Skip to main content

Advertisement

Log in

Stem Cell Therapy for Osteoporosis

  • Regenerative Biology and Medicine in Osteoporosis (EM Schwartz and RE Guldberg, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Osteoporosis is a debilitating disease that affects millions of people worldwide. Current osteoporosis treatments are predominantly bone-resorbing drugs that are associated with several side effects. The use of stem cells for tissue regeneration has raised great hope in various fields of medicine, including musculoskeletal disorders. Stem cell therapy for osteoporosis could potentially reduce the susceptibility of fractures and augment lost mineral density by either increasing the numbers or restoring the function of resident stem cells that can proliferate and differentiate into bone-forming cells. Such osteoporosis therapies can be carried out by exogenous introduction of mesenchymal stem cells (MSCs), typically procured from bone marrow, adipose, and umbilical cord blood tissues or through treatments with drugs or small molecules that recruit endogenous stem cells to osteoporotic sites. The main hurdle with cell-based osteoporosis therapy is the uncertainty of stem cell fate and biodistribution following cell transplantation. Therefore, future advancements will focus on long-term engraftment and differentiation of stem cells at desired bone sites for tangible clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cooper C, Campion G, Melton III LJ. Hip fractures in the elderly: a world-wide projection. Osteoporos Int. 1992;2:285–9.

    Article  CAS  PubMed  Google Scholar 

  2. Foundation, NO. Debunking the Myths. 2013. Available at: http://www.nof.org/articles/4.

  3. Lien CY et al. Restoration of bone mass and strength in glucocorticoid-treated mice by systemic transplantation of CXCR4 and cbfa-1 co-expressing mesenchymal stem cells. J Bone Miner Res. 2009;24:837–48.

    Article  CAS  PubMed  Google Scholar 

  4. Martin KE et al. Analysis of the comparative effectiveness of 3 oral bisphosphonates in a large managed care organization: adherence, fracture rates, and all-cause cost. J Manag Care Pharm. 2011;17:596–609.

    PubMed  Google Scholar 

  5. Liu Y, et al. Therapeutic application of mesenchymal stem cells in bone and joint diseases. Clin Exp Med. 2012.

  6. Sandhu SK, Hampson G. The pathogenesis, diagnosis, investigation and management of osteoporosis. J Clin Pathol. 2011;64:1042–50.

    Article  CAS  PubMed  Google Scholar 

  7. Lane NE. Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol. 2006;194(2 Suppl):S3–S11.

    Article  CAS  PubMed  Google Scholar 

  8. Lippuner K. The future of osteoporosis treatment - a research update. Swiss Med Wkly. 2012;142:w13624.

    PubMed  Google Scholar 

  9. Chen XD et al. Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J Bone Miner Res. 2007;22:1943–56.

    Article  CAS  PubMed  Google Scholar 

  10. Chen XD et al. Age-related osteoporosis in biglycan-deficient mice is related to defects in bone marrow stromal cells. J Bone Miner Res. 2002;17:331–40.

    Article  CAS  PubMed  Google Scholar 

  11. Katsara O et al. Effects of donor age, gender, and in vitro cellular aging on the phenotypic, functional, and molecular characteristics of mouse bone marrow-derived mesenchymal stem cells. Stem Cells Dev. 2011;20:1549–61.

    Article  CAS  PubMed  Google Scholar 

  12. Bonyadi M et al. Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proc Natl Acad Sci U S A. 2003;100:5840–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Weinstein RS, Roberson PK, Manolagas SC. Giant osteoclast formation and long-term oral bisphosphonate therapy. N Engl J Med. 2009;360:53–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Khan AA et al. Bisphosphonate associated osteonecrosis of the jaw. J Rheumatol. 2009;36:478–90.

    Article  PubMed  Google Scholar 

  15. Lo JC et al. Prevalence of osteonecrosis of the jaw in patients with oral bisphosphonate exposure. J Oral Maxillofac Surg. 2010;68:243–53.

    Article  PubMed  Google Scholar 

  16. Saleh A et al. Bisphosphonate therapy and atypical fractures. Orthop Clin North Am. 2013;44:137–51.

    Article  PubMed  Google Scholar 

  17. Nieves JW, Cosman F. Atypical subtrochanteric and femoral shaft fractures and possible association with bisphosphonates. Curr Osteoporos Rep. 2010;8:34–9.

    Article  PubMed  Google Scholar 

  18. Cummings SR et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361:756–65.

    Article  CAS  PubMed  Google Scholar 

  19. Rizzoli R, Yasothan U, Kirkpatrick P. Denosumab. Nat Rev Drug Discov. 2010;9:591–2.

    Article  CAS  PubMed  Google Scholar 

  20. Barrett-Connor E et al. Effects of raloxifene on cardiovascular events and breast cancer in postmenopausal women. N Engl J Med. 2006;355:125–37.

    Article  CAS  PubMed  Google Scholar 

  21. Reginster JY, Pelousse F, Bruyere O. Safety concerns with the long-term management of osteoporosis. Expert Opin Drug Saf. 2013;12:507–22.

    Article  CAS  PubMed  Google Scholar 

  22. Anastasilakis AD et al. Long-term treatment of osteoporosis: safety and efficacy appraisal of denosumab. Ther Clin Risk Manag. 2012;8:295–306.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Canalis E, Giustina A, Bilezikian JP. Mechanisms of anabolic therapies for osteoporosis. N Engl J Med. 2007;357:905–16.

    Article  CAS  PubMed  Google Scholar 

  24. Black DM et al. One year of alendronate after one year of parathyroid hormone (1–84) for osteoporosis. N Engl J Med. 2005;353:555–65.

    Article  CAS  PubMed  Google Scholar 

  25. Yao W, et al. Reversing bone loss by directing mesenchymal stem cells to the bone. Stem Cells. 2013. Important article describing a novel, small molecule to direct MSCs to bone to augment the rate of bone formation for osteoporosis treatment.

  26. Steinert AF et al. Concise review: the clinical application of mesenchymal stem cells for musculoskeletal regeneration: current status and perspectives. Stem Cells Transl Med. 2012;1:237–47. A concise, yet detailed review on clinical applications of MSCs in the musculoskeletal system..

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Trounson A et al. Clinical trials for stem cell therapies. BMC Med. 2011;9:52.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Sethe S, Scutt A, Stolzing A. Aging of mesenchymal stem cells. Ageing Res Rev. 2006;5:91–116.

    Article  CAS  PubMed  Google Scholar 

  29. Brack AS, Rando TA. Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem Cell Rev. 2007;3:226–37.

    Article  CAS  PubMed  Google Scholar 

  30. Muschler GF et al. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res. 2001;19:117–25.

    Article  CAS  PubMed  Google Scholar 

  31. Wang Z et al. Efficacy of bone marrow-derived stem cells in strengthening osteoporotic bone in a rabbit model. Tissue Eng. 2006;12:1753–61.

    Article  CAS  PubMed  Google Scholar 

  32. Ocarino Nde M et al. Intra-bone marrow injection of mesenchymal stem cells improves the femur bone mass of osteoporotic female rats. Connect Tissue Res. 2010;51:426–33.

    Article  PubMed  Google Scholar 

  33. Tang Y et al. Combination of bone tissue engineering and BMP-2 gene transfection promotes bone healing in osteoporotic rats. Cell Biol Int. 2008;32:1150–7.

    Article  CAS  PubMed  Google Scholar 

  34. Hsiao FS et al. Isolation of therapeutically functional mouse bone marrow mesenchymal stem cells within 3 h by an effective single-step plastic-adherent method. Cell Prolif. 2010;43:235–48.

    Article  CAS  PubMed  Google Scholar 

  35. Kim D et al. Retrovirus-mediated gene transfer of receptor activator of nuclear factor-kappaB-Fc prevents bone loss in ovariectomized mice. Stem Cells. 2006;24:1798–805.

    Article  CAS  PubMed  Google Scholar 

  36. Cho SW et al. Transplantation of mesenchymal stem cells overexpressing RANK-Fc or CXCR4 prevents bone loss in ovariectomized mice. Mol Ther. 2009;17:1979–87.

    Article  CAS  PubMed  Google Scholar 

  37. Levi B, Longaker MT. Concise review: adipose-derived stromal cells for skeletal regenerative medicine. Stem Cells. 2011;29:576–82. This article highlights the emerging role of adipose derived stem cells in skeletal tissue engineering..

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Liu HY et al. The effect of diminished osteogenic signals on reduced osteoporosis recovery in aged mice and the potential therapeutic use of adipose-derived stem cells. Biomaterials. 2012;33:6105–12.

    Article  CAS  PubMed  Google Scholar 

  39. Chen HT et al. Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures. J Cell Mol Med. 2012;16:582–93.

    Article  CAS  PubMed  Google Scholar 

  40. Cho SW et al. Human adipose tissue-derived stromal cell therapy prevents bone loss in ovariectomized nude mouse. Tissue Eng Part A. 2012;18:1067–78.

    Article  CAS  PubMed  Google Scholar 

  41. Rodriguez JP et al. Abnormal osteogenesis in osteoporotic patients is reflected by altered mesenchymal stem cells dynamics. J Cell Biochem. 1999;75:414–23.

    Article  CAS  PubMed  Google Scholar 

  42. Rodriguez JP et al. Involvement of adipogenic potential of human bone marrow mesenchymal stem cells (MSCs) in osteoporosis. Curr Stem Cell Res Ther. 2008;3:208–18.

    Article  CAS  PubMed  Google Scholar 

  43. You L et al. Suppression of zinc finger protein 467 alleviates osteoporosis through promoting differentiation of adipose derived stem cells to osteoblasts. J Transl Med. 2012;10:11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Ilic D, Miere C, Lazic E. Umbilical cord blood stem cells: clinical trials in non-hematological disorders. Br Med Bull. 2012;102:43–57. This article provides detailed information regarding umbilical cord blood MSCs and their use in relevant clinical trials..

    Article  CAS  PubMed  Google Scholar 

  45. Rebelatto CK et al. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med. 2008;233:901–13.

    Article  CAS  Google Scholar 

  46. Guillot PV et al. Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources. Differentiation. 2008;76:946–57.

    CAS  PubMed  Google Scholar 

  47. An JH et al. Transplantation of human umbilical cord blood-derived mesenchymal stem cells or their conditioned medium prevents bone loss in ovariectomized nude mice. Tissue Eng Part A. 2013;19:685–96.

    Article  CAS  PubMed  Google Scholar 

  48. Aggarwal R et al. Human umbilical cord blood-derived CD34+ cells reverse osteoporosis in NOD/SCID mice by altering osteoblastic and osteoclastic activities. PLoS One. 2012;7:e39365.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Nishida S et al. Increased bone formation by intermittent parathyroid hormone administration is due to the stimulation of proliferation and differentiation of osteoprogenitor cells in bone marrow. Bone. 1994;15:717–23.

    Article  CAS  PubMed  Google Scholar 

  50. Davies J, Chambers TJ. Parathyroid hormone activates adhesion in bone marrow stromal precursor cells. J Endocrinol. 2004;180:505–13.

    Article  CAS  PubMed  Google Scholar 

  51. Mukherjee S et al. Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest. 2008;118:491–504.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Guan M et al. Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med. 2012;18:456–62. Important article describing a novel, small molecule to direct MSCs to bone to augment the rate of bone formation for osteoporosis treatment..

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Lopez FJ. New approaches to the treatment of osteoporosis. Curr Opin Chem Biol. 2000;4:383–93.

    Article  CAS  PubMed  Google Scholar 

  54. Petersson M et al. Oxytocin stimulates proliferation of human osteoblast-like cells. Peptides. 2002;23:1121–6.

    Article  CAS  PubMed  Google Scholar 

  55. Elabd SK et al. Possible neuroendocrine role for oxytocin in bone remodeling. Endocr Regul. 2007;41:131–41.

    CAS  PubMed  Google Scholar 

  56. Elabd C et al. Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis. Stem Cells. 2008;26:2399–407.

    Article  CAS  PubMed  Google Scholar 

  57. Meyerrose TE et al. In vivo distribution of human adipose-derived mesenchymal stem cells in novel xenotransplantation models. Stem Cells. 2007;25:220–7.

    Article  CAS  PubMed  Google Scholar 

  58. Granero-Molto F et al. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells. 2009;27:1887–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Gutwald R et al. Mesenchymal stem cells and inorganic bovine bone mineral in sinus augmentation: comparison with augmentation by autologous bone in adult sheep. Br J Oral Maxillofac Surg. 2010;48:285–90.

    Article  PubMed  Google Scholar 

  60. Vertenten G et al. Evaluation of an injectable, photopolymerizable, and three-dimensional scaffold based on methacrylate-endcapped poly(D, L-lactide-co-epsilon-caprolactone) combined with autologous mesenchymal stem cells in a goat tibial unicortical defect model. Tissue Eng Part A. 2009;15:1501–11.

    Article  CAS  PubMed  Google Scholar 

  61. Halleux C et al. Multi-lineage potential of human mesenchymal stem cells following clonal expansion. J Musculoskelet Neuronal Interact. 2001;2:71–6.

    CAS  PubMed  Google Scholar 

  62. Longobardi L et al. Subcellular localization of IRS-1 in IGF-I-mediated chondrogenic proliferation, differentiation and hypertrophy of bone marrow mesenchymal stem cells. Growth Factors. 2009;27:309–20.

    Article  CAS  PubMed  Google Scholar 

  63. Ma L et al. Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine. PLoS One. 2012;7:e51777.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Vishwanath VR et al. Differentiation of isolated and characterized human dental pulp stem cells and stem cells from human exfoliated deciduous teeth: An in vitro study. J Conserv Dent. 2013;16:423–8.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Alkaisi A et al. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013;71:1758. e1–13.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

D Gazit acknowledges funding support for the California Institute for Regenerative Medicine (grant # TR2-01780).

Conflict of Interest

B. Antebi declares that he has no conflicts of interest. G. Pelled declares that he has no conflicts of interest. D. Gazit declares that he has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain or cite any studies with human or animal subjects performed by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Gazit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antebi, B., Pelled, G. & Gazit, D. Stem Cell Therapy for Osteoporosis. Curr Osteoporos Rep 12, 41–47 (2014). https://doi.org/10.1007/s11914-013-0184-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-013-0184-x

Keywords

Navigation