purvis RJ, Giles MM, Brown JK, Turner TL, et al. Maternal vitamin D intake and mineral metabolism in mothers and their newborn infants. Br Med J. 1980;281(6232):11–4.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Brooke OG, Brown IR, Bone CD, Carter ND, Cleeve HJ, Maxwell JD, et al. Vitamin D supplements in pregnant Asian women: effects on calcium status and fetal growth. Br Med J. 1980;280(6216):751–4.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Congdon P, Horsman A, Kirby PA, Dibble J, Bashir T. Mineral content of the forearms of babies born to Asian and white mothers. Br Med J (Clin Res Ed). 1983;286(6373):1233–5.CrossRefGoogle Scholar
  63. 63.
    Delvin EE, Salle BL, Glorieux FH, Adeleine P, David LS. Vitamin D supplementation during pregnancy: effect on neonatal calcium homeostasis. J Pediatr. 1986;109(2):328–34.PubMedCrossRefGoogle Scholar
  64. 64.
    Marya RK, Rathee S, Dua V, Sangwan K. Effect of vitamin D supplementation during pregnancy on fetal growth. Indian J Med Res. 1988;88:488–92.PubMedGoogle Scholar
  65. 65.
    Marya RK, Rathee S, Lata V, Mudgil S. Effects of vitamin D supplementation in pregnancy. Gynecol Obstet Invest. 1981;12(3):155–61.PubMedCrossRefGoogle Scholar
  66. 66.
    Mallet E, Gugi B, Brunelle P, Henocq A, Basuyau JP, Lemeur H. Vitamin D supplementation in pregnancy: a controlled trial of two methods. Obstet Gynecol. 1986;68(3):300–4.PubMedCrossRefGoogle Scholar
  67. 67.
    Dawodu A, Saadi HF, Bekdache G, Javed Y, Altaye M, Hollis BW. Randomized controlled trial (RCT) of vitamin D supplementation in pregnancy in a population with endemic vitamin D deficiency. J Clin Endocrinol Metab. 2013;98(6):2337–46. doi: 10.1210/jc.2013-1154.PubMedCrossRefGoogle Scholar
  68. 68.
    Roth DE, Al Mahmud A, Raqib R, Akhtar E, Perumal N, Pezzack B, et al. Randomized placebo-controlled trial of high-dose prenatal third-trimester vitamin D3 supplementation in Bangladesh: the AViDD trial. Nutr J. 2013;12(1):47. doi: 10.1186/1475-2891-12-47.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Wagner CL, McNeil RB, Johnson DD, Hulsey TC, Ebeling M, Robinson C, et al. Health characteristics and outcomes of two randomized vitamin D supplementation trials during pregnancy: a combined analysis. J Steroid Biochem Mol Biol. 2013;136:313–20. doi: 10.1016/j.jsbmb.2013.01.002.PubMedCrossRefGoogle Scholar
  70. 70.
    Hollis BW, Johnson D, Hulsey TC, Ebeling M, Wagner CL. Vitamin D supplementation during pregnancy: double-blind, randomized clinical trial of safety and effectiveness. J Bone Miner Res. 2011;26(10):2341–57. doi: 10.1002/jbmr.463.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Wagner CL, McNeil R, Hamilton SA, Winkler J, Rodriguez Cook C, Warner G, et al. A randomized trial of vitamin D supplementation in 2 community health center networks in South Carolina. Am J Obstet Gynecol. 2013;208(2):137.e1–13. doi: 10.1016/j.ajog.2012.10.888.Google Scholar
  72. 72.
    Mahomed K, Gulmezoglu AM. Vitamin D supplementation in pregnancy. Cochrane Database Syst Rev. 2000;2, CD000228.PubMedGoogle Scholar
  73. 73.
    National Institute for Health and Care Excellence (NICE). Clinical Guideline 62: Antenatal Care. Issued March 2008 (modified June 2010).Google Scholar
  74. 74.•
    Harvey NC, Javaid K, Bishop N, Kennedy S, Papageorghiou AT, Fraser R, et al. MAVIDOS Maternal Vitamin D Osteoporosis Study: study protocol for a randomized controlled trial. The MAVIDOS Study Group. Trials. 2012;13:13. doi: 10.1186/1745-6215-13-13. Methods of the MAVIDOS study, in which woman are randomised to 1000IU cholecalciferol or matched placebo daily from 14 weeks gestation until delivery of the bady, with neonatal whole body BMC BY DXA as the primary outcome.
  75. 75.
    Harvey NC, Cooper C. Vitamin D: some perspective please. BMJ. 2012;345:e4695. doi: 10.1136/bmj.e4695.PubMedCrossRefGoogle Scholar
  76. 76.
    Grant CC, Stewart AW, Scragg R, Milne T, Rowden J, Ekeroma A, et al. Vitamin D during pregnancy and infancy and infant serum 25-hydroxyvitamin D concentration. Pediatrics. 2014;133(1):e143–53. doi: 10.1542/peds.2013–2602.Google Scholar
  77. 77.
    Yu CK, Sykes L, Sethi M, Teoh TG, Robinson S. Vitamin D deficiency and supplementation during pregnancy. Clin Endocrinol. 2009;70(5):685–90. doi: 10.1111/j.1365-2265.2008.03403.x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Elizabeth M. Curtis
    • 1
  • Rebecca J. Moon
    • 1
  • Elaine M. Dennison
    • 1
  • Nicholas C. Harvey
    • 1
  1. 1.MRC Lifecourse Epidemiology UnitUniversity of Southampton, Southampton General HospitalSouthamptonUK

Personalised recommendations