Skip to main content
Log in

Imaging Technologies for Assessment of Skeletal Health in Men

  • Male Osteoporosis (BL Clarke, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Conventional radiography can detect most fractures, evaluate their healing, and visualize characteristic skeletal abnormalities for some metabolic bone diseases. Dual-energy X-ray absorptiometry (DXA) is used to measure areal bone mineral density (BMD) in order to diagnose osteoporosis, estimate fracture risk, and monitor changes in BMD over time. Vertebral fracture assessment by DXA can diagnose vertebral fractures with less ionizing radiation, greater patient convenience, and lower cost than conventional radiography. Quantitative computed tomography (QCT) measures volumetric BMD separately in cortical and trabecular bone compartments. High resolution peripheral QCT and high resolution magnetic resonance imaging are noninvasive research tools that assess the microarchitecture of bone. The use of these technologies and others has been associated with special challenges in men compared with women, provided insights into differences in the pathogenesis of osteoporosis in men and women, and enhanced understanding of the mechanisms of action of osteoporosis treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Klibanski A, Adams-Campbell L, Bassford T, et al. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.

    Article  Google Scholar 

  2. World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO: Geneva; 1994.

    Google Scholar 

  3. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–9.

    Article  PubMed  CAS  Google Scholar 

  4. • Link TM. Osteoporosis imaging: state of the art and advanced imaging. Radiology. 2012;263(1):3–17. This is a comprehensive update of the state-of-the-art technologies for bone imaging.

    Article  PubMed  Google Scholar 

  5. Recker RR. Chapter 35. Bone Biopsy and Histomorphometry in Clinical Practice. Primer on the metabolic bone diseases and disorders of mineral metabolism. 2008;7(1):180–6.

  6. Rauch F. Bone biopsy: indications and methods. Endocr Dev. 2009;16:49–57.

    Article  PubMed  Google Scholar 

  7. World Health Organization.FRAX WHO Fracture Risk Assessment Tool. Available at: http://www.shef.ac.uk/FRAX/. Accessed August 2011.

  8. Lachmann E, Whelan M. The roentgen diagnosis of osteoporosis and its limitations. Radiology. 1936;26:165–77.

    Google Scholar 

  9. Jergas M, Uffmann M, Escher H, et al. Interobserver variation in the detection of osteopenia by radiography and comparison with dual X-ray absorptiometry of the lumbar spine. Skeletal Radiol. 1994;23(3):195–9.

    Article  PubMed  CAS  Google Scholar 

  10. O'Neill TW, Felsenberg D, Varlow J, et al. The prevalence of vertebral deformity in european men and women.the European Vertebral Osteoporosis Study. J Bone Miner Res. 1996;11(7):1010–8.

    Article  PubMed  Google Scholar 

  11. Spitz J, Lauer I, Tittel K, Wiegand H. Scintimetric evaluation of remodeling after bone fractures in man. J Nucl Med. 1993;34(9):1403–9.

    PubMed  CAS  Google Scholar 

  12. Fogelman I, Carr D. A comparison of bone scanning and radiology in the evaluation of patients with metabolic bone disease. Clin Radiol. 1980;31(3):321–6.

    Article  PubMed  CAS  Google Scholar 

  13. Blake GM, Frost ML, Moore AE, et al. The assessment of regional skeletal metabolism: studies of osteoporosis treatments using quantitative radionuclide imaging. J Clin Densitom. 2011;14(3):263–71.

    Article  PubMed  Google Scholar 

  14. Blake GM, Frost ML, Fogelman I. Quantitative radionuclide studies of bone. J Nucl Med. 2009;50(11):1747–50.

    Article  PubMed  Google Scholar 

  15. Messa C, Goodman WG, Hoh CK, et al. Bone metabolic activity measured with positron emission tomography and [18F]fluoride ion in renal osteodystrophy: correlation with bone histomorphometry. J Clin Endocrinol Metab. 1993;77(4):949–55.

    Article  PubMed  CAS  Google Scholar 

  16. Piert M, Zittel TT, Becker GA, et al. Assessment of porcine bone metabolism by dynamic [18F]fluoride ion PET: correlation with bone histomorphometry. J Nucl Med. 2001;42(7):1091–100.

    PubMed  CAS  Google Scholar 

  17. Frost ML, Fogelman I, Blake GM, et al. Dissociation between global markers of bone formation and direct measurement of spinal bone formation in osteoporosis. J Bone Miner Res. 2004;19(11):1797–804.

    Article  PubMed  CAS  Google Scholar 

  18. Lubushitzky R, Front D, Iosilevsky G, et al. Quantitative bone SPECT in young males with delayed puberty and hypogonadism: implications for treatment of low bone mineral density. J Nucl Med. 1998;39(1):104–7.

    PubMed  CAS  Google Scholar 

  19. Cook GJ, Blake GM, Marsden PK, et al. Quantification of skeletal kinetic indices in Paget's disease using dynamic 18F-fluoride positron emission tomography. J Bone Miner Res. 2002;17(5):854–9.

    Article  PubMed  CAS  Google Scholar 

  20. Riggs BL, Melton III LJ, Robb RA, et al. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res. 2004;19(12):1945–54.

    Article  PubMed  Google Scholar 

  21. Baim S, Binkley N, Bilezikian JP, et al. Official positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Position Development Conference. J Clin Densitom. 2008;11(1):75–91.

    Article  PubMed  Google Scholar 

  22. Albanese CV, Diessel E, Genant HK. Clinical applications of body composition measurements using DXA. J Clin Densitom. 2003;6(2):75–85.

    Article  PubMed  Google Scholar 

  23. Yang L, Peel N, Clowes JA, et al. Use of DXA-based structural engineering models of the proximal femur to discriminate hip fracture. J Bone Miner Res. 2009;24(1):33–42.

    Article  PubMed  CAS  Google Scholar 

  24. Pande I, O'Neill TW, Pritchard C, et al. Bone mineral density, hip axis length, and risk of hip fracture in men: results from the Cornwall Hip Fracture Study. Osteoporos Int. 2000;11(10):866–70.

    Article  PubMed  CAS  Google Scholar 

  25. Faulkner KG, Cummings SR, Nevitt MC, et al. Hip axis length and osteoporotic fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res. 1995;10(3):506–8. erratum appears in J Bone Miner Res 1995 Sep;10(9):1429.

    Article  PubMed  CAS  Google Scholar 

  26. Bonnick SL. Noninvasive assessments of bone strength. Curr Opin Endocrinol Diabetes Obes. 2007;14(6):451–7.

    Article  PubMed  Google Scholar 

  27. Bousson V, Bergot C, Sutter B, et al. Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int. 2012;23(5):1489–501.

    Article  PubMed  CAS  Google Scholar 

  28. Lewiecki EM, Laster AJ. Clinical applications of vertebral fracture assessment by dual-energy X-ray absorptiometry. J Clin Endocrinol Metab. 2006;91(11):4215–22.

    Article  PubMed  CAS  Google Scholar 

  29. Dasher LG, Newton CD, Lenchik L. Dual X-ray absorptiometry in today's clinical practice. Radiol Clin N Am. 2010;48(3):541–60.

    Article  PubMed  Google Scholar 

  30. Griffith JF, Genant HK. New imaging modalities in bone. Curr Rheumatol Rep. 2011;13(3):241–50.

    Article  PubMed  Google Scholar 

  31. Kanis JA, McCloskey EV, Johansson H, et al. A reference standard for the description of osteoporosis. Bone. 2008;42(3):467–75.

    Article  PubMed  CAS  Google Scholar 

  32. Kanis JA, Gluer CC. An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int. 2000;11(3):192–202.

    Article  PubMed  CAS  Google Scholar 

  33. Langsetmo L, Leslie WD, Zhou W, et al. Using the same bone density reference database for men and women provides a simpler estimation of fracture risk. J Bone Miner Res. 2010;25(10):2108–14.

    Article  PubMed  Google Scholar 

  34. Kanis JA, Bianchi G, Bilezikian JP, et al. Towards a diagnostic and therapeutic consensus in male osteoporosis. Osteoporos Int. 2011;22(11):2789–98.

    Article  PubMed  CAS  Google Scholar 

  35. Lewiecki EM, Borges JL. Bone density testing in clinical practice. Arq Bras Endocrinol Metabol. 2006;50(4):586–95.

    PubMed  Google Scholar 

  36. Lewiecki EM, Binkley N, Petak SM. DXA Quality Matters. J Clin Densitom. 2006;9(4):388–92.

    Article  PubMed  Google Scholar 

  37. Moayyeri A, Adams JE, Adler RA, et al. Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis. Osteoporos Int. 2012;23(1):143–53.

    Article  PubMed  CAS  Google Scholar 

  38. Krieg MA, Barkmann R, Gonnelli S, et al. Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom. 2008;11(1):163–87.

    Article  PubMed  Google Scholar 

  39. Guglielmi G, Lang TF. Quantitative computed tomography. Semin Musculoskelet Radiol. 2002;6(3):219–27.

    Article  PubMed  Google Scholar 

  40. Donnelly E. Methods for assessing bone quality: a review. Clin Orthop Relat Res. 2011;469(8):2128–38.

    Article  PubMed  Google Scholar 

  41. MacNeil JA, Boyd SK. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. 2007;29(10):1096–105.

    Article  PubMed  Google Scholar 

  42. Cohen A, Dempster DW, Muller R, et al. Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy. Osteoporos Int. 2010;21(2):263–73.

    Article  PubMed  CAS  Google Scholar 

  43. Ostertag A, Collet C, Chappard C, et al. A case–control study of fractures in men with idiopathic osteoporosis: Fractures are associated with older age and low cortical bone density. Bone. 2013;52(1):48–55.

    Google Scholar 

  44. Szulc P, Blaizot S, Boutroy S, et al. Impaired bone microachitecture at the distal radius in older men with low muscle mass and grip strength - the STRAMBO study. J Bone Miner Res 2013;28(1):169–178.

    Google Scholar 

  45. Keyak JH, Sigurdsson S, Karlsdottir G, et al. Male–female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone. 2011;48(6):1239–45.

    Article  PubMed  CAS  Google Scholar 

  46. •• Wang X, Sanyal A, Cawthon PM, et al. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res. 2012;27(4):808–16. This is a study with QCT-derived FEA modeling of vertebral bodies in men age 65 years and older in the MrOS study. Compared with aBMD by DXA, vBMD and vertebral compressive strength improved vertebral fracture risk assessment.

    Article  PubMed  Google Scholar 

  47. Faulkner KG, Cann CE, Hasegawa BH. Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis. Radiology. 1991;179(3):669–74.

    PubMed  CAS  Google Scholar 

  48. Melton LJ III, Riggs BL, Keaveny TM, et al. Relation of vertebral deformities to bone density, structure, and strength. J Bone Miner Res. 2010;Epub.

  49. Yang L, Burton AC, Bradburn M, et al. Distribution of bone density in the proximal femur and its association with hip fracture risk in older men: The osteoporotic fractures in men (MrOS) study. J Bone Miner Res. 2012;27(11):2314–24.

    Article  PubMed  Google Scholar 

  50. Christiansen BA, Kopperdahl DL, Kiel DP, et al. Mechanical contributions of the cortical and trabecular compartments contribute to differences in age-related changes in vertebral body strength in men and women assessed by QCT-based finite element analysis. J Bone Miner Res. 2011;26(5):974–83.

    Article  PubMed  Google Scholar 

  51. • Macdonald HM, Nishiyama KK, Kang J, et al. Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res. 2011;26(1):50–62. In this Canadian cross-sectional study with HR-pQCT, important skeletal site- and sex-specific differences in patterns of age-related bone loss are reported. Women were found to have less periosteal expansion and more porous cortices in the distal radius compared with men.

    Article  PubMed  Google Scholar 

  52. Dalzell N, Kaptoge S, Morris N, et al. Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT. Osteoporos Int. 2009;20(10):1683–94.

    Article  PubMed  CAS  Google Scholar 

  53. Khosla S, Riggs BL, Atkinson EJ, et al. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res. 2006;21(1):124–31.

    Article  PubMed  Google Scholar 

  54. Vilayphiou N, Boutroy S, Szulc P, et al. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men. J Bone Miner Res. 2011;26(5):965–73.

    Article  PubMed  Google Scholar 

  55. Srinivasan B, Kopperdahl DL, Amin S, et al. Relationship of femoral neck areal bone mineral density to volumetric bone mineral density, bone size, and femoral strength in men and women. Osteoporos Int. 2012;23(1):155–62.

    Article  PubMed  CAS  Google Scholar 

  56. Chappard D, Basle MF, Legrand E, Audran M. Trabecular bone microarchitecture: a review. Morphologie. 2008;92(299):162–70.

    Article  PubMed  CAS  Google Scholar 

  57. Carballido-Gamio J, Majumdar S. Clinical utility of microarchitecture measurements of trabecular bone. Curr Osteoporos Rep. 2006;4(2):64–70.

    Article  PubMed  Google Scholar 

  58. Chung HW, Wehrli FW, Williams JL, et al. Quantitative analysis of trabecular microstructure by 400 MHz nuclear magnetic resonance imaging. J Bone Miner Res. 1995;10(5):803–11.

    Article  PubMed  CAS  Google Scholar 

  59. Kazakia GJ, Majumdar S. New imaging technologies in the diagnosis of osteoporosis. Rev Endocr Metab Disord. 2006;7(1–2):67–74.

    PubMed  Google Scholar 

  60. Hwang SN, Wehrli FW. Subvoxel processing: a method for reducing partial volume blurring with application to in vivo MR images of trabecular bone. Magn Reson Med. 2002;47(5):948–57.

    Article  PubMed  Google Scholar 

  61. Magland JF, Wehrli FW. Trabecular bone structure analysis in the limited spatial resolution regime of in vivo MRI. Acad Radiol. 2008;15(12):1482–93.

    Article  PubMed  Google Scholar 

  62. Hwang SN, Wehrli FW, Williams JL. Probability-based structural parameters from three-dimensional nuclear magnetic resonance images as predictors of trabecular bone strength. Med Phys. 1997;24(8):1255–61.

    Article  PubMed  CAS  Google Scholar 

  63. Majumdar S, Newitt D, Mathur A, et al. Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int. 1996;6(5):376–85.

    Article  PubMed  CAS  Google Scholar 

  64. Majumdar S, Link TM, Augat P, et al. Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int. 1999;10(3):231–9.

    Article  PubMed  CAS  Google Scholar 

  65. Link TM, Vieth V, Langenberg R, et al. Structure analysis of high resolution magnetic resonance imaging of the proximal femur: in vitro correlation with biomechanical strength and BMD. Calcif Tissue Int. 2003;72(2):156–65.

    Article  PubMed  CAS  Google Scholar 

  66. Link TM, Majumdar S, Lin JC, et al. A comparative study of trabecular bone properties in the spine and femur using high resolution MRI and CT. J Bone Miner Res. 1998;13(1):122–32.

    Article  PubMed  CAS  Google Scholar 

  67. Majumdar S, Kothari M, Augat P, et al. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone. 1998;22(5):445–54.

    Article  PubMed  CAS  Google Scholar 

  68. Benito M, Gomberg B, Wehrli FW, et al. Deterioration of trabecular architecture in hypogonadal men. J Clin Endocrinol Metab. 2003;88(4):1497–502.

    Article  PubMed  CAS  Google Scholar 

  69. Benito M, Vasilic B, Wehrli FW, et al. Effect of testosterone replacement on trabecular architecture in hypogonadal men. J Bone Miner Res. 2005;20(10):1785–91.

    Article  PubMed  CAS  Google Scholar 

  70. Zhang XH, Liu XS, Vasilic B, et al. In vivo microMRI-based finite element and morphological analyses of tibial trabecular bone in eugonadal and hypogonadal men before and after testosterone treatment. J Bone Miner Res. 2008;23(9):1426–34.

    Article  PubMed  Google Scholar 

  71. •• Greenspan SL, Wagner J, Nelson JB, et al. Vertebral fractures and trabecular microstructure in men with prostate cancer on androgen deprivation therapy. J Bone Miner Res. 2012;Epub. HR-MRI of the radius improves prediction of vertebral fractures compared with DXA in men on androgen deprivation therapy for prostate cancer.

  72. Dos Reis LM, Batalha JR, Munoz DR, et al. Brazilian normal static bone histomorphometry: effects of age, sex, and race. J Bone Miner Metab. 2007;25(6):400–6.

    Article  PubMed  Google Scholar 

  73. Beck TJ. Extending DXA, beyond bone mineral density: understanding hip structure analysis. Curr Osteoporos Rep. 2007;5(2):49–55.

    Article  PubMed  Google Scholar 

  74. Damilakis J, Adams JE, Guglielmi G, Link TM. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol. 2010;20(11):2707–14.

    Article  PubMed  Google Scholar 

  75. Burghardt AJ, Link TM, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res. 2011;469(8):2179–93.

    Article  PubMed  Google Scholar 

  76. Patsch JM, Burghardt AJ, Kazakia G, Majumdar S. Noninvasive imaging of bone microarchitecture. Ann N Y Acad Sci. 2011;1240:77–87.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Conflicts of interest: Consulting/advisory board fees from Eli Lilly, Novartis, Merck, Warner Chilcott, GSK, and Genentech; grant/research support from Amgen, Merck, Eli Lilly, Novartis, Warner Chilcott, GSK, and Genentech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Michael Lewiecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewiecki, E.M. Imaging Technologies for Assessment of Skeletal Health in Men. Curr Osteoporos Rep 11, 1–10 (2013). https://doi.org/10.1007/s11914-012-0128-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-012-0128-x

Keywords

Navigation