Skip to main content

Advertisement

Log in

Impact of Inflammation on the Osteoblast in Rheumatic Diseases

  • Osteoimmunology (D Novack and G Schett, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Normal bone remodeling depends upon a balance between the action of bone-resorbing cells, osteoclasts, and bone-forming cells, osteoblasts. When this balance is disrupted, as is seen in inflammatory diseases such as rheumatoid arthritis (RA) and ankylosing spondylitis (AS), abnormal bone loss or bone formation occurs. In RA, proinflammatory cytokines induce osteoclast differentiation and inhibit osteoblast maturation, leading to articular bone erosions. In contrast, the inflammatory milieu in AS leads to excessive osteoblast activation and bone formation at sites of entheses. While much information exists about the effects of proinflammatory cytokines on osteoclast differentiation and function, more recent studies have begun to elucidate the impact of inflammation on the osteoblast. This review will summarize the mechanisms by which inflammation perturbs bone homeostasis, with a specific focus on the osteoblast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sims NA, Gooi JH. Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol. 2008;19:444–51.

    Article  CAS  PubMed  Google Scholar 

  2. Kular J et al. An overview of the regulation of bone remodelling at the cellular level. Clin Biochem. 2012;45:863–73.

    Article  CAS  PubMed  Google Scholar 

  3. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289:1504–8.

    Article  CAS  PubMed  Google Scholar 

  4. Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch Biochem Biophys. 2008;473:201–9.

    Article  CAS  PubMed  Google Scholar 

  5. Hayden JM, Mohan S, Baylink DJ. The insulin-like growth factor system and the coupling of formation to resorption. Bone. 1995;17:93S–8S.

    Article  CAS  PubMed  Google Scholar 

  6. Tang Y et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15:757–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Martin TJ et al. Communication between ephrinB2 and EphB4 within the osteoblast lineage. Adv Exp Med Biol. 2010;658:51–60.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao C et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab. 2006;4:111–21.

    Article  CAS  PubMed  Google Scholar 

  9. Walker EC et al. Cardiotrophin-1 is an osteoclast-derived stimulus of bone formation required for normal bone remodeling. J Bone Miner Res. 2008;23:2025–32.

    Article  CAS  PubMed  Google Scholar 

  10. Pittenger MF et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  PubMed  Google Scholar 

  11. Komori T. Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem. 2005;95:445–53.

    Article  CAS  PubMed  Google Scholar 

  12. Biskobing DM, Fan X, Rubin J. Characterization of MCSF-induced proliferation and subsequent osteoclast formation in murine marrow culture. J Bone Miner Res. 1995;10:1025–32.

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi N, Udagawa N, Suda T. A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem Biophys Res Commun. 1999;256:449–55.

    Article  CAS  PubMed  Google Scholar 

  14. Yasuda H et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology. 1998;139:1329–37.

    PubMed  Google Scholar 

  15. Ma YL et al. Catabolic effects of continuous human PTH (1–38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation. Endocrinology. 2001;142:4047–54.

    CAS  PubMed  Google Scholar 

  16. Blackwell KA, Raisz LG, Pilbeam CC. Prostaglandins in bone: bad cop, good cop? Trends Endocrinol Metab. 2010;21:294–301.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Huang H, He X. Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol. 2008;20:119–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Regard JB, et al. Wnt signaling in bone development and disease: making stronger bone with Wnts. Cold Spring Harb Perspect Biol. 2012;4.

  19. Monroe DG et al. Update on Wnt signaling in bone cell biology and bone disease. Gene. 2012;492:1–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bodine PV et al. The Wnt antagonist secreted frizzled-related protein-1 controls osteoblast and osteocyte apoptosis. J Cell Biochem. 2005;96:1212–30.

    Article  CAS  PubMed  Google Scholar 

  21. Yao W et al. Overexpression of secreted frizzled-related protein 1 inhibits bone formation and attenuates parathyroid hormone bone anabolic effects. J Bone Miner Res. 2010;25:190–9.

    Article  CAS  PubMed  Google Scholar 

  22. Bodine PV et al. The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol Endocrinol. 2004;18:1222–37.

    Article  CAS  PubMed  Google Scholar 

  23. Pinzone JJ et al. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood. 2009;113:517–25.

    Article  CAS  PubMed  Google Scholar 

  24. Morvan F et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res. 2006;21:934–45.

    Article  CAS  PubMed  Google Scholar 

  25. Li J et al. Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone. 2006;39:754–66.

    Article  CAS  PubMed  Google Scholar 

  26. Wang SY et al. Circulating Dickkopf-1 is correlated with bone erosion and inflammation in rheumatoid arthritis. J Rheumatol. 2011;38:821–7.

    Article  CAS  PubMed  Google Scholar 

  27. Heiland GR et al. High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Ann Rheum Dis. 2012;71:572–4.

    Article  CAS  PubMed  Google Scholar 

  28. Li X et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280:19883–7.

    Article  CAS  PubMed  Google Scholar 

  29. Balemans W et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10:537–43.

    Article  CAS  PubMed  Google Scholar 

  30. van Lierop AH et al. Van Buchem disease: clinical, biochemical, and densitometric features of patients and disease carriers. J Bone Miner Res. 2013;28:848–54.

    Article  PubMed  Google Scholar 

  31. Hamersma H, Gardner J, Beighton P. The natural history of sclerosteosis. Clin Genet. 2003;63:192–7.

    Article  CAS  PubMed  Google Scholar 

  32. Li X et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 2008;23:860–9.

    Article  PubMed  Google Scholar 

  33. Winkler DG et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22:6267–76.

    Article  CAS  PubMed  Google Scholar 

  34. Costa AG, Bilezikian JP. Sclerostin: therapeutic horizons based upon its actions. Curr Osteoporos Rep. 2012;10:64–72.

    Article  PubMed  Google Scholar 

  35. Spatz JM et al. Sclerostin antibody inhibits skeletal deterioration due to reduced mechanical loading. J Bone Miner Res. 2013;28:865–74.

    Article  CAS  PubMed  Google Scholar 

  36. Li X et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res. 2009;24:578–88.

    Article  CAS  PubMed  Google Scholar 

  37. Padhi D et al. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011;26:19–26.

    Article  CAS  PubMed  Google Scholar 

  38. Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8:272–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lories RJ, Derese I, Luyten FP. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J Clin Invest. 2005;115:1571–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Li P et al. Systemic tumor necrosis factor alpha mediates an increase in peripheral CD11bhigh osteoclast precursors in tumor necrosis factor alpha-transgenic mice. Arthritis Rheum. 2004;50:265–76.

    Article  CAS  PubMed  Google Scholar 

  41. Kotake S et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999;103:1345–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lam J et al. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 2000;106:1481–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Walsh NC, Gravallese EM. Bone remodeling in rheumatic disease: a question of balance. Immunol Rev. 2010;233:301–12.

    Article  CAS  PubMed  Google Scholar 

  44. Scott DL. Prognostic factors in early rheumatoid arthritis. Rheumatology. 2000;39:24–9.

    Article  PubMed  Google Scholar 

  45. Gravallese EM et al. Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol. 1998;152:943–51.

    CAS  PubMed  Google Scholar 

  46. Bromley M, Woolley DE. Chondroclasts and osteoclasts at subchondral sites of erosion in the rheumatoid joint. Arthritis Rheum. 1984;27:968–75.

    Article  CAS  PubMed  Google Scholar 

  47. Suzuki Y et al. Osteoclast-like cells in murine collagen induced arthritis. J Rheumatol. 1998;25:1154–60.

    CAS  PubMed  Google Scholar 

  48. Romas E et al. Expression of osteoclast differentiation factor at sites of bone erosion in collagen-induced arthritis. Arthritis Rheum. 2000;43:821–6.

    Article  CAS  PubMed  Google Scholar 

  49. Kuratani T et al. Induction of abundant osteoclast-like multinucleated giant cells in adjuvant arthritic rats with accompanying disordered high bone turnover. Histol Histopathol. 1998;13:751–9.

    CAS  PubMed  Google Scholar 

  50. Gravallese EM et al. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum. 2000;43:250–8.

    Article  CAS  PubMed  Google Scholar 

  51. Pettit AR et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol. 2001;159:1689–99.

    Article  CAS  PubMed  Google Scholar 

  52. Redlich K et al. Osteoclasts are essential for TNF-alpha-mediated joint destruction. J Clin Invest. 2002;110:1419–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Moller Dohn U et al. Erosive progression is minimal, but erosion healing rare, in patients with rheumatoid arthritis treated with adalimumab. A 1 year investigator-initiated follow-up study using high-resolution computed tomography as the primary outcome measure. Ann Rheum Dis. 2009;68:1585–90.

    Article  CAS  PubMed  Google Scholar 

  54. Dohn UM et al. No overall progression and occasional repair of erosions despite persistent inflammation in adalimumab-treated rheumatoid arthritis patients: results from a longitudinal comparative MRI, ultrasonography, CT, and radiography study. Ann Rheum Dis. 2011;70:252–8.

    Article  PubMed  Google Scholar 

  55. Haavardsholm EA et al. Magnetic resonance imaging findings in 84 patients with early rheumatoid arthritis: bone marrow edema predicts erosive progression. Ann Rheum Dis. 2008;67:794–800.

    Article  CAS  PubMed  Google Scholar 

  56. Hetland ML et al. MRI bone edema is the strongest predictor of subsequent radiographic progression in early rheumatoid arthritis. Results from a 2-year randomized controlled trial (CIMESTRA). Ann Rheum Dis. 2009;68:384–90.

    Article  CAS  PubMed  Google Scholar 

  57. Gilbert L et al. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J Biol Chem. 2002;277:2695–701.

    Article  CAS  PubMed  Google Scholar 

  58. Wei S et al. IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest. 2005;115:282–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Jilka RL et al. Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res. 1998;13:793–802.

    Article  CAS  PubMed  Google Scholar 

  60. Stashenko P et al. Interleukin-1 beta is a potent inhibitor of bone formation in vitro. J Bone Miner Res. 1987;2:559–65.

    Article  CAS  PubMed  Google Scholar 

  61. Hengartner NE et al. IL-1beta inhibits human osteoblast migration. Mol Med. 2013;19:36–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Liu XH et al. Cross-talk between the interleukin-6 and prostaglandin E(2) signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-{kappa}B (RANK) ligand/RANK system. Endocrinology. 2005;146:1991–8.

    Article  CAS  PubMed  Google Scholar 

  63. Walsh NC et al. Osteoblast function is compromised at sites of focal bone erosion in inflammatory arthritis. J Bone Miner Res. 2009;24:1572–85.

    Article  CAS  PubMed  Google Scholar 

  64. Matzelle MM et al. Resolution of inflammation induces osteoblast function and regulates the Wnt signaling pathway. Arthritis Rheum. 2012;64:1540–50.

    Article  CAS  PubMed  Google Scholar 

  65. Diarra D et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 2007;13:156–63.

    Article  CAS  PubMed  Google Scholar 

  66. Heiland GR et al. Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression. Ann Rheum Dis. 2010;69:2152–9.

    Article  CAS  PubMed  Google Scholar 

  67. Chen XX et al. Sclerostin inhibition reverses systemic, periarticular and local bone loss in arthritis. Ann Rheum Dis. 2013;72:1732–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Finzel S et al. Repair of bone erosions in rheumatoid arthritis treated with tumour necrosis factor inhibitors is based on bone apposition at the base of the erosion. Ann Rheum Dis. 2011;70:1587–93.

    Article  CAS  PubMed  Google Scholar 

  69. Finzel S et al. Interleukin-6 receptor blockade induces limited repair of bone erosions in rheumatoid arthritis: a micro CT study. Ann Rheum Dis. 2013;72:396–400.

    Article  CAS  PubMed  Google Scholar 

  70. Lories RJ, Schett G. Pathophysiology of new bone formation and ankylosis in spondyloarthritis. Rheum Dis Clin North Am. 2012;38:555–67.

    Article  PubMed  Google Scholar 

  71. Uderhardt S et al. Blockade of Dickkopf (DKK)-1 induces fusion of sacroiliac joints. Ann Rheum Dis. 2010;69:592–7.

    Article  CAS  PubMed  Google Scholar 

  72. Haynes KR et al. Excessive bone formation in a mouse model of ankylosing spondylitis is associated with decreases in Wnt pathway inhibitors. Arthritis Res Ther. 2012;14:R253.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Appel H et al. Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum. 2009;60:3257–62.

    Article  PubMed  Google Scholar 

  74. Chen HA et al. Association of bone morphogenetic proteins with spinal fusion in ankylosing spondylitis. J Rheumatol. 2010;37:2126–32.

    Article  CAS  PubMed  Google Scholar 

  75. van der Heijde D et al. Assessment of radiographic progression in the spines of patients with ankylosing spondylitis treated with adalimumab for up to 2 years. Arthritis Res Ther. 2009;11:R127.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Schett G et al. Tumor necrosis factor alpha and RANKL blockade cannot halt bony spur formation in experimental inflammatory arthritis. Arthritis Rheum. 2009;60:2644–54.

    Article  CAS  PubMed  Google Scholar 

  77. Mei Y et al. Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis. Clin Rheumatol. 2011;30:269–73.

    Article  PubMed  Google Scholar 

  78. Duan Z et al. Interleukin-23 receptor genetic polymorphisms and ankylosing spondylitis susceptibility: a meta-analysis. Rheumatol Int. 2012;32:1209–14.

    Article  CAS  PubMed  Google Scholar 

  79. Sherlock JP et al. IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4-CD8- entheseal resident T cells. Nat Med. 2012;18:1069–76.

    Article  CAS  PubMed  Google Scholar 

  80. Sherlock JP, Buckley CD, Cua DJ. The critical role of interleukin-23 in spondyloarthropathy. Mol Immunol. 2013;57:38–43.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

R. Baum declares that she has no conflicts of interest. E. M. Gravallese has received research grants from Eli Lilly and Abbvie and is a consultant for Abbott.

Human and Animal Rights and Informed Consent

All studies by the authors involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen M. Gravallese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baum, R., Gravallese, E.M. Impact of Inflammation on the Osteoblast in Rheumatic Diseases. Curr Osteoporos Rep 12, 9–16 (2014). https://doi.org/10.1007/s11914-013-0183-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-013-0183-y

Keywords

Navigation