Skip to main content

Advertisement

Log in

Therapies for Musculoskeletal Disease: Can we Treat Two Birds with One Stone?

  • Muscle and Bone (L Bonewald and M Harrick, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Musculoskeletal diseases are highly prevalent with staggering annual health care costs across the globe. The combined wasting of muscle (sarcopenia) and bone (osteoporosis)—both in normal aging and pathologic states—can lead to vastly compounded risk for fracture in patients. Until now, our therapeutic approach to the prevention of such fractures has focused solely on bone, but our increasing understanding of the interconnected biology of muscle and bone has begun to shift our treatment paradigm for musculoskeletal disease. Targeting pathways that centrally regulate both bone and muscle (eg, GH/IGF-1, sex steroids, etc.) and newly emerging pathways that might facilitate communication between these 2 tissues (eg, activin/myostatin) might allow a greater therapeutic benefit and/or previously unanticipated means by which to treat these frail patients and prevent fracture. In this review, we will discuss a number of therapies currently under development that aim to treat musculoskeletal disease in precisely such a holistic fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Australian Bureau of Statistics. Available at: http://www.abs.gov.au/ausstats/abs@.nsf/cat/4823.0.55.001. 2005. Accessed Dec 2013.

  2. Connelly LB, Woolf A, Brooks P. Cost-effectiveness of interventions for musculoskeletal conditions. In: Jamison DT, Breman JG, Measham AR, Alleyne G, Claeson M, Evans DB, et al., editors. Disease control priorities in developing countries, 2nd edn. Washington, DC: Oxford University Press and World Bank; 2006. p. 963–8.

  3. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17(12):1726–33. doi:10.1007/s00198-006-0172-4.

    CAS  PubMed  Google Scholar 

  4. Bonewald LF, Kiel DP, Clemens TL, Esser K, Orwoll ES, O'Keefe RJ, et al. Forum on bone and skeletal muscle interactions: summary of the proceedings of an ASBMR workshop. J Bone Miner Res. 2013;28(9):1857–65. doi:10.1002/jbmr.1980. This perspective article summarizes an ASBMR workshop on bone-muscle interactions, outlines current concepts in the field, and research questions to stmulate potential therapeutic strategies for musculoskeletal disorders.

    PubMed  Google Scholar 

  5. Cooper C, Dere W, Evans W, Kanis JA, Rizzoli R, Sayer AA, et al. Frailty and sarcopenia: definitions and outcome parameters. Osteoporos Int. 2012;23(7):1839–48. doi:10.1007/s00198-012-1913-1.

    CAS  PubMed  Google Scholar 

  6. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147(8):755–63.

    CAS  PubMed  Google Scholar 

  7. Scott D, Hayes A, Sanders KM, Aitken D, Ebeling PR, Jones G. Operational definitions of sarcopenia and their associations with 5-year changes in falls risk in community-dwelling middle-aged and older adults. Osteoporos Int. 2014;25(1):187–93. doi:10.1007/s00198-013-2431-5.

    CAS  PubMed  Google Scholar 

  8. DiGirolamo DJ, Kiel DP, Esser KA. Bone and skeletal muscle: neighbors with close ties. J Bone Miner Res. 2013;28(7):1509–18. doi:10.1002/jbmr.1969. This perspective article reviews bone-muscle interactions throughout development and aging and highlights the predominant nature of muscle in this relationship.

  9. Schoenwolf GC, Bleyl SB, Brauer PR, Francis-West PH. Chapter 8: Development of the musculoskeletal system. Larsen's human embryology 4th edition. Philadelphia: Churchill Livingstone/Elsevier; 2009.

    Google Scholar 

  10. Karasik D, Kiel DP. Evidence for pleiotropic factors in genetics of the musculoskeletal system. Bone. 2010;46(5):1226–37. doi:10.1016/j.bone.2010.01.382. This review covers genetic aspects of bone-muscle interactions, providing valuable insight in the common genetic etiology of osteoporosis and sarcopenia.

    CAS  PubMed  Google Scholar 

  11. Kahn J, Shwartz Y, Blitz E, Krief S, Sharir A, Breitel DA, et al. Muscle contraction is necessary to maintain joint progenitor cell fate. Dev Cell. 2009;16(5):734–43. doi:10.1016/j.devcel.2009.04.013.

    CAS  PubMed  Google Scholar 

  12. Nowlan NC, Bourdon C, Dumas G, Tajbakhsh S, Prendergast PJ, Murphy P. Developing bones are differentially affected by compromised skeletal muscle formation. Bone. 2010;46(5):1275–85. doi:10.1016/j.bone.2009.11.026.

    PubMed Central  PubMed  Google Scholar 

  13. Larson CM, Henderson RC. Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop. 2000;20(1):71–4.

    CAS  PubMed  Google Scholar 

  14. Shaw NJ, White CP, Fraser WD, Rosenbloom L. Osteopenia in cerebral palsy. Arch Dis Child. 1994;71(3):235–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Sharir A, Stern T, Rot C, Shahar R, Zelzer E. Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development. 2011;138(15):3247–59. doi:10.1242/dev.063768.

    CAS  PubMed  Google Scholar 

  16. Slizewski A, Schonau E, Shaw C, Harvati K. Muscle area estimation from cortical bone. Anat Rec. 2013. doi:10.1002/ar.22788.

    Google Scholar 

  17. Szulc P, Beck TJ, Marchand F, Delmas PD. Low skeletal muscle mass is associated with poor structural parameters of bone and impaired balance in elderly men—the MINOS study. J Bone Miner Res. 2005;20(5):721–9. doi:10.1359/JBMR.041230.

    PubMed  Google Scholar 

  18. Rikkonen T, Sirola J, Salovaara K, Tuppurainen M, Jurvelin JS, Honkanen R, et al. Muscle strength and body composition are clinical indicators of osteoporosis. Calcif Tissue Int. 2012;91(2):131–8. doi:10.1007/s00223-012-9618-1.

    CAS  PubMed  Google Scholar 

  19. Keyak JH, Koyama AK, LeBlanc A, Lu Y, Lang TF. Reduction in proximal femoral strength due to long-duration spaceflight. Bone. 2009;44(3):449–53. doi:10.1016/j.bone.2008.11.014.

    CAS  PubMed  Google Scholar 

  20. Lebrasseur NK, Achenbach SJ, Melton III LJ, Amin S, Khosla S. Skeletal muscle mass is associated with bone geometry and microstructure and serum insulin-like growth factor binding protein-2 levels in adult women and men. J Bone Miner Res. 2012;27(10):2159–69. doi:10.1002/jbmr.1666. This observational study of ~ 590 patients reported an association between appendicular muscle mass, bone cortical thickness at remote sites, and serum insulin-like growth factor (IGF) binding protein-2 (IGFBP-2) levels. This further supports the integrated nature of bone-muscle cross-talk.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Harry LE, Sandison A, Paleolog EM, Hansen U, Pearse MF, Nanchahal J. Comparison of the healing of open tibial fractures covered with either muscle or fasciocutaneous tissue in a murine model. J Orthop Res. 2008;26(9):1238–44. doi:10.1002/jor.20649.

    PubMed  Google Scholar 

  22. Gopal S, Majumder S, Batchelor AG, Knight SL, De Boer P, Smith RM. Fix and flap: the radical orthopaedic and plastic treatment of severe open fractures of the tibia. J Bone Joint Surg (Br). 2000;82(7):959–66.

    CAS  Google Scholar 

  23. Reverte MM, Dimitriou R, Kanakaris NK, Giannoudis PV. What is the effect of compartment syndrome and fasciotomies on fracture healing in tibial fractures? Injury. 2011;42(12):1402–7. doi:10.1016/j.injury.2011.09.007.

    PubMed  Google Scholar 

  24. Elkasrawy MN, Hamrick MW. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact. 2010;10(1):56–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8):457–65. doi:10.1038/nrendo.2012.49.

    CAS  PubMed  Google Scholar 

  26. Cianferotti L, Brandi ML. Muscle-bone interactions: basic and clinical aspects. Endocrine. 2013. doi:10.1007/s12020-013-0026-8.

    PubMed  Google Scholar 

  27. DiGirolamo DJ, Clemens TL, Kousteni S. The skeleton as an endocrine organ. Nat Rev Rheumatol. 2012;8(11):674–83. doi:10.1038/nrrheum.2012.157. This review presents bone as an endocrine organ based on the discovery of unique ‘osteokines’ with effects in glucose and energy homeostasis.

    CAS  PubMed  Google Scholar 

  28. Christoforidis A, Maniadaki I, Stanhope R. Growth hormone / insulin-like growth factor-1 axis during puberty. Pediatr Endocrinol Rev. 2005;3(1):5–10.

    PubMed  Google Scholar 

  29. Perrini S, Carreira MC, Conserva A, Laviola L, Giorgino F. Metabolic implications of growth hormone therapy. J Endocrinol Invest. 2008;31(9 Suppl):79–84.

    CAS  PubMed  Google Scholar 

  30. Perrini S, Laviola L, Carreira MC, Cignarelli A, Natalicchio A, Giorgino F. The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J Endocrinol. 2010;205(3):201–10. doi:10.1677/JOE-09-0431.

    CAS  PubMed  Google Scholar 

  31. Mavalli MD, DiGirolamo DJ, Fan Y, Riddle RC, Campbell KS, van Groen T, et al. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice. J Clin Invest. 2010;120(11):4007–20. doi:10.1172/JCI42447. This study delineates specific effects of GH signaling in muscle via the generation of 2 different mouse models. Effects of GH in muscle development depend on IGF-1, whilst effects on insulin sensitivity are IGF-1-independent.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Rojas Vega S, Knicker A, Hollmann W, Bloch W, Struder HK. Effect of resistance exercise on serum levels of growth factors in humans. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2010;42(13):982–6. doi:10.1055/s-0030-1267950.

  33. Jennische E, Hansson HA. Regenerating skeletal muscle cells express insulin-like growth factor I. Acta Physiol Scand. 1987;130(2):327–32. doi:10.1111/j.1748-1716.1987.tb08144.x.

    CAS  PubMed  Google Scholar 

  34. Miller WL, Eberhardt NL. Structure and evolution of the growth hormone gene family. Endocr Rev. 1983;4(2):97–130. doi:10.1210/edrv-4-2-97.

    CAS  PubMed  Google Scholar 

  35. Carter-Su C, Schwartz J, Smit LS. Molecular mechanism of growth hormone action. Annu Rev Physiol. 1996;58:187–207. doi:10.1146/annurev.ph.58.030196.001155.

    CAS  PubMed  Google Scholar 

  36. Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev. 2008;29(5):535–59. doi:10.1210/er.2007-0036.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Hill PA, Tumber A, Meikle MC. Multiple extracellular signals promote osteoblast survival and apoptosis. Endocrinology. 1997;138(9):3849–58. doi:10.1210/endo.138.9.5370.

    CAS  PubMed  Google Scholar 

  38. Hock JM, Centrella M, Canalis E. Insulin-like growth factor I has independent effects on bone matrix formation and cell replication. Endocrinology. 1988;122(1):254–60. doi:10.1210/endo-122-1-254.

    CAS  PubMed  Google Scholar 

  39. DiGirolamo DJ, Mukherjee A, Fulzele K, Gan Y, Cao X, Frank SJ, et al. Mode of growth hormone action in osteoblasts. J Biol Chem. 2007;282(43):31666–74. doi:10.1074/jbc.M705219200.

    CAS  PubMed  Google Scholar 

  40. Laron Z. Do deficiencies in growth hormone and insulin-like growth factor-1 (IGF-1) shorten or prolong longevity? Mech Ageing Dev. 2005;126(2):305–7. doi:10.1016/j.mad.2004.08.022.

    CAS  PubMed  Google Scholar 

  41. Zhao HY, Liu JM, Ning G, Zhao YJ, Chen Y, Sun LH, et al. Relationships between insulin-like growth factor-I (IGF-I) and OPG, RANKL, bone mineral density in healthy Chinese women. Osteoporos Int. 2008;19(2):221–6. doi:10.1007/s00198-007-0440-y.

    CAS  PubMed  Google Scholar 

  42. Leger B, Derave W, De Bock K, Hespel P, Russell AP. Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenation Res. 2008;11(1):163–75B. doi:10.1089/rej.2007.0588.

    PubMed  Google Scholar 

  43. Ghiron LJ, Thompson JL, Holloway L, Hintz RL, Butterfield GE, Hoffman AR, et al. Effects of recombinant insulin-like growth factor-I and growth hormone on bone turnover in elderly women. J Bone Miner Res. 1995;10(12):1844–52. doi:10.1002/jbmr.5650101203.

    CAS  PubMed  Google Scholar 

  44. Rudman D, Feller AG, Nagraj HS, Gergans GA, Lalitha PY, Goldberg AF, et al. Effects of human growth hormone in men over 60 years old. N Engl J Med. 1990;323(1):1–6. doi:10.1056/NEJM199007053230101.

    CAS  PubMed  Google Scholar 

  45. Reed ML, Merriam GR, Kargi AY. Adult growth hormone deficiency - benefits, side effects, and risks of growth hormone replacement. Front Endocrinol. 2013;4:64. doi:10.3389/fendo.2013.00064.

    Google Scholar 

  46. Liu H, Bravata DM, Olkin I, Nayak S, Roberts B, Garber AM, et al. Systematic review: the safety and efficacy of growth hormone in the healthy elderly. Ann Intern Med. 2007;146(2):104–15.

    PubMed  Google Scholar 

  47. Papadakis MA, Grady D, Black D, Tierney MJ, Gooding GA, Schambelan M, et al. Growth hormone replacement in healthy older men improves body composition but not functional ability. Ann Intern Med. 1996;124(8):708–16.

    CAS  PubMed  Google Scholar 

  48. Blackman MR, Sorkin JD, Munzer T, Bellantoni MF, Busby-Whitehead J, Stevens TE, et al. Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial. JAMA. 2002;288(18):2282–92.

    CAS  PubMed  Google Scholar 

  49. Berryman DE, Christiansen JS, Johannsson G, Thorner MO, Kopchick JJ. Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Horm IGF Res. 2008;18(6):455–71. doi:10.1016/j.ghir.2008.05.005.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Human Body Size and the Laws of Scaling: Physiological, Performance, Growth, Longevity and Ecological Ramifications. In: Samaras T, editor. New York: Nova Science Publishers; 2007.

  51. Melmed GY, Devlin SM, Vlotides G, Dhall D, Ross S, Yu R, et al. Anti-aging therapy with human growth hormone associated with metastatic colon cancer in a patient with Crohn's colitis. Clin Gastroenterol Hepatol. 2008;6(3):360–3. doi:10.1016/j.cgh.2007.12.017.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Holt LJ, Turner N, Mokbel N, Trefely S, Kanzleiter T, Kaplan W, et al. Grb10 regulates the development of fiber number in skeletal muscle. FASEB. 2012;26(9):3658–69. doi:10.1096/fj.11-199349.

    CAS  Google Scholar 

  53. Solomon AM, Bouloux PM. Modifying muscle mass—the endocrine perspective. J Endocrinol. 2006;191(2):349–60. doi:10.1677/joe.1.06837.

    CAS  PubMed  Google Scholar 

  54. Veldhuis JD, Patrie JM, Frick K, Weltman JY, Weltman AL. Administration of recombinant human GHRH-1,44-amide for 3 months reduces abdominal visceral fat mass and increases physical performance measures in postmenopausal women. Eur J Endocrinol. 2005;153(5):669–77. doi:10.1530/eje.1.02019.

    CAS  PubMed  Google Scholar 

  55. Nass R, Pezzoli SS, Oliveri MC, Patrie JT, Harrell Jr FE, Clasey JL, et al. Effects of an oral ghrelin mimetic on body composition and clinical outcomes in healthy older adults: a randomized trial. Ann Intern Med. 2008;149(9):601–11.

    PubMed Central  PubMed  Google Scholar 

  56. White HK, Petrie CD, Landschulz W, MacLean D, Taylor A, Lyles K, et al. Effects of an oral growth hormone secretagogue in older adults. J Clin Endocrinol Metab. 2009;94(4):1198–206. doi:10.1210/jc.2008-0632.

    CAS  PubMed  Google Scholar 

  57. Vanderschueren D, Vandenput L, Boonen S, Lindberg MK, Bouillon R, Ohlsson C. Androgens and bone. Endocr Rev. 2004;25(3):389–425. doi:10.1210/er.2003-0003.

    CAS  PubMed  Google Scholar 

  58. Chen Y, Zajac JD, MacLean HE. Androgen regulation of satellite cell function. J Endocrinol. 2005;186(1):21–31. doi:10.1677/joe.1.05976.

    CAS  PubMed  Google Scholar 

  59. Bhasin S, Cunningham GR, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(6):2536–59. doi:10.1210/jc.2009-2354. These guidelines published by the Endocrine Society outline reccomendations for testing and treating androgen deficiency.

    CAS  PubMed  Google Scholar 

  60. Bhasin S, Calof OM, Storer TW, Lee ML, Mazer NA, Jasuja R, et al. Drug insight: testosterone and selective androgen receptor modulators as anabolic therapies for chronic illness and aging. Nat Clin Pract Endocrinol Metab. 2006;2(3):146–59. doi:10.1038/ncpendmet0120.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Fink HA, Ewing SK, Ensrud KE, Barrett-Connor E, Taylor BC, Cauley JA, et al. Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J Clin Endocrinol Metab. 2006;91(10):3908–15. doi:10.1210/jc.2006-0173.

    CAS  PubMed  Google Scholar 

  62. Tracz MJ, Sideras K, Bolona ER, Haddad RM, Kennedy CC, Uraga MV, et al. Testosterone use in men and its effects on bone health. A systematic review and meta-analysis of randomized placebo-controlled trials. J Clin Endocrinol Metab. 2006;91(6):2011–6. doi:10.1210/jc.2006-0036.

    CAS  PubMed  Google Scholar 

  63. Isidori AM, Giannetta E, Greco EA, Gianfrilli D, Bonifacio V, Isidori A, et al. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol. 2005;63(3):280–93. doi:10.1111/j.1365-2265.2005.02339.x.

    CAS  Google Scholar 

  64. Srinivas-Shankar U, Roberts SA, Connolly MJ, O'Connell MD, Adams JE, Oldham JA, et al. Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab. 2010;95(2):639–50. doi:10.1210/jc.2009-1251.

    CAS  PubMed  Google Scholar 

  65. Spitzer M, Huang G, Basaria S, Travison TG, Bhasin S. Risks and benefits of testosterone therapy in older men. Nat Rev Endocrinol. 2013;9(7):414–24. doi:10.1038/nrendo.2013.73. This review summarizes benefits of testosterone therapy, its indications and risks in older men, particularly relating to cardiovascular disease, prostate conditions, and erythrocytosis.

    CAS  PubMed  Google Scholar 

  66. Testosterone and aging: clinical research directions. Institute of Medicine TNAP. In: Liverman CT, Blazer, DG, editors. Washington, D.C.: National, Academies Press; 2004.

  67. Zhang X, Sui Z. Deciphering the selective androgen receptor modulators paradigm. Expert Opin Drug Discov. 2013;8(2):191–218. doi:10.1517/17460441.2013.741582. This review covers pharmacologic aspects in the development of SARMs and summarizes preclinical and clinical data.

    CAS  PubMed  Google Scholar 

  68. Mohler ML, Bohl CE, Jones A, Coss CC, Narayanan R, He Y, et al. Nonsteroidal selective androgen receptor modulators (SARMs): dissociating the anabolic and androgenic activities of the androgen receptor for therapeutic benefit. J Med Chem. 2009;52(12):3597–617. doi:10.1021/jm900280m.

    CAS  PubMed  Google Scholar 

  69. Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST, et al. The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachex Sarcopenia Muscle. 2011;2(3):153–61. doi:10.1007/s13539-011-0034-6.

    Google Scholar 

  70. Dobs AS, Boccia RV, Croot CC, Gabrail NY, Dalton JT, Hancock ML, et al. Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled phase 2 trial. Lancet Oncol. 2013;14(4):335–45. doi:10.1016/S1470-2045(13)70055-X. This clinical trial of enobosarm, a nonsteroidal SARM, showed significant increases in lean body mass but no effect in bone mineral density in patients with cancer cachexia. A phase 3 trial is currently underway.

    CAS  PubMed  Google Scholar 

  71. Basaria S, Collins L, Dillon EL, Orwoll K, Storer TW, Miciek R, et al. The safety, pharmacokinetics, and effects of LGD-4033, a novel nonsteroidal oral, selective androgen receptor modulator, in healthy young men. J Gerontol A Biol Sci Med Sci. 2013;68(1):87–95. doi:10.1093/gerona/gls078.

    CAS  PubMed  Google Scholar 

  72. Papanicolaou DA, Ather SN, Zhu H, Zhou Y, Lutkiewicz J, Scott BB, et al. A phase IIA randomized, placebo-controlled clinical trial to study the efficacy and safety of the selective androgen receptor modulator (SARM), MK-0773 in female participants with sarcopenia. J Nutr Health Aging. 2013;17(6):533–43. doi:10.1007/s12603-013-0335-x. The steroidal SARM, MK-0773, resulted in significant increases in lean body mass in frail elderly women but this did not translate to improvements in muscle strength.

    CAS  PubMed  Google Scholar 

  73. Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE. The roles of Vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev. 2013;34:33–83. doi:10.1210/er.2012-1012. This review summarizes effects of vitamin D in skeletal muscle from animal, cell and human studies.

    CAS  PubMed  Google Scholar 

  74. Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, et al. Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology. 1999;140(11):4982–7.

    CAS  PubMed  Google Scholar 

  75. Schubert L, DeLuca HF. Hypophosphatemia is responsible for skeletal muscle weakness of vitamin D deficiency. Arch Biochem Biophys. 2010;500(2):157–61. doi:10.1016/j.abb.2010.05.029.

    CAS  PubMed  Google Scholar 

  76. Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor? Arch Biochem Biophys. 2012;523(1):123–33. doi:10.1016/j.abb.2012.04.001. This article examines the tissue distribution of VDR, including organs where its presence is controversial such as liver and skeletal muscle.

    CAS  PubMed  Google Scholar 

  77. Lieben L, Masuyama R, Torrekens S, Van Looveren R, Schrooten J, Baatsen P, et al. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest. 2012;122(5):1803–15. doi:10.1172/JCI45890.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Yamamoto Y, Yoshizawa T, Fukuda T, Shirode-Fukuda Y, Yu T, Sekine K, et al. Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. Endocrinology. 2013;154(3):1008–20. doi:10.1210/en.2012-1542.

    CAS  PubMed  Google Scholar 

  79. Lam NN, Triliana R, Sawyer RK, Atkins GJ, Morris HA, O'Loughlin PD, et al. Vitamin D receptor overexpression in osteoblasts and osteocytes prevents bone loss during vitamin D-deficiency. J Steroid Biochem Mol Biol. 2014. doi:10.1016/j.jsbmb.2014.01.002.

    PubMed  Google Scholar 

  80. Endo I, Inoue D, Mitsui T, Umaki Y, Akaike M, Yoshizawa T, et al. Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors. Endocrinology. 2003;144(12):5138–44. doi:10.1210/en.2003-0502.

    CAS  PubMed  Google Scholar 

  81. Girgis CM, Clifton-Bligh RJ, Mokbel N, Cheng K, Gunton JE. Vitamin D signaling regulates proliferation, differentiation and myotube size in C2C12 skeletal muscle cells. Endocrinology. 2014;155(2):347–57. doi:10.1210/en.2013-1205.

    PubMed  Google Scholar 

  82. Lee SG, Lee YH, Kim KJ, Lee W, Kwon OH, Kim JH. Additive association of vitamin D insufficiency and sarcopenia with low femoral bone mineral density in noninstitutionalized elderly population: the Korea National Health and Nutrition Examination Surveys 2009–2010. Osteoporos Int. 2013;24(11):2789–99. doi:10.1007/s00198-013-2378-6.

    CAS  PubMed  Google Scholar 

  83. Snijder MB, van Schoor NM, Pluijm SM, van Dam RM, Visser M, Lips P. Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J Clin Endocrinol Metab. 2006;91(8):2980–5. doi:10.1210/jc.2006-0510.

    CAS  PubMed  Google Scholar 

  84. Bischoff-Ferrari HA, Borchers M, Gudat F, Durmuller U, Stahelin HB, Dick W. Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res. 2004;19(2):265–9. doi:10.1359/jbmr.2004.19.2.265.

    CAS  PubMed  Google Scholar 

  85. Bischoff-Ferrari HA, Willett WC, Wong JB, Giovannucci E, Dietrich T, Dawson-Hughes B. Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA. 2005;293(18):2257–64. doi:10.1001/jama.293.18.2257.

    CAS  PubMed  Google Scholar 

  86. Broe KE, Chen TC, Weinberg J, Bischoff-Ferrari HA, Holick MF, Kiel DP. A higher dose of vitamin d reduces the risk of falls in nursing home residents: a randomized, multiple-dose study. J Am Geriatr Soc. 2007;55(2):234–9. doi:10.1111/j.1532-5415.2007.01048.x.

    PubMed  Google Scholar 

  87. Jackson RD, LaCroix AZ, Gass M, Wallace RB, Robbins J, Lewis CE, et al. Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med. 2006;354(7):669–83. doi:10.1056/NEJMoa055218.

    CAS  PubMed  Google Scholar 

  88. Reid IR, Bolland MJ, Grey A. Effects of vitamin D supplements on bone mineral density: a systematic review and meta-analysis. Lancet. 2013. doi:10.1016/S0140-6736(13)61647-5.

    Google Scholar 

  89. Ceglia L, Niramitmahapanya S, Morais MD, Rivas DA, Harris SS, Bischoff-Ferrari H, et al. A randomized study on the effect of vitamin D3 supplementation on skeletal muscle morphology and vitamin D receptor concentration in older women. J Clin Endocrinol Metab. 2013. doi:10.1210/jc.2013–2820. This RCT of 21 older women showed an increase in myonuclear VDR and muscle fiber size amongst those receiving vitamin D supplementation (4000 IU d for 4 months). However, functional parameters were unchanged, possibly due to the small sample size.

    Google Scholar 

  90. Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA. 2010;303(18):1815–22. doi:10.1001/jama.2010.594. This well-known RCT of 2256 community-dwelling older women reported an increased risk of falls and fractures in the 3 months following vitamin D mega-supplementation (500,000 IU oral).

    CAS  PubMed  Google Scholar 

  91. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–8. doi:10.1210/jc.2010-2704. This article summarizes the IOM recommendations for 25OHD target levels (50 nmol/L) and daily vitamin D doses (800 IU in adults >70years). Extra-skeletal benefits of vitamin D were reportedly “not yet compelling”.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30. doi:10.1210/jc.2011-0385. In contrast to the IOM recommendations, the Endocrine society advocated a higher 25OHD target level of 75 nmol/L and daily doses of at least 1500–2000 IU in the older age-group.

    CAS  PubMed  Google Scholar 

  93. Korpelainen R, Keinanen-Kiukaanniemi S, Heikkinen J, Vaananen K, Korpelainen J. Effect of impact exercise on bone mineral density in elderly women with low BMD: a population-based randomized controlled 30-month intervention. Osteoporos Int. 2006;17(1):109–18. doi:10.1007/s00198-005-1924-2.

    PubMed  Google Scholar 

  94. Martyn-St James M, Carroll S. Meta-analysis of walking for preservation of bone mineral density in postmenopausal women. Bone. 2008;43(3):521–31. doi:10.1016/j.bone.2008.05.012.

    PubMed  Google Scholar 

  95. Winters-Stone KM, Dobek J, Nail L, Bennett JA, Leo MC, Naik A, et al. Strength training stops bone loss and builds muscle in postmenopausal breast cancer survivors: a randomized, controlled trial. Breast Cancer Res Treat. 2011;127(2):447–56. doi:10.1007/s10549-011-1444-z.

    PubMed Central  PubMed  Google Scholar 

  96. Winters KM, Snow CM. Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women. J Bone Miner Res. 2000;15(12):2495–503. doi:10.1359/jbmr.2000.15.12.2495.

    CAS  PubMed  Google Scholar 

  97. Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res. 2006;21(9):1464–74. doi:10.1359/jbmr.060612.

    PubMed  Google Scholar 

  98. Dudley-Javoroski S, Shields RK. Muscle and bone plasticity after spinal cord injury: review of adaptations to disuse and to electrical muscle stimulation. J Rehabil Res Dev. 2008;45(2):283–96.

    PubMed Central  PubMed  Google Scholar 

  99. Serrano-Urrea R, Garcia-Meseguer MJ. Malnutrition in an elderly population without cognitive impairment living in nursing homes in Spain: study of prevalence using the Mini Nutritional Assessment test. Gerontology. 2013;59(6):490–8. doi:10.1159/000351763.

    CAS  PubMed  Google Scholar 

  100. Berner LA, Becker G, Wise M, Doi J. Characterization of dietary protein among older adults in the United States: amount, animal sources, and meal patterns. J Acad Nutr Diet. 2013;113(6):809–15. doi:10.1016/j.jand.2013.01.014.

    PubMed  Google Scholar 

  101. Houston DK, Nicklas BJ, Ding J, Harris TB, Tylavsky FA, Newman AB, et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr. 2008;87(1):150–5.

    CAS  PubMed  Google Scholar 

  102. Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care. 2009;12(1):86–90. doi:10.1097/MCO.0b013e32831cef8b.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Milne AC, Potter J, Vivanti A, Avenell A. Protein and energy supplementation in elderly people at risk from malnutrition. Cochrane Database Syst Rev. 2009(2):CD003288. doi:10.1002/14651858.CD003288.pub3.

  104. Miller CT, Fraser SF, Levinger I, Straznicky NE, Dixon JB, Reynolds J, et al. The effects of exercise training in addition to energy restriction on functional capacities and body composition in obese adults during weight loss: a systematic review. PLoS One. 2013;8(11):e81692. doi:10.1371/journal.pone.0081692.

    PubMed Central  PubMed  Google Scholar 

  105. Buehring B, Binkley N. Myostatin - the holy grail for muscle, bone, and fat? Curr Osteoporos Rep. 2013;11(4):407–14. doi:10.1007/s11914-013-0160-5.

    CAS  PubMed  Google Scholar 

  106. Tang BM, Eslick GD, Nowson C, Smith C, Bensoussan A. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet. 2007;370(9588):657–66. doi:10.1016/S0140-6736(07)61342-7.

    CAS  PubMed  Google Scholar 

  107. Radford LT, Bolland MJ, Mason B, Horne A, Gamble GD, Grey A, et al. The Auckland calcium study: 5-year post-trial follow-up. Osteoporos Int. 2013. doi:10.1007/s00198-013-2526-z.

    PubMed  Google Scholar 

  108. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83–90. doi:10.1038/387083a0.

    CAS  PubMed  Google Scholar 

  109. Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W, et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med. 2004;350(26):2682–8. doi:10.1056/NEJMoa040933.

    CAS  PubMed  Google Scholar 

  110. Han DS, Chen YM, Lin SY, Chang HH, Huang TM, Chi YC, et al. Serum myostatin levels and grip strength in normal subjects and patients on maintenance haemodialysis. Clin Endocrinol. 2011;75(6):857–63. doi:10.1111/j.1365-2265.2011.04120.x.

    CAS  Google Scholar 

  111. Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, Sinha-Hikim I, Ma K, Ezzat S, et al. Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci U S A. 1998;95(25):14938–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Ju CR, Chen RC. Serum myostatin levels and skeletal muscle wasting in chronic obstructive pulmonary disease. Respir Med. 2012;106(1):102–8. doi:10.1016/j.rmed.2011.07.016.

    PubMed  Google Scholar 

  113. Elliott B, Renshaw D, Getting S, Mackenzie R. The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiol. 2012;205(3):324–40. doi:10.1111/j.1748-1716.2012.02423.x.

    CAS  Google Scholar 

  114. Tsuchida K, Nakatani M, Hitachi K, Uezumi A, Sunada Y, Ageta H, et al. Activin signaling as an emerging target for therapeutic interventions. Cell Commun Signal. 2009;7:15. doi:10.1186/1478-811X-7-15.

    PubMed Central  PubMed  Google Scholar 

  115. Zhang ZL, He JW, Qin YJ, Hu YQ, Li M, Zhang H, et al. Association between myostatin gene polymorphisms and peak BMD variation in Chinese nuclear families. Osteoporos Int. 2008;19(1):39–47. doi:10.1007/s00198-007-0435-8.

    CAS  PubMed  Google Scholar 

  116. Hamrick MW. Increased bone mineral density in the femora of GDF8 knockout mice. Anat Rec A Discov Mol Cell Evol Biol. 2003;272(1):388–91. doi:10.1002/ar.a.10044.

    PubMed  Google Scholar 

  117. Kellum E, Starr H, Arounleut P, Immel D, Fulzele S, Wenger K, et al. Myostatin (GDF-8) deficiency increases fracture callus size, Sox-5 expression, and callus bone volume. Bone. 2009;44(1):17–23. doi:10.1016/j.bone.2008.08.126.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Digirolamo D SV, Clemens T, Lee S-J. Systemic administration of soluble 483 activin receptors produces differential anabolic effects in muscle and bone in mice. J Bone Miner Res. 2011;1167 (Suppl.). This abstract presented at ASBMR meeting 2011 reported direct effects of activin receptor signaling in osteoblasts. Mice treated with ActRII-Fc fusion proteins showed both increases in muscle (15%–40%) and trabecular (~13%) bone over 4 weeks.

  119. Bowser M, Herberg S, Arounleut P, Shi X, Fulzele S, Hill WD, et al. Effects of the activin A-myostatin-follistatin system on aging bone and muscle progenitor cells. Exp Gerontol. 2013;48(2):290–7. doi:10.1016/j.exger.2012.11.004. This study examined age-related differences in the expression and activity of myostatin, activin A, and follistatin in mice. Myostatin was particularly important in the impaired proliferative capacity of aged muscle and bone cells, making it an appropriate therapeutic target in treating sarcopenia-osteoporosis.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Koncarevic A, Cornwall-Brady M, Pullen A, Davies M, Sako D, Liu J, et al. A soluble activin receptor type IIb prevents the effects of androgen deprivation on body composition and bone health. Endocrinology. 2010;151(9):4289–300. doi:10.1210/en.2010-0134.

    CAS  PubMed  Google Scholar 

  121. Bogdanovich S, Krag TO, Barton ER, Morris LD, Whittemore LA, Ahima RS, et al. Functional improvement of dystrophic muscle by myostatin blockade. Nature. 2002;420(6914):418–21. doi:10.1038/nature01154.

    CAS  PubMed  Google Scholar 

  122. Zhou X, Wang JL, Lu J, Song Y, Kwak KS, Jiao Q, et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell. 2010;142(4):531–43. doi:10.1016/j.cell.2010.07.011.

    CAS  PubMed  Google Scholar 

  123. Chiu CS, Peekhaus N, Weber H, Adamski S, Murray EM, Zhang HZ, et al. Increased muscle force production and bone mineral density in ActRIIB-Fc-treated mature rodents. J Gerontol A Biol Sci Med Sci. 2013;68(10):1181–92. doi:10.1093/gerona/glt030. Aged mice treated with ActRIIB-Fc fusion protein showed enhanced muscle size and function after 3 days. Similar features were observed in hypogonadal male mice (ie, orchidectomized) and improvements in bone mineral density were also reported.

    CAS  PubMed  Google Scholar 

  124. Lotinun S, Pearsall RS, Davies MV, Marvell TH, Monnell TE, Ucran J, et al. A soluble activin receptor Type IIA fusion protein (ACE-011) increases bone mass via a dual anabolic-antiresorptive effect in Cynomolgus monkeys. Bone. 2010;46(4):1082–8. doi:10.1016/j.bone.2010.01.370.

    CAS  PubMed  Google Scholar 

  125. Arounleut P, Bialek P, Liang LF, Upadhyay S, Fulzele S, Johnson M, et al. A myostatin inhibitor (propeptide-Fc) increases muscle mass and muscle fiber size in aged mice but does not increase bone density or bone strength. Exp Gerontol. 2013;48(9):898–904. doi:10.1016/j.exger.2013.06.004. Aged mice injected with a myostatin inhibitor (propeptide-Fc) showed increases in muscle mass but not bone volume. This raised questions about the precise role of myostatin signaling in bone density in aged animals.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Wagner KR, Fleckenstein JL, Amato AA, Barohn RJ, Bushby K, Escolar DM, et al. A phase I/IItrial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol. 2008;63(5):561–71. doi:10.1002/ana.21338.

    CAS  PubMed  Google Scholar 

  127. Krivickas LS, Walsh R, Amato AA. Single muscle fiber contractile properties in adults with muscular dystrophy treated with MYO-029. Muscle Nerve. 2009;39(1):3–9. doi:10.1002/mus.21200.

    CAS  PubMed  Google Scholar 

  128. Attie KM, Borgstein NG, Yang Y, Condon CH, Wilson DM, Pearsall AE, et al. A single ascending-dose study of muscle regulator ACE-031 in healthy volunteers. Muscle Nerve. 2013;47(3):416–23. doi:10.1002/mus.23539. This RCT reported increases in muscle mass and serum markers of bone formation in healthy postmenopausal women receiving a single dose of ACE-031, a soluble ActRIIB decoy receptor. Although side-effects were minor—nose bleeds, skin telangiectasia and transient drop in FSH levels—they highlight an incomplete understanding of systemic effects of activin signaling.

    CAS  PubMed  Google Scholar 

  129. Lach-Trifilieff E, Minetti GC, Sheppard K, Ibebunjo C, Feige JN, Hartmann S, et al. An antibody blocking Activin Type II Receptor induces strong skeletal muscle hypertrophy and protects from atrophy. Mol Cell Biol. 2014;34(4):606–18. doi:10.1128/MCB.01307-13. Mice injected with a novel anti ActRII antibody (BYM338) had greater increases in muscle mass than mice receiving a myostatin inhibitor alone. This agent also protected muscles from glucocorticoid-induced atrophy and has potential therapeutic implications.

    PubMed Central  PubMed  Google Scholar 

  130. Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med. 2011;17(11):1481–9. doi:10.1038/nm.2513.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CM Girgis received salary support from a postgraduate scholar award (University of Sydney) and the Joseph Thornton Tweddle Research Scholarship 2014 (Royal Australasian College of Physicians). DJ DiGirolamo is supported by NIAMS under award number R01AR062074. This content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Compliance with Ethics Guidelines

Conflict of Interest

CM Girgis and N Mokbel declares that they have no conflicts of interests. DJ DiGirolamo has received a speaker’s honorarium from Eli Lilly and Company.

Human and Animal Rights and Informed Consent

All studies by the authors involving animal subjects were performed after approval by the appropriate institutional review boards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian M. Girgis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girgis, C.M., Mokbel, N. & DiGirolamo, D.J. Therapies for Musculoskeletal Disease: Can we Treat Two Birds with One Stone?. Curr Osteoporos Rep 12, 142–153 (2014). https://doi.org/10.1007/s11914-014-0204-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0204-5

Keywords

Navigation