Current Osteoporosis Reports

, Volume 10, Issue 4, pp 258–269 | Cite as

Heart Failure as a Risk Factor for Osteoporosis and Fractures

  • Aloice O. Aluoch
  • Ryan Jessee
  • Hani Habal
  • Melinda Garcia-Rosell
  • Rehan Shah
  • Guy Reed
  • Laura Carbone
Epidemiology and Pathophysiology (RA Adler, Section Editor)

Abstract

Although heart failure (HF) and osteoporosis are common diseases, particularly in elderly populations, patients with HF have an increased risk for osteoporosis. The relationship of HF with osteoporosis is modified by gender and the severity of HF. In addition, shared risk factors, medication use, and common pathogenic mechanisms affect both HF and osteoporosis. Shared risk factors for these 2 conditions include advanced age, hypovitaminosis D, renal disease, and diabetes mellitus. Medications used to treat HF, including spironolactone, thiazide diuretics, nitric oxide donors, and aspirin, may protect against osteoporosis. In contrast, loop diuretics may make osteoporosis worse. HF and osteoporosis appear to share common pathogenic mechanisms, including activation of the renin-angiotensin-aldosterone system, increased parathyroid hormone levels, and/or oxidative/nitrosative stress. HF is a major risk factor for mortality following fractures. Thus, in HF patients, it is important to carefully assess osteoporosis and take measures to reduce the risk of osteoporotic fractures.

Keywords

Heart failure Osteoporosis Fractures Hypovitaminosis D Renal disease Diabetes Spironolactone Thiazide diuretics Nitric oxide donors Aspirin Loop diuretics Renin-angiotensin-aldosterone system Parathyroid hormone levels Oxidative/nitrosative stress 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Schocken DD, Arrieta MI, Leaverton PE, Ross EA. Prevalence and mortality rate of congestive heart failure in the United States. J Am Coll Cardiol. 1992;2:301–6.CrossRefGoogle Scholar
  2. 2.
    Brixner D. Assessment of the prevalence and costs of osteoporosis treatment options in a real-world setting. Am J Manag Care. 2006;7(Suppl):191–8.Google Scholar
  3. 3.
    Bruggenjurgen B, Israel CW, Klesius AA, Ezzat N, Willich SN. Health services research in heart failure patients treated with a remote monitoring device in Germany–a retrospective database analysis in evaluating resource use. J Med Economics. 2012;Mar 12.Google Scholar
  4. 4.
    Schuiling KD, Robinia K, Nye R. Osteoporosis update. J Midwifery Wom Health. 2011;6:615–27 [Review].CrossRefGoogle Scholar
  5. 5.
    Lippuner K, Grifone S, Schwenkglenks M, Schwab P, Popp AW, Senn C, et al. Comparative trends in hospitalizations for osteoporotic fractures and other frequent diseases between 2000 and 2008. Osteoporos Int. 2012;3:829–39 [Research Support, Non-U.S. Gov’t].CrossRefGoogle Scholar
  6. 6.
    Horwich TB, Fonarow GC. Glucose, obesity, metabolic syndrome, and diabetes relevance to incidence of heart failure. J Am Coll Cardiol. 2010;55(4):283–93 [Research Support, N.I.H., Extramural].PubMedCrossRefGoogle Scholar
  7. 7.
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22(3):465–75 [Research Support, N.I.H., Extramural].PubMedCrossRefGoogle Scholar
  8. 8.
    Ahluwalia SC, Gross CP, Chaudhry SI, Leo-Summers L, Van Ness PH, Fried TR. Change in comorbidity prevalence with advancing age among persons with heart failure. J Gen Intern Med. 2011;26(10):1145–51 [Comparative Study Research Support, N.I.H., Extramural].PubMedCrossRefGoogle Scholar
  9. 9.
    Barrett-Connor E, Siris ES, Wehren LE, Miller PD, Abbott TA, Berger ML, et al. Osteoporosis and fracture risk in women of different ethnic groups. J Bone Miner Res. 2005;20(2):185–94 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  10. 10.
    Lacroix AZ, Beck TJ, Cauley JA, Lewis CE, Bassford T, Jackson R, et al. Hip structural geometry and incidence of hip fracture in postmenopausal women: what does it add to conventional bone mineral density? Osteoporos Int. 2009;Sep 15.Google Scholar
  11. 11.
    Chen Z, Beck TJ, Cauley JA, Lewis CE, LaCroix A, Bassford T, et al. Hormone therapy improves femur geometry among ethnically diverse postmenopausal participants in the Women's Health Initiative Hormone Intervention Trials. J Bone Miner Res. 2008;23(12):1935–45.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim KC, Shin DH, Lee SY, Im JA, Lee DC. Relation between obesity and bone mineral density and vertebral fractures in Korean postmenopausal women. Yonsei Med J. 2010;51(6):857–63 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang Z, Shen X, Zhang H, Li S, Zhou H, Wu X, et al. The relationship between body composition and fracture risk using the FRAX model in central south Chinese postmenopausal women. Clin Endocrinol (Oxf). 2012;Apr 3.Google Scholar
  14. 14.
    • Gerber Y, Melton LJ III, Weston SA, Roger VL. Osteoporotic fractures and heart failure in the community. Am J Med [Research Support, N.I.H., Extramural]. 2011;124(5):418–25. In a case-control study from the Rochester Epidemiology Project, HF was significantly associated with both prevalent and incident fractures, with much of the association being driven by hip fractures. Google Scholar
  15. 15.
    Sennerby U, Melhus H, Gedeborg R, Byberg L, Garmo H, Ahlbom A, et al. Cardiovascular diseases and risk of hip fracture. JAMA. 2009;302(15):1666–73 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Twin Study].PubMedCrossRefGoogle Scholar
  16. 16.
    • Majumdar SR, Ezekowitz JA, Lix LM, Leslie WD. Heart failure is a clinically and densitometrically independent risk factor for osteoporotic fractures: population-based cohort study of 45,509 subjects. J Clin Endocrinol Metab. 2012;Jan 18. In this large population based study of over 45,000 subjects, HF was associated with a 30% increased risk for incident fractures, and this risk was independent of both traditional risk factors and total hip BMD. The authors concluded that patients with HF are an increased risk for major osteoporotic fractures, independent of their BMD status.Google Scholar
  17. 17.
    • Lyons KJ, Majumdar SR, Ezekowitz JA. The unrecognized burden of osteoporosis-related vertebral fractures in patients with heart failure. Circulation Heart Fail [Research Support, Non-U.S. Gov’t]. 2011;4(4):419–24. A high prevalence of vertebral compression fractures were noted in patients with HF, and the majority of these patients were not on treatment for osteoporosis. Atrial fibrillation was found to be a risk factor for these fractures, whereas use of lipid lowering drugs was found to be inversely associated with these vertebral fractures. Google Scholar
  18. 18.
    Hjortnaes J, Butcher J, Figueiredo JL, Riccio M, Kohler RH, Kozloff KM, et al. Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodeling: a role for inflammation. Eur Heart J. 2010;31(16):1975–84 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  19. 19.
    • Terrovitis J, Zotos P, Kaldara E, Diakos N, Tseliou E, Vakrou S, et al.. Bone mass loss in chronic heart failure is associated with secondary hyperparathyroidism and has prognostic significance. Eur J Heart Fail. 2012;14(3):326–32. After 2 years of follow up of patients with HF, higher NYHA class was associated with lower total body and femoral BMD. Low BMD was a indicator of poor prognosis in patients with HF. HF was associated with secondary hyperparathyroidism, which was directly correlated with disease severity. PubMedCrossRefGoogle Scholar
  20. 20.
    Masugata H, Senda S, Murao K, Inukai M, Hosomi N, Iwado Y, et al. Reduced bone mineral density in hypertensive patients is associated with left ventricular diastolic dysfunction, not left ventricular hypertrophy. Clin Exp Hypertens. 2011;Oct 3.Google Scholar
  21. 21.
    Abou-Raya S, Abou-Raya A. Osteoporosis and congestive heart failure (CHF) in the elderly patient: double disease burden. Arch Gerontol Geriatr. 2009;49(2):250–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Jankowska EA, Jakubaszko J, Cwynar A, Majda J, Ponikowska B, Kustrzycka-Kratochwil D, et al. Bone mineral status and bone loss over time in men with chronic systolic heart failure and their clinical and hormonal determinants. Eur J Heart Fail. 2009;11(1):28–38 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  23. 23.
    Shane E, Mancini D, Aaronson K, Silverberg SJ, Seibel MJ, Addesso V, et al. Bone mass, vitamin D deficiency, and hyperparathyroidism in congestive heart failure. Am J Med. 1997;103(3):197–207 [Research Support, U.S. Gov't, P.H.S.].PubMedCrossRefGoogle Scholar
  24. 24.
    Bozic B, Loncar G, Prodanovic N, Radojicic Z, Cvorovic V, Dimkovic S, et al. Relationship between high circulating adiponectin with bone mineral density and bone metabolism in elderly males with chronic heart failure. J Card Fail. 2010;16(4):301–7 [Comparative Study Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  25. 25.
    Nishio K, Mukae S, Aoki S, Itoh S, Konno N, Ozawa K, et al. Congestive heart failure is associated with the rate of bone loss. J Intern Med. 2003;253(4):439–46.PubMedCrossRefGoogle Scholar
  26. 26.
    Frost RJ, Sonne C, Wehr U, Stempfle HU. Effects of calcium supplementation on bone loss and fractures in congestive heart failure. Eur J Endocrinol. 2007;156(3):309–14 [Randomized Controlled Trial].PubMedCrossRefGoogle Scholar
  27. 27.
    Nicklas BJ, Cesari M, Penninx BW, Kritchevsky SB, Ding J, Newman A, et al. Abdominal obesity is an independent risk factor for chronic heart failure in older people. J Am Geriatri Soc. 2006;54(3):413–20 [Comparative Study] Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].CrossRefGoogle Scholar
  28. 28.
    Choi HS, Kim KJ, Kim KM, Hur NW, Rhee Y, Han DS, et al. Relationship between visceral adiposity and bone mineral density in Korean adults. Calcif Tissue Int. 2010;87(3):218–25 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  29. 29.
    Carbone L, Buzkova P, Fink HA, Lee JS, Chen Z, Ahmed A, et al. Hip fractures and heart failure: findings from the Cardiovascular Health Study. Eur Heart J. 2010;31(1):77–84 [Multicenter Study Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.].PubMedCrossRefGoogle Scholar
  30. 30.
    Kenny AM, Boxer R, Walsh S, Hager WD, Raisz LG. Femoral bone mineral density in patients with heart failure. Osteoporos Int. 2006;17(9):1420–7 [Research Support, N.I.H., Extramural].PubMedCrossRefGoogle Scholar
  31. 31.
    Laudisio A, Marzetti E, Antonica L, Cocchi A, Bernabei R, Zuccala G. Association of left ventricular function with bone mineral density in older women: a population-based study. Calcif Tissue Int. 2008;82(1):27–33 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  32. 32.
    • Santangelo A, Testai M, Mamazza G, Zuccaro C, Albani S, Pavano S, et al. The bone mass (BM) and chronic cardiac decompensation (CCD) in an elderly population. Arch Gerontol Geriatr. 2011;53(1):51–4. In this study, Higher NYHA class and lower ejection fraction was associated with more severe bone mineral loss.PubMedCrossRefGoogle Scholar
  33. 33.
    Barasch E, Gottdiener JS, Aurigemma G, Kitzman DW, Han J, Kop WJ. Association between elevated fibrosis markers and heart failure in the elderly: the cardiovascular health study. Circ Heart Fail. 2009;2(4):303–10 [Research Support, N.I.H., Extramural].PubMedCrossRefGoogle Scholar
  34. 34.
    Carbone LD, Johnson KC, Bush AJ, Robbins J, Larson JC, Thomas A, et al. Loop diuretic use and fracture in postmenopausal women: findings from the Women's Health Initiative. Arch Intern Med. 2009;169(2):132–40 [Research Support, N.I.H., Extramural].PubMedCrossRefGoogle Scholar
  35. 35.
    Smith DM, Khairi MR, Johnston Jr CC. The loss of bone mineral with aging and its relationship to risk of fracture. J Clin Invest. 1975;56(2):311–8 [Research Support, U.S. Gov't, P.H.S.].PubMedCrossRefGoogle Scholar
  36. 36.
    Behnke BJ, Delp MD, Poole DC, Musch TI. Aging potentiates the effect of congestive heart failure on muscle microvascular oxygenation. J Appl Physiol. 2007;103(5):1757–63 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov't, Non-P.H.S.].PubMedCrossRefGoogle Scholar
  37. 37.
    Lee DS, Gona P, Vasan RS, Larson MG, Benjamin EJ, Wang TJ, et al. Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the Framingham heart study of the national heart, lung, and blood institute. Circulation. 2009;119(24):3070–7 [Multicenter Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  38. 38.
    Metra M, Voors AA. The puzzle of kidney dysfunction in heart failure: an introduction. Heart Fail Rev. 2012.Google Scholar
  39. 39.
    Miller PD. Diagnosis and treatment of osteoporosis in chronic renal disease. Semin Nephrol [Review]. 2009;29(2):144–55.CrossRefGoogle Scholar
  40. 40.
    Halle M, Gitt AK, Hanefeld M, Kellerer M, Marx N, Meier JJ, et al. Diabetes and Heart Failure: a practically oriented critical appraisal. Dtsch Med Wochenschr. 2012;137(9):437–41.PubMedCrossRefGoogle Scholar
  41. 41.
    Hamann C, Kirschner S, Gunther KP, Hofbauer LC. Bone, sweet bone-osteoporotic fractures in diabetes mellitus. Nat Rev Endocrinol. 2012.Google Scholar
  42. 42.
    Konhilas JP, Leinwand LA. The effects of biological sex and diet on the development of heart failure. Circulation. 2007;116(23):2747–59 [Research Support, N.I.H., Extramural Review].PubMedCrossRefGoogle Scholar
  43. 43.
    Wark JD. Osteoporotic fractures: background and prevention strategies. Maturitas [Review]. 1996;23(2):193–207.CrossRefGoogle Scholar
  44. 44.
    Haderslev KV, Jeppesen PB, Sorensen HA, Mortensen PB, Staun M. Vitamin D status and measurements of markers of bone metabolism in patients with small intestinal resection. Gut. 2003;52(5):653–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Gotsman I, Shauer A, Zwas DR, Hellman Y, Keren A, Lotan C, et al. Vitamin D deficiency is a predictor of reduced survival in patients with heart failure; vitamin D supplementation improves outcome. Eur J Heart Fail. 2012;Feb 3.Google Scholar
  46. 46.
    Cranney A, Horsley T, O'Donnell S, Weiler H, Puil L, Ooi D, et al. Effectiveness and safety of vitamin D in relation to bone health. Evidence Rep Technol Assess [Review]. 2007;158:1–235.Google Scholar
  47. 47.
    Leifke E, Korner HC, Link TM, Behre HM, Peters PE, Nieschlag E. Effects of testosterone replacement therapy on cortical and trabecular bone mineral density, vertebral body area and paraspinal muscle area in hypogonadal men. Eur J Endocrinol. 1998;138(1):51–8 [Clinical Trial].PubMedCrossRefGoogle Scholar
  48. 48.
    Zacharin MR, Pua J, Kanumakala S. Bone mineral density outcomes following long-term treatment with subcutaneous testosterone pellet implants in male hypogonadism. Clin Endocrinol. 2003;58(6):691–5.CrossRefGoogle Scholar
  49. 49.
    Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347(5):305–13 [Research Support, Non–U.S. Gov't Research Support, U.S. Gov't, P.H.S.].PubMedCrossRefGoogle Scholar
  50. 50.
    Greco EA, Fornari R, Rossi F, Santiemma V, Prossomariti G, Annoscia C, et al. Is obesity protective for osteoporosis? Evaluation of bone mineral density in individuals with high body mass index. Int J Clini Pract. 2010;64(6):817–20.CrossRefGoogle Scholar
  51. 51.
    Premaor MO, Pilbrow L, Tonkin C, Parker RA, Compston J. Obesity and fractures in postmenopausal women. J Bone Miner Res. 2010;25(2):292–7 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  52. 52.
    Prieto-Alhambra D, Premaor MO, Fina Aviles F, Hermosilla E, Martinez-Laguna D, Carbonell-Abella C, et al. The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res. 2011.Google Scholar
  53. 53.
    Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med. 2011;124(11):1043–50 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  54. 54.
    Weber KT, Simpson RU, Carbone LD. Vitamin D and calcium dyshomoeostasis-associated heart failure. Heart. 2008;94(5):540–1 [Comment Editorial].PubMedCrossRefGoogle Scholar
  55. 55.
    Avila M, Prado C, Ventura MD, Mora C, Briones D, Valdez H, et al. Vitamin D receptor gene, biochemical bone markers and bone mineral density in Mexican women on dialysis. Nephrol Dial Transplant. 2010;25(7):2259–65 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  56. 56.
    Meems LM, van der Harst P, van Gilst WH, de Boer RA. Vitamin D biology in heart failure: molecular mechanisms and systematic review. Curr Drug Targets. 2011;12(1):29–41 [Research Support, Non-U.S. Gov’t Review].PubMedCrossRefGoogle Scholar
  57. 57.
    LeBoff MS, Kohlmeier L, Hurwitz S, Franklin J, Wright J, Glowacki J. Occult vitamin D deficiency in postmenopausal US women with acute hip fracture. JAMA. 1999;281(16):1505–11 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov't, P.H.S.].PubMedCrossRefGoogle Scholar
  58. 58.
    Cioffi G, Gatti D, Adami S. Vitamin D deficiency, left ventricular dysfunction and heart failure. G Ital Cardiol (Rome). 2010;11(9):645–53 [Review].Google Scholar
  59. 59.
    • Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab [Practice Guideline Research Support, Non-U.S. Gov’t]. 2011;96(7):1911–30. The Endocrine Society Task Force provided recommendations on screening for vitamin D deficiency in this paper. They also noted that there was not sufficient evidence to prescribe vitamin D supplementation beyond recommended daily needs for the purpose of preventing cardiovascular disease. Google Scholar
  60. 60.
    Albala C, Yanez M, Devoto E, Sostin C, Zeballos L, Santos JL. Obesity as a protective factor for postmenopausal osteoporosis. Int J Obes Relat Metab Disord. 1996;20(11):1027–32 [Research Support, Non-U.S. Gov’t].PubMedGoogle Scholar
  61. 61.
    Gnudi S, Sitta E, Lisi L. Relationship of body mass index with main limb fragility fractures in postmenopausal women. J Bone Miner Metab. 2009;27(4):479–84.PubMedCrossRefGoogle Scholar
  62. 62.
    Kim SH, Meehan JP, Blumenfeld T, Szabo RM. Hip fractures in the United States: nationwide emergency department sample, 2008. Arthritis Care Res. 2011;Dec 20.Google Scholar
  63. 63.
    Hardeman F, Bollars P, Donnelly M, Bellemans J, Nijs S. Predictive factors for functional outcome and failure in angular stable osteosynthesis of the proximal humerus. Injury. 2012;43(2):153–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Schmidtova E, Kelemenova S, Ostatnikova D. Testosterone supplementation therapy as a treatment of hypogonadism. Bratislavske Lekarske Listy [Review]. 2009;110(12):765–72.Google Scholar
  65. 65.
    Martinez Portillo FJ, Cueva Martinez A, Martin Braun P, Fernandez Arancibia MI, Junemann KP, Alken P. [Testosterone substitution in patients with hypogonadism]. Archivos espanoles de urologia [Review]. 2002;55(7):827–38.Google Scholar
  66. 66.
    He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med. 2001;161(7):996–1002 [Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.].PubMedCrossRefGoogle Scholar
  67. 67.
    Naghi JJ, Philip KJ, DiLibero D, Willix R, Schwarz ER. Testosterone therapy: treatment of metabolic disturbances in heart failure. J Cardiovasc Pharmacol Therapeut [Review]. 2011;16(1):14–23.CrossRefGoogle Scholar
  68. 68.
    Wehr E, Pilz S, Boehm BO, Marz W, Grammer T, Obermayer-Pietsch B. Low free testosterone is associated with heart failure mortality in older men referred for coronary angiography. Eur J Heart Fail. 2011;13(5):482–8 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  69. 69.
    • Toma M, McAlister FA, Coglianese EE, Vidi V, Vasaiwala S, Bakal JA, et al. Testosterone supplementation in heart failure: a meta-analysis. Circ Heart Fail. 2012. The benefits of testosterone replacement on HF are reviewed in this meta analysis.Google Scholar
  70. 70.
    Basaria S, Coviello AD, Travison TG, Storer TW, Farwell WR, Jette AM, et al. Adverse events associated with testosterone administration. N Engl J Med. [Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. 2010;363(2):109–22.Google Scholar
  71. 71.
    • Aung K, Htay T. Thiazide diuretics and the risk of hip fracture. Cochrane Database Syst Rev. [Meta-Analysis Review]. 2011;(10):CD005185. This analysis suggests that thiazide diuretic use reduces the risk of hip fracture. The authors recommend that physicians should consider the potential advantages of thiazides over other antihypertensives in treating hypertension in individuals with a high probability of hip fracture. Google Scholar
  72. 72.
    Sosa M, Saavedra P, De Tejada Gomez MJ, Mosquera J, Perez-Cano R, Olmos JM, et al. β-Blocker use is associated with fragility fractures in postmenopausal women with coronary heart disease. Aging Clin Exp Res. 2011;23(2):112–7 [Research Support, Non-U.S. Gov’t].PubMedGoogle Scholar
  73. 73.
    Shimizu H, Nakagami H, Osako MK, Nakagami F, Kunugiza Y, Tomita T, et al. Prevention of osteoporosis by angiotensin-converting enzyme inhibitor in spontaneous hypertensive rats. Hypertens Res. 2009;32(9):786–90 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  74. 74.
    Lynn H, Kwok T, Wong SY, Woo J, Leung PC. Angiotensin converting enzyme inhibitor use is associated with higher bone mineral density in elderly Chinese. Bone. 2006;38(4):584–8 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  75. 75.
    Schlienger RG, Meier CR. HMG-CoA reductase inhibitors in osteoporosis: do they reduce the risk of fracture? Drugs Aging. 2003;20(5):321–36 [Research Support, Non-U.S. Gov’t Review].PubMedCrossRefGoogle Scholar
  76. 76.
    Lim LS, Fink HA, Kuskowski MA, Taylor BC, Schousboe JT, Ensrud KE. Loop diuretic use and increased rates of hip bone loss in older men: the Osteoporotic Fractures in Men Study. Arch Intern Med. 2008;168(7):735–40 [Research Support, N.I.H., Extramural].PubMedCrossRefGoogle Scholar
  77. 77.
    Bolland MJ, Barber PA, Doughty RN, Mason B, Horne A, Ames R, et al. Vascular events in healthy older women receiving calcium supplementation: randomized controlled trial. BMJ. 2008;336(7638):262–6 [Randomized Controlled Trial Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  78. 78.
    Reid IR, Bolland MJ, Avenell A, Grey A. Cardiovascular effects of calcium supplementation. Osteoporos Int. 2011;22(6):1649–58 [Meta-Analysis Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  79. 79.
    Nabhan AF, Rabie NH. Isosorbide mononitrate versus alendronate for postmenopausal osteoporosis. Int J Gynaecol Obstet. 2008;103(3):213–6 [Comparative Study Randomized Controlled Trial].PubMedCrossRefGoogle Scholar
  80. 80.
    Cockcroft JR, Pedersen ME. β-Blockade: benefits beyond blood pressure reduction? J Clin Hypertens (Greenwich). 2012;14(2):112–20 [Research Support, Non-U.S. Gov’t].CrossRefGoogle Scholar
  81. 81.
    Rejnmark L, Vestergaard P, Mosekilde L. Decreased fracture risk in users of organic nitrates: a nationwide case-control study. J Bone Miner Res. 2006;21(11):1811–7 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  82. 82.
    Pouwels S, Lalmohamed A, van Staa T, Cooper C, Souverein P, Leufkens HG, et al. Use of organic nitrates and the risk of hip fracture: a population-based case-control study. J Clin Endocrinol Metab. 2010;95(4):1924–31 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  83. 83.
    Wimalawansa SJ. Nitric oxide and bone. Ann N Y Acad Sci. 2010;1192:391–403 [Evaluation Studies Review].PubMedCrossRefGoogle Scholar
  84. 84.
    Kwok T, Leung J, Zhang YF, Bauer D, Ensrud KE, Barrett-Connor E, et al. Does the use of ACE inhibitors or angiotensin receptor blockers affect bone loss in older men? Osteoporos Int. 2011.Google Scholar
  85. 85.
    Smith Jr SC, Blair SN, Bonow RO, Brass LM, Cerqueira MD, Dracup K, et al. AHA/ACC guidelines for preventing heart attack and death in patients with Atherosclerotic Cardiovascular Disease: 2001 update. J Am Coll Cardiol [Guideline Practice Guideline]. 2001;38(5):1581–3. A statement for healthcare professionals from the American Heart Association and the American College of Cardiology.CrossRefGoogle Scholar
  86. 86.
    Bauer DC, Orwoll ES, Fox KM, Vogt TM, Lane NE, Hochberg MC, et al. Aspirin and NSAID use in older women: effect on bone mineral density and fracture risk. Study of osteoporotic fractures research group. J Bone Miner Res. 1996;11(1):29–35 [Clinical Trial Research Support, U.S. Gov't, P.H.S.].PubMedCrossRefGoogle Scholar
  87. 87.
    Carbone LD, Tylavsky FA, Cauley JA, Harris TB, Lang TF, Bauer DC, et al. Association between bone mineral density and the use of nonsteroidal anti-inflammatory drugs and aspirin: impact of cyclooxygenase selectivity. J Bone Miner Res. 2003;18(10):1795–802 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov't, P.H.S.].PubMedCrossRefGoogle Scholar
  88. 88.
    de Simone G, Devereux RB, Roman MJ, Chinali M, Barac A, Panza JA, et al. Does cardiovascular phenotype explain the association between diabetes and incident heart failure? The strong heart study. NMCD. 2011.Google Scholar
  89. 89.
    Schwartz AV, Sellmeyer DE, Vittinghoff E, Palermo L, Lecka-Czernik B, Feingold KR, et al. Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab. 2006;91(9):3349–54 [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  90. 90.
    Bennett WL, Odelola OA, Wilson LM, Bolen S, Selvaraj S, Robinson KA, et al. Evaluation of guideline recommendations on oral medications for type 2 diabetes mellitus: a systematic review. Ann Intern Med. 2012;156(1):27–36 [Research Support, U.S. Gov't, P.H.S.Review].PubMedGoogle Scholar
  91. 91.
    Abbas A, Blandon J, Rude J, Elfar A, Mukherjee D. PPAR-γ agonist in treatment of diabetes: cardiovascular safety considerations. Cardiovasc Hematol Agents Med Chem. 2012.Google Scholar
  92. 92.
    Gotoh M, Mizuno K, Ono Y, Takahashi M. Fluvastatin increases bone mineral density in postmenopausal women. Fukushima J Med Sci. 2011;57(1):19–27.PubMedCrossRefGoogle Scholar
  93. 93.
    Yue J, Zhang X, Dong B, Yang M. Statins and bone health in postmenopausal women: a systematic review of randomized controlled trials. Menopause. 2010;17(5):1071–9 [Research Support, Non-U.S. Gov’t Review].PubMedCrossRefGoogle Scholar
  94. 94.
    Nawaz MA, Curry P, Patni R, Punjabi P, Murday A. An audit of a steroid withdrawal regimen in cardiac transplantation patients. Transplant Proc. 2011;43(2):623–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Dolgos S, Hartmann A, Isaksen GA, Simonsen S, Bjortuft O, Boberg KM, et al. Osteoporosis is a prevalent finding in patients with solid organ failure awaiting transplantation - a population based study. Clin Transplant [Clinical Trial]. 2010;24(5):E145–52.CrossRefGoogle Scholar
  96. 96.
    Kulak CA, Borba VZ, Kulak Jr J, Custodio MR. Osteoporosis after transplantation. Curr Osteoporos Rep. 2012;10(1):48–55.PubMedCrossRefGoogle Scholar
  97. 97.
    Vezzoli G, Soldati L, Arcidiacono T, Terranegra A, Biasion R, Russo CR, et al. Urinary calcium is a determinant of bone mineral density in elderly men participating in the InCHIANTI study. [Research Support, Non-US Gov’t]. 2005;67(5):2006–14.Google Scholar
  98. 98.
    Chhokar VS, Sun Y, Bhattacharya SK, Ahokas RA, Myers LK, Xing Z, et al. Loss of bone minerals and strength in rats with aldosteronism. Am J Physiol Heart Circ Physiol. 2004;287(5):H2023–6 [Research Support, U.S. Gov't, P.H.S.].PubMedCrossRefGoogle Scholar
  99. 99.
    Podolsky S, Melby JC. Improvement of growth hormone response to stimulation in primary aldosteronism with correction of potassium deficiency. Metabolism. 1976;25(9):1027–32 [Case Reports Comparative Study].PubMedCrossRefGoogle Scholar
  100. 100.
    Tucker KL, Hannan MT, Chen H, Cupples LA, Wilson PW, Kiel DP. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr. 1999;69(4):727–36 [Comparative StudyResearch Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.].PubMedGoogle Scholar
  101. 101.
    Zhu K, Devine A, Prince RL. The effects of high potassium consumption on bone mineral density in a prospective cohort study of elderly postmenopausal women. Osteoporos Int. 2009;20(2):335–40 [Comparative Study Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  102. 102.
    Cherruau M, Facchinetti P, Baroukh B, Saffar JL. Chemical sympathectomy impairs bone resorption in rats: a role for the sympathetic system on bone metabolism. Bone. 1999;25(5):545–51.PubMedCrossRefGoogle Scholar
  103. 103.
    Moore RE, Smith II CK, Bailey CS, Voelkel EF, Tashjian Jr AH. Characterization of β-adrenergic receptors on rat and human osteoblast-like cells and demonstration that β-receptor agonists can stimulate bone resorption in organ culture. Bone Miner. 1993;23(3):301–15 [Research Support, U.S. Gov’t, P.H.S.].PubMedCrossRefGoogle Scholar
  104. 104.
    Togari A, Arai M, Mizutani S, Koshihara Y, Nagatsu T. Expression of mRNAs for neuropeptide receptors and β-adrenergic receptors in human osteoblasts and human osteogenic sarcoma cells. Neurosci Lett. 1997;233(2–3):125–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305–17 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].PubMedCrossRefGoogle Scholar
  106. 106.
    Takeuchi T, Tsuboi T, Arai M, Togari A. Adrenergic stimulation of osteoclastogenesis mediated by expression of osteoclast differentiation factor in MC3T3-E1 osteoblast-like cells. Biochem Pharmacol. 2001;61(5):579–86 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  107. 107.
    Huang HH, Brennan TC, Muir MM, Mason RS. Functional ⟼1- and β2-adrenergic receptors in human osteoblasts. J Cell Physiol. 2009;220(1):267–75 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  108. 108.
    Rangaswami H, Marathe N, Zhuang S, Chen Y, Yeh JC, Frangos JA, et al. Type II cGMP-dependent protein kinase mediates osteoblast mechanotransduction. J Biol Chem. 2009;284(22):14796–808 [Research Support, N.I.H., Extramural].PubMedCrossRefGoogle Scholar
  109. 109.
    Roth GJ, Stanford N, Majerus PW. Acetylation of prostaglandin synthase by aspirin. Proc Nat Acad Sci U S A. 1975;72(8):3073–6 [Research Support, U.S. Gov’t, P.H.S.].CrossRefGoogle Scholar
  110. 110.
    DeWitt DL, El-Harith EA, Kraemer SA, Andrews MJ, Yao EF, Armstrong RL, et al. The aspirin and heme-binding sites of ovine and murine prostaglandin endoperoxide synthases. J Biol Chem. 1990;265(9):5192–8 [Comparative Study Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].PubMedGoogle Scholar
  111. 111.
    Morham SG, Langenbach R, Loftin CD, Tiano HF, Vouloumanos N, Jennette JC, et al. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell. 1995;83(3):473–82 [Research Support, Non-U.S. Gov”tResearch Support, U.S. Gov’t, P.H.S.].PubMedCrossRefGoogle Scholar
  112. 112.
    Dinchuk JE, Car BD, Focht RJ, Johnston JJ, Jaffee BD, Covington MB, et al. Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II. Nature. 1995;378(6555):406–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Wan Y, Chong LW, Evans RM. PPAR-γ regulates osteoclastogenesis in mice. Nat Med. 2007;13(12):1496–503 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  114. 114.
    Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4(8):638–49 [Research Support, U.S. Gov't, P.H.S. Review].PubMedCrossRefGoogle Scholar
  115. 115.
    Yin H, Shi ZG, Yu YS, Hu J, Wang R, Luan ZP, et al. Protection against osteoporosis by statins is linked to a reduction of oxidative stress and restoration of nitric oxide formation in aged and ovariectomized rats. Eur J Pharmacol. 2012;674(2–3):200–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Kessenich C. An approach to postmenopausal osteoporosis treatment: a case study review. J Am Acad Nurse Pract. 2003;15(12):539–45 [Case Reports Review].PubMedCrossRefGoogle Scholar
  117. 117.
    Manson JE, Allison MA, Carr JJ, Langer RD, Cochrane BB, Hendrix SL, et al. Calcium/vitamin D supplementation and coronary artery calcification in the Women's Health Initiative. Menopause. 2010;17(4):683–91 [Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedGoogle Scholar
  118. 118.
    Budoff MJ, Achenbach S, Blumenthal RS, Carr JJ, Goldin JG, Greenland P, et al. Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American heart association committee on cardiovascular imaging and intervention, council on cardiovascular radiology and intervention, and committee on cardiac imaging, council on clinical cardiology. Circulation. 2006;114(16):1761–91 [Evaluation Studies Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].PubMedCrossRefGoogle Scholar
  119. 119.
    Folsom AR, Kronmal RA, Detrano RC, O'Leary DH, Bild DE, Bluemke DA, et al. Coronary artery calcification compared with carotid intima-media thickness in the prediction of cardiovascular disease incidence: the Multi-Ethnic Study of Atherosclerosis (MESA). Arch Intern Med. 2008;168(12):1333–9 [Clinical Trial Comparative Study Research Support, N.I.H., Extramural].PubMedCrossRefGoogle Scholar
  120. 120.
    Mautner GC, Mautner SL, Froehlich J, Feuerstein IM, Proschan MA, Roberts WC, et al. Coronary artery calcification: assessment with electron beam CT and histomorphometric correlation. Radiology. 1994;192(3):619–23 [Research Support, Non-U.S. Gov’t].PubMedGoogle Scholar
  121. 121.
    Sung JK, Kim JY, Ryu DW, Lee JW, Youn YJ, et al. A case of hypocalcemia-induced dilated cardiomyopathy. J Cardiovasc Ultrasound. 2010;18(1):25–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Barrett-Connor E, Grady D, Sashegyi A, Anderson PW, Cox DA, Hoszowski K, et al. Raloxifene and cardiovascular events in osteoporotic postmenopausal women: four-year results from the MORE (Multiple Outcomes of Raloxifene Evaluation) randomized trial. JAMA. 2002;287(7):847–57 [Clinical Trial Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  123. 123.
    Lerner DJ, Kannel WB. Patterns of coronary heart disease morbidity and mortality in the sexes: a 26-year follow-up of the Framingham Population. Am Heart J. 1986;111(2):383–90 [Comparative Study].PubMedCrossRefGoogle Scholar
  124. 124.
    Nofer JR. Estrogens and atherosclerosis: insights from animal models and cell systems. J Mol Endocrinol. 2012;48(2):R13–29.PubMedCrossRefGoogle Scholar
  125. 125.
    Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's health initiative randomized controlled trial. JAMA. 2002;288(3):321–33 [Clinical Trial Multicenter Study Randomized Controlled Trial Research Support, U.S. Gov't, P.H.S.].PubMedCrossRefGoogle Scholar
  126. 126.
    Muller M, van den Beld AW, Bots ML, Grobbee DE, Lamberts SW, van der Schouw YT. Endogenous sex hormones and progression of carotid atherosclerosis in elderly men. Circulation. 2004;109(17):2074–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Reslan OM, Khalil RA. Vascular effects of estrogenic menopausal hormone therapy. Rev Recent Clin Trials. 2012;7(1):47–70 [Research Support, N.I.H., Extramural].PubMedCrossRefGoogle Scholar
  128. 128.
    Wilkinson GS, Baillargeon J, Kuo YF, Freeman JL, Goodwin JS. Atrial fibrillation and stroke associated with intravenous bisphosphonate therapy in older patients with cancer. J Clin Oncol. 2010;28(33):4898–905 [Research Support, N.I.H., Extramural].PubMedCrossRefGoogle Scholar
  129. 129.
    Grosso A, Douglas I, Hingorani A, MacAllister R, Smeeth L. Oral bisphosphonates and risk of atrial fibrillation and flutter in women: a self-controlled case-series safety analysis. PLoS One. 2009;4(3):e4720 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  130. 130.
    Abrahamsen B, Eiken P, Brixen K. Atrial fibrillation in fracture patients treated with oral bisphosphonates. J Intern Med. 2009;265(5):581–92 [Comparative Study Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  131. 131.
    Bunch TJ, Anderson JL, May HT, Muhlestein JB, Horne BD, Crandall BG, et al. Relation of bisphosphonate therapies and risk of developing atrial fibrillation. Am J Cardiol. 2009;103(6):824–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Huang WF, Tsai YW, Wen YW, Hsiao FY, Kuo KN, Tsai CR. Osteoporosis treatment and atrial fibrillation: alendronate versus raloxifene. Menopause. 2010;17(1):57–63 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  133. 133.
    Kim SY, Kim MJ, Cadarette SM, Solomon DH. Bisphosphonates and risk of atrial fibrillation: a meta-analysis. Arthritis Res Ther. 2010;12(1):R30 [Meta-Analysis Research Support, N.I.H., Extramural].PubMedCrossRefGoogle Scholar
  134. 134.
    Pazianas M, Cooper C, Wang Y, Lange JL, Russell RG. Atrial fibrillation and the use of oral bisphosphonates. Therapeut Clin Risk Manag. 2011;7:131–44.CrossRefGoogle Scholar
  135. 135.
    Vestergaard P, Schwartz K, Pinholt EM, Rejnmark L, Mosekilde L. Risk of atrial fibrillation associated with use of bisphosphonates and other drugs against osteoporosis: a cohort study. Calcif Tissue Int. 2010;86(5):335–42 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  136. 136.
    Rhee CW, Lee J, Oh S, Choi NK, Park BJ. Use of bisphosphonate and risk of atrial fibrillation in older women with osteoporosis. Osteoporos Int. 2012;23(1):247–54 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  137. 137.
    Arslan C, Aksoy S, Dizdar O, Dede DS, Harputluoglu H, Altundag K. Zoledronic acid and atrial fibrillation in cancer patients. Support Care Cancer. 2011;19(3):425–30.PubMedCrossRefGoogle Scholar
  138. 138.
    FDA. Update of safety review follow-up to the October 1, 2007 'early communication about the Ongoing Safety Review of Bisphosphonates. Available at: http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/DrugSafetyInformationforHeathcareProfessionals/ucm136201.htm. 2008 Accessed April 15, 2012.
  139. 139.
    Vestergaard P. Acute myocardial infarction and atherosclerosis of the coronary arteries in patients treated with drugs against osteoporosis: calcium in the vessels and not the bones? Calcif Tissue Int. 2012;90(1):22–9 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  140. 140.
    Shao JS, Cheng SL, Charlton-Kachigian N, Loewy AP, Towler DA. Teriparatide (human parathyroid hormone (1-34)) inhibits osteogenic vascular calcification in diabetic low density lipoprotein receptor-deficient mice. J Biol Chem. 2003;278(50):50195–202 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov't, P.H.S.].PubMedCrossRefGoogle Scholar
  141. 141.
    Body JJ, Bergmann P, Boonen S, Devogelaer JP, Gielen E, Goemaere S, et al. Extraskeletal benefits and risks of calcium, vitamin D and anti-osteoporosis medications. Osteoporos Int. 2012;23 Suppl 1:S1–23 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  142. 142.
    Garakyaraghi M, Kerdegari M, Siavash M. Calcium and vitamin D status in heart failure patients in Isfahan, Iran. Biol Trace Elem Res. 2010;135(1–3):67–73.PubMedCrossRefGoogle Scholar
  143. 143.
    • Loncar G, Bozic B, Dimkovic S, Prodanovic N, Radojicic Z, Cvorovic V, et al. Association of increased parathyroid hormone with neuroendocrine activation and endothelial dysfunction in elderly men with heart failure. J Endocrinol Invest [Research Support, Non-US Gov’t]. 2011;34(3):e78–85. In this paper, the molecular basis by which hyperparathyroidism may lead to aldosteronism and subsequent osteoporosis is discussed.Google Scholar
  144. 144.
    Altay H, Zorlu A, Binici S, Bilgi M, Yilmaz MB, Colkesen Y, et al. Relation of serum parathyroid hormone level to severity of heart failure. Am J Cardiol. 2012;109(2):252–6 [Comparative Study Multicenter Study].PubMedCrossRefGoogle Scholar
  145. 145.
    Kamalov G, Ahokas RA, Zhao W, Zhao T, Shahbaz AU, Johnson PL, et al. Uncoupling the coupled calcium and zinc dyshomeostasis in cardiac myocytes and mitochondria seen in aldosteronism. J Cardiovasc Pharmacol. 2010;55(3):248–54 [Research Support, N.I.H., Extramural].PubMedCrossRefGoogle Scholar
  146. 146.
    Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension. 2007;49(2):241–8 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].PubMedCrossRefGoogle Scholar
  147. 147.
    Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301(6):H2181–90 [Research Support, Non-U.S. Gov’t Review].PubMedCrossRefGoogle Scholar
  148. 148.
    Nojiri H, Saita Y, Morikawa D, Kobayashi K, Tsuda C, Miyazaki T, et al. Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking. J Bone Miner Res. 2011;26(11):2682–94 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  149. 149.
    Altindag O, Erel O, Soran N, Celik H, Selek S. Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatol Int. 2008;28(4):317–21.PubMedCrossRefGoogle Scholar
  150. 150.
    Sendur OF, Turan Y, Tastaban E, Serter M. Antioxidant status in patients with osteoporosis: a controlled study. Joint Bone Spine. 2009;76(5):514–8.PubMedCrossRefGoogle Scholar
  151. 151.
    Jurkovic Mlakar S, Prezelj J, Osredkar J, Marc J. BMD values and GSTM3 gene polymorphisms in combination with GSTT1/GSTM1 genes: a Genetic Association Study in Slovenian Elderly. Gerontology. 2012.Google Scholar
  152. 152.
    Mlakar SJ, Osredkar J, Prezelj J, Marc J. Antioxidant enzymes GSR, SOD1, SOD2, and CAT gene variants and bone mineral density values in postmenopausal women: a genetic association analysis. Menopause. 2012;19(3):368–76 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  153. 153.
    Liang D, Yang M, Guo B, Cao J, Yang L, Guo X, et al. Zinc inhibits H(2)O (2)-induced MC3T3-E1 cells apoptosis via MAPK and PI3K/AKT pathways. Biol Trace Elem Res. 2012.Google Scholar
  154. 154.
    Nakagami H, Morishita R. [Hormones and osteoporosis update. Effect of angiotensin II on bone metabolism]. Clin Calcium [Review]. 2009;19(7):997–1002.Google Scholar
  155. 155.
    Guan XX, Zhou Y, Li JY. Reciprocal roles of Angiotensin II and Angiotensin II receptors blockade (ARB) in regulating Cbfa1/RANKL via cAMP signaling pathway: possible mechanism for hypertension-related osteoporosis and antagonistic effect of ARB on hypertension-related osteoporosis. Int J Mol Sci. 2011;12(7):4206–13.PubMedCrossRefGoogle Scholar
  156. 156.
    Shimizu H, Nakagami H, Osako MK, Hanayama R, Kunugiza Y, Kizawa T, et al. Angiotensin II accelerates osteoporosis by activating osteoclasts. FASEB J. 2008;22(7):2465–75 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  157. 157.
    Biolo A, Shibata R, Ouchi N, Kihara S, Sonoda M, Walsh K, et al. Determinants of adiponectin levels in patients with chronic systolic heart failure. Am J Cardiol. 2010;105(8):1147–52 [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  158. 158.
    Barbour KE, Zmuda JM, Boudreau R, Strotmeyer ES, Horwitz MJ, Evans RW, et al. Adipokines and the risk of fracture in older adults. J Bone Miner Res. 2011;26(7):1568–76 [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural].PubMedCrossRefGoogle Scholar
  159. 159.
    Luo XH, Guo LJ, Yuan LQ, Xie H, Zhou HD, Wu XP, et al. Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp Cell Res. 2005;309(1):99–109 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  160. 160.
    Biver E, Salliot C, Combescure C, Gossec L, Hardouin P, Legroux-Gerot I, et al. Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2011;96(9):2703–13 [Meta-Analysis Research Support, Non-U.S. Gov’t Review].PubMedCrossRefGoogle Scholar
  161. 161.
    Mussolino ME, Armenian HK. Low bone mineral density, coronary heart disease, and stroke mortality in men and women: the third national health and nutrition examination survey. Ann Epidemiol. 2007;17(11):841–6.PubMedCrossRefGoogle Scholar
  162. 162.
    Mussolino ME, Gillum RF. Low bone mineral density and mortality in men and women: the third national health and nutrition examination survey linked mortality file. Ann Epidemiol. 2008;18(11):847–50.PubMedCrossRefGoogle Scholar
  163. 163.
    Cullen MW, Gullerud RE, Larson DR, Melton III LJ, Huddleston JM, Cullen MW, et al. Impact of heart failure on hip fracture outcomes: a population-based study. J Hosp Med. 2011;6(9):507–12 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  164. 164.
    Frost SA, Nguyen ND, Black DA, Eisman JA, Nguyen TV. Risk factors for in-hospital post-hip fracture mortality. Bone. 2011;49(3):553–8 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  165. 165.
    Ho CA, Li CY, Hsieh KS, Chen HF. Factors determining the 1-year survival after operated hip fracture: a hospital-based analysis. J Orthopaed Sci. 2010;15(1):30–7.CrossRefGoogle Scholar
  166. 166.
    Streubel PN, Ricci WM, Wong A, Gardner MJ. Mortality after distal femur fractures in elderly patients. Clin Orthop. 2011;469(4):1188–96 [Comparative Study Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  167. 167.
    Bunta AD. It is time for everyone to own the bone. Osteoporos Int. 2011;22 Suppl 3:477–82 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  168. 168.
    Juliebo V, Krogseth M, Skovlund E, Engedal K, Wyller TB. Medical treatment predicts mortality after hip fracture. J Gerontol A Biol Sciand Med Sci. 2010;65(4):442–9 [Research Support, Non-U.S. Gov’t].CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Aloice O. Aluoch
    • 1
  • Ryan Jessee
    • 1
  • Hani Habal
    • 2
  • Melinda Garcia-Rosell
    • 1
  • Rehan Shah
    • 2
  • Guy Reed
    • 3
  • Laura Carbone
    • 2
    • 4
  1. 1.Department of MedicineUniversity of TN Health Science CenterMemphisUSA
  2. 2.Department of Medicine, Division of RheumatologyUniversity of TN Health Science CenterMemphisUSA
  3. 3.Department of Medicine, Division of CardiologyUniversity of TN Health Science CenterMemphisUSA
  4. 4.Veterans Affairs Medical CenterMemphisUSA

Personalised recommendations